A Competitive Analysis of the List Update Problem
with Lookahead

Susanne Albers*

Abstract

We consider the question of lookahead in the list update problem: What improvement
can be achieved in terms of competitiveness if an on-line algorithm sees not only the present
request to be served but also some future requests? We introduce two different models of
lookahead and study the list update problem using these models. We develop lower bounds on
the competitiveness that can be achieved by deterministic on-line algorithms with lookahead.
Furthermore we present on-line algorithms with lookahead that are competitive against static

off-line algorithms.

1 Introduction

In recent years there has been tremendous interest in the competitive analysis of on-line algo-
rithms. Many on-line problems have been studied in areas such as resource allocation, data
structures, graph problems, scheduling and navigation. In the context of data structures, the
list update problem is of fundamental importance. The problem is to maintain a set of items as
an unsorted linear list. A list of » items is given. A list update algorithm is presented with a
sequence of requests, where each request specifies an item of the list. In order to serve a request,
a list update algorithm must access the requested item, i.e., it has to start at the front of the
list and search linearly through the items until the desired item is found. Accessing the ¢th
item in the list incurs a cost of 7. Immediately after a request, the accessed item may be moved
at no extra cost to any position closer to the front of the list. These exchanges are called free
exchanges. All other exchanges of two consecutive items in the list cost 1 and are called paid
exchanges. The goal is to serve the request sequence such that the total cost is as small as
possible. A list update algorithm is on-line if it serves each request without the knowledge of

future requests.

Competitive analysis [27] is a powerful means to analyze the performance of on-line algorithms

for the list update problem. In a competitive analysis, an on-line algorithm is compared to an

*Max-Planck-Institut fir Informatik, Im Stadtwald, D-66123 Saarbriicken, Germany. E-mail:
albers@mpi-sb.mpg.de. This work was supported by a Graduiertenkolleg graduate fellowship of the Deutsche

Forschungsgemeinschaft.

optimal off-line algorithm. An optimal off-line algorithm knows the entire request sequence in
advance and can serve it with minimum cost. Given a request sequence o, let C4 (o) denote the
cost incurred by the online algorithm A in serving ¢ and let Copr(o) denote the cost incurred
by the optimal off-line algorithm OPT on ¢. Then the algorithm A is c-competitive if there
exists a constant a such that

Calo) <c-Copr(o)+a

for all request sequences ¢. The competitive factor of A is the infimum of all ¢ for which A is

c-competitive.

The list update problem is of significant practical interest. List update techniques are often
applied in practice when storing small dictionaries. Furthermore, they are efficient subroutines
in algorithms related to data compression and computational geometry [7, 9, 12, 15]. Due to
its structural simplicity and practical significance, the list update problem has been studied
extensively [2, 3, 8, 10, 13, 18, 20, 25, 26, 27, 28]. In the following we mention the important
results relevant to our work. Sleator and Tarjan [27] have shown that the MOVE-TO-FRONT
algorithm, which simply moves an item to the front of the list each time it is requested, is
2-competitive. Karp and Raghavan [22] have observed that no deterministic on-line algorithm
for the list update problem can be better than 2-competitive. Thus, the MOVE-TO-FRONT

algorithm achieves the best possible competitive factor.

Recently there have been some attempts to beat the competitive factor of 2 using random-
ization. Irani [20] has described a randomized on-line algorithm for the list update problem that
achieves a competitiveness of 1.935. Reingold et al. [25] have given a randomized algorithm that
is v/3-competitive. Albers [2] has presented a randomized algorithm whose competitiveness is
equal to the Golden Ratio ® = 1"'2—\/3 This performance ratio was further improved to 1.6 [3].
The best lower bound known for randomized on-line algorithms is due to Teia [28]. He shows
that no randomized on-line algorithm for the list update problem can have a competitive factor

which is less than 1.5. These bounds hold against the oblivious adversary, see [6] for details.

In this paper we study the problem of lookahead in on-line algorithms for the list update
problem. An important question is what improvement can be achieved in terms of competitive-
ness, if an on-line algorithm knows not only the present request to be served, but also some
future requests. This issue is interesting from the practical as well as the theoretical point of
view. In practical applications requests do not necessarily arrive one after the other, but rather
in blocks of possibly variable size. In addition, requests may be generated faster than they can
be processed by a list update algorithm. Hence it is to be expected that some requests usually
walit in line to be processed by an on-line algorithm. In some applications it may also be possi-
ble to delay the service of requests so as to wait for some incoming requests. In the theoretical

context a natural question is: What is it worth to know a part of the future?

So far, only few on-line problems with lookahead have been studied in the literature. Previous

research on lookahead in on-line algorithms has addressed paging problems [1, 5, 11, 23, 29, 30],

k-server problems [5], bin packing problems [16], dynamic location problems [14] and graph
problems [17, 19, 21]. In particular, at present time, nothing is known about list update with
lookahead. We begin our study of the influence of lookahead in the list update problem by

introducing two different models of lookahead.

