
A Competitive Analysis of the List Update Problemwith LookaheadSusanne Albers�AbstractWe consider the question of lookahead in the list update problem: What improvementcan be achieved in terms of competitiveness if an on-line algorithm sees not only the presentrequest to be served but also some future requests? We introduce two di�erent models oflookahead and study the list update problem using these models. We develop lower bounds onthe competitiveness that can be achieved by deterministic on-line algorithms with lookahead.Furthermore we present on-line algorithms with lookahead that are competitive against statico�-line algorithms.1 IntroductionIn recent years there has been tremendous interest in the competitive analysis of on-line algo-rithms. Many on-line problems have been studied in areas such as resource allocation, datastructures, graph problems, scheduling and navigation. In the context of data structures, thelist update problem is of fundamental importance. The problem is to maintain a set of items asan unsorted linear list. A list of n items is given. A list update algorithm is presented with asequence of requests, where each request speci�es an item of the list. In order to serve a request,a list update algorithm must access the requested item, i.e., it has to start at the front of thelist and search linearly through the items until the desired item is found. Accessing the ithitem in the list incurs a cost of i. Immediately after a request, the accessed item may be movedat no extra cost to any position closer to the front of the list. These exchanges are called freeexchanges. All other exchanges of two consecutive items in the list cost 1 and are called paidexchanges. The goal is to serve the request sequence such that the total cost is as small aspossible. A list update algorithm is on-line if it serves each request without the knowledge offuture requests.Competitive analysis [27] is a powerful means to analyze the performance of on-line algorithmsfor the list update problem. In a competitive analysis, an on-line algorithm is compared to an�Max-Planck-Institut f�ur Informatik, Im Stadtwald, D-66123 Saarbr�ucken, Germany. E-mail:albers@mpi-sb.mpg.de. This work was supported by a Graduiertenkolleg graduate fellowship of the DeutscheForschungsgemeinschaft. 1

optimal o�-line algorithm. An optimal o�-line algorithm knows the entire request sequence inadvance and can serve it with minimum cost. Given a request sequence �, let CA(�) denote thecost incurred by the online algorithm A in serving � and let COPT (�) denote the cost incurredby the optimal o�-line algorithm OPT on �. Then the algorithm A is c-competitive if thereexists a constant a such that CA(�) � c �COPT (�) + afor all request sequences �. The competitive factor of A is the in�mum of all c for which A isc-competitive.The list update problem is of signi�cant practical interest. List update techniques are oftenapplied in practice when storing small dictionaries. Furthermore, they are e�cient subroutinesin algorithms related to data compression and computational geometry [7, 9, 12, 15]. Due toits structural simplicity and practical signi�cance, the list update problem has been studiedextensively [2, 3, 8, 10, 13, 18, 20, 25, 26, 27, 28]. In the following we mention the importantresults relevant to our work. Sleator and Tarjan [27] have shown that the MOVE-TO-FRONTalgorithm, which simply moves an item to the front of the list each time it is requested, is2-competitive. Karp and Raghavan [22] have observed that no deterministic on-line algorithmfor the list update problem can be better than 2-competitive. Thus, the MOVE-TO-FRONTalgorithm achieves the best possible competitive factor.Recently there have been some attempts to beat the competitive factor of 2 using random-ization. Irani [20] has described a randomized on-line algorithm for the list update problem thatachieves a competitiveness of 1:935. Reingold et al. [25] have given a randomized algorithm thatis p3-competitive. Albers [2] has presented a randomized algorithm whose competitiveness isequal to the Golden