Let 0 = 0(1),0(2),...,0(m) be a request sequence of length m. o(t) denotes the request at

time t. For a given set S, card(S) denotes the cardinality of S. Let [> 1 be an integer.

Weak lookahead of size [: The on-line algorithm sees the present request and the next [
future requests. More specifically, when answering o(¢), the on-line algorithm already knows
o(t+1),0(t+2),...,0(t+1). However, requests o(s), with s > ¢ + 1+ 1, are not seen by the

on-line algorithm at time t.

Strong lookahead of size [: The on-line algorithm sees the present request and a sequence of
future requests. This sequence contains [pairwise distinct items which also differ from the item
requested by the present request. More precisely, when serving request o (t), the algorithm knows
requests o(t+1),0(t+2),...,0(t'), where t’ = min{s > t|card({o(t),o(t+1),...,0(s)}) = [+1}.

The requests o(s), with s > #' + 1, are not seen by the on-line algorithm at time t.

At first sight weak lookahead seems to be the natural model of lookahead. However, as we
shall see later, weak lookahead is only of minor advantage in the list update problem. The reason
is that an adversary that constructs a request sequence can replicate requests in the lookahead,
thereby weakening the effect of the lookahead. In contrast, in the model of strong lookahead,
we require an adversary to reveal some really significant information of future requests. Strong
lookahead was first presented in [1], where on-line paging algorithms with lookahead are studied.
Strong lookahead is a model of lookahead that can improve the competitive factors of on-line
paging algorithms and has practical as well as theoretical importance. In the following, when
we investigate on-line algorithms with lookahead, I always denotes the size of the lookahead. We

always assume that an on-line algorithm has a lookahead of fixed size [> 1.

This paper represents an in-depth study of the deterministic list update problem with strong
and weak lookahead. Section 2 is concerned with lower bounds. We show that an on-line
algorithm requires a strong lookahead of size Q(n) in order to be better than 2-competitive.
Specifically, we prove that an on-line algorithm with strong lookahead [, where [< n—1, cannot
be better than (2 — Z;"Tzl)—competitive. Again, n is the number of items in the list. If an on-line
algorithm is given a weak lookahead, the situation is worse. We show that a lookahead of size
Q(n?) is necessary to asymptotically beat the competitive factor of 2. This statement seems to
imply that it would not be worthwhile to consider weak lookahead in the list update problem.
However this might not be true, as more precise calculations show. We prove that if a weak
lookahead of size [is given and (/4 1) = Kn? for a positive real constant K, then an on-line list
update algorithm cannot be better than c-competitive where ¢ = 2 — 2V/AK? + 2K +4K. (Note
that this expression goes to 1 as K tends to infinity.) Even for very small values of K, this bound

gives values which are significantly below 2. For instance, if K = 11%, we obtain a lower bound

of ¢ = 1.75. Recall that the list update problem is of practical interest for small lists consisting
of only a few dozen items. For lists of lengths ny = 12 and ny = 24 the term [= ﬁnz -1
evaluates to a lookahead of size [y = 1 and l; = 5, respectively. If our lower bounds are relatively
tight, a 1.75-competitive algorithm working on small lists would require a weak lookahead of
reasonable size. For a more extensive discussion of the bound ¢ = 2 — 2/4K2 + 2K + 4K, we

refer the reader to the table on page 9.

Section 3 addresses the development of on-line algorithms for the list update problem with
lookahead. We present on-line algorithms that are competitive against static off-line algorithms.
Static algorithms initially arrange the list in some order and make no other exchanges of items
in the list while processing a request sequence. Given a request sequence o, the optimum
static off-line algorithm, which we call STAT, first sorts the items in non-increasing order of
request frequencies and then does no further exchanges. Formally, an on-line algorithm A is
c-competitive against static off-line algorithms if there exists a constant ¢ such that C4(0) <
c-Csrar(0) + a for all request sequences o. Static off-line algorithms are weaker than dynamic
off-line algorithms, which may rearrange the list after each request. However, static algorithms
are valuable from the practical point of view since they can compute an optimal ordering of the
list in O(m) time, where m is the length of the request sequence. The best dynamic off-line
algorithm currently known is due to Reingold and Westbrook [24] and takes O(2"n!m) time.
There has also been work focused on analyzing list update algorithms against static off-line
algorithms, e.g., Bentley and McGeoch [8] have shown that the MOVE-TO-FRONT algorithm
is 2-competitive against static off-line algorithms. D’Amore et al. [4] have discussed a variant
of the list update problem, called the weighted list update problem, with respect to static off-
line algorithms. We develop a simple on-line algorithm for the list update problem that, given a
strong lookahead of size I < n—1,is (2— % . %)—Competitive. We also give an on-line algorithm
with weak lookahead that has a competitiveness of 2 — 2(vK2 + 2K — K). We compare this
performance to the corresponding lower bound we developed. We remark that our lower bounds
hold against any off-line algorithm (static or dynamic), whereas our upper bounds hold against

static off-line algorithms.

2 Lower bounds for list update with lookahead

We assume that the given list consists of n items, where n > 2. Furthermore, we generally
assume that the size [of the given lookahead is constant or a function of n. We show that a
deterministic on-line algorithm with strong lookahead [can only be better than 2-competitive

(for all list lengths) if [is linear in n. Note that the size of a strong lookahead satisfies [< n —1.

Theorem 1 Let A be a deterministic on-line algorithm with strong lookahead | for the list update
problem. Then there exists a request sequence o such that
[+2

CA(U) > (2— I

)-Copr(0o).

4

Proof: We construct a request sequence ¢ = (1), 0(2),... using the following algorithm.

Algorithm LIST-REQUEST: The first [+ 1 requests o(1),0(2),...,0(l+ 1) are requests to
the last [+ 1 items in the initial list. For ¢ > [+ 2 the request o(t) is constructed as follows.
After A has served o(t — [— 1), determine the item 2 which has the highest position in the
current list among items not contained in {o(t —1),0(t =1+ 1),...,0(t — 1)}. Set o(t) = z.

Given this request sequence o, we compare the cost incurred by A to the cost incurred by
the optimal algorithm OPT. It is not hard to see that OPT can process each request sequence
such that its amortized cost on each request is at most (n + 1)/2. OPT can simply use the
optimum static algorithm STAT (which initially sorts the items in non-increasing order of request
frequencies and makes no other exchanges). Hence OPT’s amortized cost during [+ 1 successive
requests in o is at most (I + 1)(n+ 1)/2.

We evaluate A’s cost on request sequence o. For simplicity, we handle paid exchanges made
by A in the following way. Whenever A moves an item z closer to the front of the list using paid
exchanges, we charge the cost of these paid exchanges to the next request to z. This charging
scheme will be used in the remainder of this proof, including Lemma 1 and its proof. Lemma 1
shows that on any [+ 1 successive requests, A incurs a cost of at least Zi’:o(n —). This implies
that C4(0) > ¢-Copr(o), where

l .
oo Simon—d) (4 Ln- (42 21, 1+2 |

(+1)(n+1)/2 (l+1)(n+1)/2 n+1 n+1

Lemma 1 Let C'4(6(t)) be the cost incurred by A when processing the subsequence 6(t) =
o(t),o(t+1),...,0(t+1). Then Ca(5(t)) > St o(n — i) for all t > 1.

Proof: Fort > 1, let S(t) = {t,t 4+ 1,...,t + 1} and let C4(o(t)) be the cost incurred by A
when processing request o(t). We prove by induction on ¢ that for all £ > 1 and for all k, where

n — [< k < n, the inequality
card({s € S(t)|Ca(o(s)) > k}) >n—k+1 (1)

holds. This implies the lemma.

For an item « and ¢t > 1, let pos(z,t) denote 2’s position in the list immediately after A has
served o(t—1). By the construction of o, any [4 1 successive requests in ¢ are pairwise distinct.
Thus for any s € S(t), C4(o(s)) > pos(o(s),t) because paid exchanges applied to the item o(s)

during the time interval [t, s — 1] are charged to request o(s).

We proceed with the inductive proof. Inequality (1) holds at time ¢ = 1. By induction
hypothesis it holds at time ¢t — 1. We show that the inequality is also satisfied at time t. When

making the transition from S(t — 1) to S(t), we lose time ¢ — 1. Thus, the induction hypothesis
implies that for all k, n — I < k <n,

card({s € SO\ {(t+ D} Calo(s) > k) > n — k. 2)

If pos(a(t+1),t) = n, then the inequality (1) obviously holds for all £, n —! < k < n. So suppose
pos(o(t+1),t) < n. After A has served o(t — 1), the items o(s) with s € S(¢) \ {(t+ 1)} occupy
all positions pos(o(t+1),t)+1, pos(a(t+1),t)+2,...,n. We observe that for k > pos(c(t+1),1)

card({s € S()\{(t+ 1) }|Ca(c(s)) > k}) >n—k+1.

Since inequality (2) holds, inequality (1) must be satisfied for all k, n — [<k <n. O

Next we consider algorithms with weak lookahead.

Theorem 2 Let A be a deterministic on-line algorithm with weak lookahead | for the list update

problem.
a) Ifl = o(n?) and A is c-competitive, then ¢ > 2.

b) Ifl+1= Kn? and A is c-competitive, then ¢ > 2 — 2v/4K? + 2K + 4K.

Proof: For integers j with 1 < j < min{/41,n—1}, we construct request sequences ¢’ and then

use lim sup Cpax(n), where Crax(n) = max{C4(c})/Copr(ol) | 1 < j < min{l+1,n — 1}}, to
n—oo

bound A’s competitive factor from below.

If j = 1+ 1 then we generate a request sequence using the algorithm LIST-REQUEST
proposed in the proof of Theorem 1. If j < [+ 1 we use a slightly different algorithm. Let z
be the first item in the initial list. The request sequence o7 consists of a series of phases each
of which contains exactly [+ 1 requests. In each phase, the first j requests are made to items
x # x1, while the remaining [4+ 1 — j requests are made to item z1. More precisely, the first j
requests in the first phase are requests to the last j items in the initial list. If o(¢) belongs to
the first j requests in a given phase 7, where 7 > 2, then o(¢) is constructed as follows. After A
has served o(t — [— 1), determine the item z which is at the highest position in the current list
among items not contained in {o(t —1),c(t —1+1),...,0(t — 1)}. Set o(t) = =.

We analyze A’s and OPT’s cost incurred on a given sequence . Again, whenever A moves
an item z closer to the front of the list using paid exchanges, we charge the cost of these paid

exchanges to the next request to . We claim that in each phase, A incurs a cost of at least

The claim clearly holds if j =14+ 1 orif y <141 and A always stores x; at the first position of
the list. In these two cases we can use the same analysis as in the proof of Lemma 1. If j < [+1

and if A does not always store z; at the front of the list, then consider the following algorithm

A’. The algorithm A’ always maintains the items x # 2 in the same order as A, but always
stores zq at the first position of the list. It is easy to verify that in each phase, A’ does not incur

a higher cost than A.

We show that in each phase, OPT’s amortized cost is at most

This bound holds true if j = [+ 1 because ;EZ"_’B — 1= > 2Ll If j <1+ 1 then OPT can
apply the following static algorithm. Initially, the list is rearranged such that item x; occupies
position 1 in the list and such that the remaining items are sorted in order of non-increasing
request frequencies. While processing ¢/ no exchanges are made. Using this static algorithm,
OPT’s amortized cost on a request to an item z # z; is at most =7 (3 p_, k) = % - L

This bound is tight if all items « # 27 have the same request frequency.

For j = 1,2,...,min{l 4+ 1,n — 1}, let C,,(j) = Ca(c2)/Copr(cl). We have

m— 2U=Y (11— 2in — 2 —j4+20+2
Cn(j) 2 .ZZH - 1+(u]). == 'i+2?j:2 . ®)
SO)

Then A’s competitive factor ¢ satisfies ¢ > limsup Cpax(n), where Chax(n) = max{C,()|1 <

n—oo

J <min{l+1,n—1}}. Now we prove the two parts of the theorem.

Part a): If I = O(1), then consider the sequence C,,(1), n = 1,2,3,.... This sequence converges

to 2 as n tends to infinity. Now suppose [= w(1) and [= O(n?). We maximize the function

C2n— = 42042

CnlJ) jn 42042

(4)

subject to the constraint 0 < j < min{l 4+ 1,n — 1}. Here we are also interested in possibly
non-integral solutions for j. We determine j, such that ‘ngig’l) =0.
ngiijn) = 0 is equivalent to

(2n — 2j, — 1) (un + 204+ 2) — (2jpn — j2 — ju+20+2)n = 0

& 2j,n? 4+ 4nl + 4n — 25 n — 45,0 — 44, — jan — 20 — 2
—(2jnn? — j2n — jun +2nl +2n) =
& Jin 4+ 4jl 445, —2nl —2n+20+2 =
This implies
) I+1 [+1)2 [+1
(]n + 2%)2 — 4% + 2(1 + 1) _ 2(717)‘

Since we require j, > 0, only

in = %(\/4(1 17 4 204 Dn(n—1) - 201+ 1))

can be a solution to our maximization problem.

Defining D = 4(I + 1)2 +2(I + 1)n(n — 1), we have
Col(jn) = %(2@ —4(1+1) - %(D —4V/D(I41) +4(1+1)%)
LD - 21+ 1) + 21+ 1)
= 5VD- 5D+ VDI +1))

_ 2—%@+%(4(z+1)—n).

Hence

Coljn) =2 — %\/4(1 F 12420+ Dn(n— 1) + %(4(1 +1) - n). (5)

It is easy to verify that C,,(j,) is in fact a maximum of the function C,,(j) and that 0 < j, <
min{l+1,n —1}.

Note that j, might not be an integer. However, since [= w(1), the sequence j,, n =
1,2,3,..., is w(1l). Thus, using equation (4), one can easily prove that the sequences C),(j,) and
Cr(|jn]) have the same lim sup as n tends to infinity. Taking the lim sup of the sequence Cy,(j,),
we obtain that A’s competitive factor cannot be asymptotically better than 2, if { = o(n?). This

proves part a) of the theorem.

Part b): If (I+ 1) = Kn?, then by equation (5)

2 1 1
Cn(jn) =2 - —2\/4K2n4 +2Knt —2Kn3 44K — = > 2 - 2¢/4K? + 2K 4+ 4K — =
n n n

and this expression converges to 2 — 2v/4K? + 2K + 4K as n tends to infinity. O

3 On-line algorithms with lookahead

In this section we present deterministic on-line algorithms with lookahead. These algorithms
are competitive against static off-line algorithms. In the following we consider strong and weak
lookahead in parallel because the algorithms and analyses are very similar for both kinds of
lookahead. We assume that we are given a request sequence o of length m. If a strong lookahead
of size [is given, then for all t > 1 we define a value A(¢t). If card({o(t),o(t+1),...,0(m)}) < I4+1
then let A(f) = m; otherwise let A(t) = min{t’ > t|card({o(t),o(t+1),...,0(t)}) =1+ 1}. The
value A(t) is the time of the request farthest in the future that can be seen at time ¢. Note that
if a strong lookahead [is provided, then [< n — 1.

Algorithm FREQUENCY-COUNT(!): Serve the request sequence in a series of blocks
B(¢). Each block is a subsequence of consecutive requests that will be served together. If a
strong lookahead [is given, then B(1) = o(1),0(2),...,0(A(1)) and B(i) = o(t;_, +1),0(t5_, +
2),...,0(A(t5_;+1)) for ¢ > 2. Here t;_; denotes the end of block B(i—1). If a weak lookahead
[is provided, then B(i) = o((i — 1)(I+ 1)+ 1),0((i — 1)(I+ 1) + 2),...,0(min{i(l + 1), m})
for «+ > 1. Each block is processed as follows. At the beginning of each block, sort the items

Competitive Factors Value of (I + 1) for

[+ 1 || Lower Bound | Upper Bound || n =15 | n =20 | n =25 | n =30
;mnz 1.88 1.96 0.45 0.8 1.25 1.8
Shon? 1.82 1.94 1125 | 2 | 3125 | 45
Lon? 1.75 1.91 2.25 4 6.25 9
51—0712 1.67 1.88 4.5 8 12.5 18
21—0n2 1.54 1.82 11.25 20 31.25 45
T5n? 1.42 1.76 22.5 40 62.5 90

Table 1. Competitive factors for list update with weak lookahead

in the list such that they are in non-increasing order of request frequencies with respect to the
current block. Execute this step using as few exchanges as possible. (This restriction ensures
that items with the same request frequency are not exchanged.) After this rearrangement, serve
the requests in the current block without making any further exchanges.

Note that the sorting of the items can be implemented as follows. First determine the items with
the highest request frequency in the current block, and move these items in an order preserving
way to the front of the list. Then determine the items with the next lower request frequency and
move these items (in an order preserving way) as close to the front of the list as possible, but
without passing the items with the highest request frequency. Repeat this process for the other

request frequencies. The sorting step is accomplished using paid exchanges that are counted in

FREQUENCY-COUNTY(!)’s cost.
We evaluate the performance of FREQUENCY-COUNTY(!) for a fixed n.

Theorem 3 Let | < n — 1. The algorithm FREQUENCY-COUNT(l) with strong lookahead 1

is c-competitive against static off-line algorithms, where

Theorem 4 Let K > 0 be a real constant. If a weak lookahead [is given with (I + 1) = Kn?,
then FREQUENCY-COUNT(1) is c-competitive against static off-line algorithms, where

2
¢<2-S(VE? 42K ~ K).

The terms subtracted from 2 in the bounds given in Theorems 3 and 4 are positive for all [<
n—1and K > 0, respectively. Notice that FREQUENCY-COUNT(!) can be (4/3)-competitive
if a large lookahead is given. Table 1 compares, for various values of a weak lookahead [and
various n, the performance of FREQUENCY-COUNT(/) to the lower bounds derived in Section
2. Note that the lower bounds hold asymptotically.

In order to prove the two theorems, we start with a general analysis of the algorithm

FREQUENCY-COUNTY(!) (also called FC) that applies to strong and weak lookahead. We

use a potential function ® to analyze the performance of our on-line algorithm. & is the number
of inversionsin F(C’s list with respect to STAT s list. Given two lists containing the same items,
an inversion is an unordered pair of items {x,y} such that 2 occurs before y in one list while «
occurs after y in the other list. We assume that FC and STAT start with the same list, so that

the initial potential is zero.

Consider a request sequence o. Initially, STAT rearranges the items in the list using paid
exchanges. Each paid exchange incurs a cost of 1 and can increase the potential by 1. In the
following we bound FC’s amortized cost in each block of 6. We consider an arbitrary block
B. Let Crc(B) be the actual cost FC incurs in processing B and let A® be the change in the
potential function between the beginning and the end of the given block. The sum Cp¢ (B)+A®
is FC’s amortized cost in block B. Furthermore, let .S be the set of items in the list, and let
Sp be the set of items requested in block B. For an item 2 € Sg and A € {FC, STAT}, let
C4(z) be the cost that algorithm A incurs when serving a request to item z in block B. fgp(z)
denotes the request frequency of item « in block B, i.e., fg(2) is the number of times item x
is requested in B. Finally, let j = card(Sgp) be the number of different items requested in B.
Note that 7 = [+ 1 if we deal with strong lookahead.

Lemma 2

Cre(B)+ A® <2 > Cspar(z) + % > (fB(z) = D)Csrar(z) — %j(j +1)
z€Sp z€Sp

Proof: For a subset M C S we introduce the following definitions.

1. For A € {FC, STAT} and = € Sp let

Ca(z, M) = card({y € M| y =z or item y precedes item x in A’s list

when A serves a request to z in block B}).
Ca(z, M) is the cost caused by M when A serves a request to item x.

2. Let A®* (M) be the number of inversions {z, y} created between items z € Sg and y € M
when B is served, and let A®7 (M) be the number of inversions {z, y} removed between
items = € Sp and y € M. Set AD(M) = ADT (M) — AD~(M).

3. Let p(M) be the number of paid exchanges FC incurs when swapping an item x € Sp with
an item y € M at the beginning of the block.

Notice that for any € Sp and A € {FC, STAT}, Cy4(z) = Ca(z,S) + Ca(z, S\ Sp) and
AP = AP(Sg) + A®(S\ Sg). We have Cr¢(z, S\ Sp) = 0 for all 2 € Sp. Thus FC’s amortized

cost in block B satisfies

Cre(B)+ A% = Y f(r)Cro(r, Sp) + p(S5) + p(S\ Sp) + A&(Sp) + AB(S \ Sp).
z€Sp

10

Claim 1 p(S\SB)—I—Aq)(S\SB)SQ Z CSTAT($7S\SB)
z€Sp

Proof of Claim 1: We have

> Csrar(e,8\Sp)= > > Csrar(z, {y}).

.TESB .TESB yES\SB
Suppose FC moves an item x € Sp closer to the front of the list using paid exchanges and swaps
x with an item y € S\ Sp. If an inversion is removed, then the potential decreases by 1. If an
inversion is created, then the pair {z,y} incurs a cost of 2 on the left hand side of the inequality

in the claim. But Csyar(x,{y}) = 1. This proves the claim. O

Claim 2 Z fe(2)Crc(x,SB) + p(SB) — Z fe(z)Cstar(2, SB)
.TESB .TESB

Proof of Claim 2: For any @ € Sp and A € {FC, STAT} we have C4(z,{z}) = 1. This

implies that the inequality in the claim is equivalent to

> > fe(@)Cro(z, {y}) + p(Sp) — A®~ < >0 Y fB(®)Csrar(z, {y}). (6)
€SB yeSE €SB yES
yF#x yFx

Consider any pair {z,y} with z,y € Sp and # y. Suppose y is before z in FC’s list after
the rearrangement of the items in Sp. Note that FC orders the items 2 and y optimally.

Case 1: If FC does not swap = and y at the beginning of the block, then

f8(@)Crole,{y}) + fB(1)Croly, {z}) < fo(2)Csrar(e, {y}) + fB(y)Csrar(y, {2}).

Case 2: If FC swaps « and y and the potential decreases, then

f8(@)Cro(e,{y}) + fB(Y)Cro(y, {z}) + 1 - 1 < fp(2)Csrar(z, {y}) + f(Y)Csrar(y, {z}).

Case 3: If FC swaps x and y and the potential increases, then

f8(@)Cro(e,{y}) + fB(¥)Croly, {2}) + 1 < fo(2)Cstar (e, {y}) + f(y)Csrar(y, {2}),

because fg(y) > fr(x). Adding the appropriate inequalities for all such pairs, we obtain in-
equality (6). O

Claim 3 A®*(Sp) < § Z fB(2)Csrar(z,SB)

z€Sp
Proof of Claim 3: Suppose FC moves an item x closer to the front of the list and creates an
inversion with an item y € Sp. Notice that x must be requested at least twice in block B and
that Csrar(z, {y}) = 1. If 2 is requested three times, then we may charge a cost of 1/3 to each
of these fp(z) requests.

11

We estimate the number .J of inversions created between items requested twice and items
requested once in B. Let Sk be the set of items requested exactly once in B and let S% be the
set of items requested exactly twice in B. Define j; = card(S§) and j, = card(S%). We prove

1
J < Y. Csrar(z,SpUSE)+ 3 Y Csrar(z,SpU Sh). (7)

zesSLusy z€SE

Wl

This implies the claim. We have 3, cq1 52 Csrar(z,SEUSE) = Y01 + 7)1 + 12 + 1).
First suppose that each of the j; items in S% causes j; new inversions. Then J = jjj, and
Yres?, Csrar(x,SEUSE) = 2((j1 +72) (U1 + j2 + 1) — j1(j1 + 1)). Now suppose that an item
x € S} causes only j; — k, inversions. Then, J = jijs — ZxGS% k, and

1, . N . .
(U1 +72) 01+ j2+1) = 11+ 1)) = > ke < Y Csrar(z, SpUSE).
xES% xES%

Simple algebraic manipulations show that

(G J) G+ d2 + D) — G+ 1)),

.. 1.1 . . .
J1J2 < —(5(]1 + 7)1 +Jj2+1)+ 5

3

Using the last two inequalities, we can easily derive inequality (7). O

Summing up the inequalities in Claim 1, Claim 2 and Claim 3 we obtain, as desired,

Cre(B)+A® < 2> Csrar(z,S\SB)+ = Z fB(2)Csrar(v, SB)

.TESB .TESB
2 j(j+1
< 2> Cspar(z) -I- Z (fB(z —1CSTAT()—§‘](]2)-D
.TESB .TESB

Proof of Theorem 3: Suppose the request sequence consists of b blocks B(1), B(2),..., B(b).
By Lemma 2, Crc(0)/Csrar(o) is bounded from above by

S0 (2 Caesy Csmar(®) + 3 Loesug, (fa0)(@) = 1)Csrar(e) - HHEE)

CSTAT()

Here we may assume without loss of generality that the last block B(b) contains [+ 1 distinct

requests. Hence,

Crc (o) 9. 2 M +3%, 2 weSp (fB()(z) = 1)Csrar(2)
Csrar(0) Yo Yvess fB)(#)Csar() '

WI

We have Y°0_, Yvesp (B () = 1)Csrar(r) 2 0 and)DL Yvespg Csrar(v) 2 bﬁ”—%”—zl-
Thus

Crelo) _, 2 S o 2. (xD/2 2 142
Csrar(o) ~ 3 zi?:lzxesBmCSTAT(x)— 3 n—1/2 3 2n—1

where the second inequality follows from Y%_, ZxGSB Csrar(z) < b _on — k) = b((1+
1)n —I(I41)/2). The above line implies the theorem. D

12

Proof of Theorem 4: Again, we assume that the request sequence o consists of b blocks
B(1),B(2),...,B(b). Let j; be the number of different items requested in block B(i). By
Lemma 2, Crc(0)/Csrar(o) is bounded from above by

Y1 (2 Laesy CsTar(@) + 5 Loesy, (fB) (@) — 1)Csrar(e) - 2t
2?21(295653“) Csrar(z) + Xoesy, (fpi) () = 1)Cstar(2)) '

Note that ZxESB(i) Csrar(z) < jin and that Y0_, ji(ji +1) > bj(j + 1), where j = %2?21 Ji-
Hence, N
Crc (o) < S0 (25 —](]3—+1) + %erSB(i)(fB(i)(x) — 1)Csrar(z))
Csrar(o) ~ i+ Toesp((fB(iy () — 1)CsTar(z)) '

2in—Li(j+1)
n

Since > %, we obtain

Crelo) _ Xin(in—3iG+D+350+1-J) _2n— 35— 5i+350+1)
Csrar(o) ~ Yo (in+ (141 4)) jn—j+(+1)

We have (I + 1) = Kn? We maximize the function

_ 2jn— 32— 3j+3Kn?
jn— 7+ Kn?

CnlJ)

subject to the constraint 0 < j < min{Kn? n}. Using the same techniques as in the proof of
Theorem 2 we can show that j, = —7(v/K?n? + Kn?(2n — 1)(n — 1) — Kn?) is the solution to

this maximization problem and that

2K n? 1
(n—=1)2 n-1

1

Cn(]n) =2- g(

_Ll)z\/Kzn4 + Kn?(2n—1)(n—1) —).

(n
The above expression goes to ¢ =2 — 2(vVK2 4+ 2K — K) as n tends to infinity.

We remark that it is possible to derive more precise but also more complicated bounds on

the competitive factor if one takes into account that ZxESB(i) Csrar(z) < jin — M”z;ll O

4 Conclusion and open problems

In this paper we have investigated the list update problem with lookahead. We have defined two
different models of lookahead and developed lower and upper bounds on the competitiveness
that can be achieved by deterministic on-line algorithms with lookahead. However, our bounds
are not tight; we conjecture that the algorithms FREQUENCY-COUNT(!) perform better than
we can actually prove. One open problem is to tighten the gaps between the lower and upper
bounds. Our on-line algorithms with lookahead are competitive against static off-line algorithms.
Another open problem is to develop algorithms that are competitive against dynamic off-line

algorithms, too.

13

References

[1]

[10]

[11]

S. Albers. The influence of lookahead in competitive paging algorithms. In Proc. 1st Annual
European Symposium on Algorithms, Springer Lecture Notes in Computer Science, Volume
726, pages 1-12, 1993.

S. Albers. Improved randomized on-line algorithms for the list update problem. In Proc.
6th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 412-419, 1995.

S. Albers, B. von Stengel and Ralph Werchner. A combined BIT and TIMESTAMP algo-
rithm for the list update problem. Information Processing Letters, 56:135-139, 1995.

F. d’Amore, A. Marchetti-Spaccamela and U. Nanni. Competitive algorithms for the
weighted list update problem. Theoretical Computer Science, 108(2):371-384, 1993.

S. Ben-David and A. Borodin. A new measure for the study of on-line algorithms. Algo-
rithmica, 11(1):73-91, 1994.

S. Ben-David, A. Borodin, R.M. Karp, G. Tardos and A. Wigderson. On the power of
randomization in on-line algorithms. Algorithmica, 11(1):2-14, 1994.

J.L. Bentley, K.L. Clarkson and D.B. Levine. Fast linear expected-time algorithms for
computing maxima and convex hulls. In Proc. Ist ACM-SIAM Symposium on Discrete
Algorithms, pages 179-187, 1990.

J.L. Bentley and C.C. McGeoch. Amortized analyses of self-organizing sequential search
heuristics. Communications of the ACM, 28(4):404-411, 1985.

J.L. Bentley, D.D. Sleator, R.E. Tarjan and V. Wei. A locally adaptive data compression
scheme. Communications of the ACM, 29(4):320-330, 1986.

J.R. Bitner. Heuristics that dynamically organize data structures for representing sorted
lists. SIAM Journal on Computing, 8:82-110, 1979.

D. Breslauer. On competitive on-line paging with lookahead. In Proc. 13th Annual Sym-
posium on Theoretical Aspects of Computer Science, Springer Lecture Notes in Computer
Science, Volume 1046, pages 593-603, 1996.

[12] M. Burrows and D.J. Wheeler. A block-sorting lossless data compression algorithm. DEC

SRC Research Report 124, 1994.

[13] P.J. Burville and J.F.C. Kingman. On a model for storage and search. Journal of Applied

Probability, 10(3):697-701, 1973.

[14] F.K. Chung, R. Graham and M.E. Saks. A dynamic location problem for graphs. Combi-

natorica, 9(2):111-131, 1989.

14

[15] M.J. Golin. Probabilistic Analysis of Geometric Algorithms. Ph.D. thesis, Princeton Uni-
versity, 1991. Available as Computer Science Department Technical Report CS-TR-266-90.

[16] E.F. Grove. Ounline bin packing with lookahead. In Proc. 6th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 430-436, 1995.

[17] M.M. Halldérsson and M. Szegedy. Lower bounds for on-line graph coloring. In Proc. 3rd
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 211-216, 1992.

[18] W.J. Hendricks. An extension of a theorem concerning an interesting Markov chain. Journal
of Applied Probability, 10(4):886-890, 1973.

[19] S. Irani. Coloring inductive graphs on-line. In Proc. 31st Annual IEEE Symposium on
Foundations of Computer Science, pages 470-479, 1990.

[20] S. Irani. Two results on the list update problem. Information Processing Letters, 38:301-
306, 1991.

[21] M.-Y. Kao and S.R. Tate. Online matching with blocked input. Information Processing
Letters, 38:113-116, May 1991.

[22] R. Karp and P. Raghavan. From a personal communication cited in [25].

[23] E. Koutsoupias and C.H. Papadimitriou. Beyond competitive analysis. In Proc. 35th Annual
IEEE Symposium on Foundations of Computer Science, pages 394-400, 1994.

[24] N. Reingold and J. Westbrook. Optimum off-line algorithms for the list update problem.
Technical Report YALEU/DCS/TR-805, August 1990.

[25] N. Reingold, J. Westbrook and D.D. Sleator. Randomized competitive algorithms for the
list update problem. Algorithmica, 11(1):15-32, 1994.

[26] R. Rivest. On self-organizing sequential search heuristics. Communications of the ACM,
19(2):63-67, 1976.

[27] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules. Com-
munication of the ACM, 28:202-208, 1985.

[28] B. Teia. A lower bound for randomized list update algorithms. Information Processing
Letters, 47:5-9, 1993.

[29] E. Torng. A unified analysis of paging and caching. In Proc. 36th Annual IEEE Symposium
on Foundations of Computer Science, pages 194-203, 1995.

[30] N. Young. Competitive Paging and Dual-Guided On-Line Weighted Caching and Match-
ing Algorithms. Ph.D. thesis, Princeton University, 1991. Available as Computer Science
Department Technical Report CS-TR-348-91.

15

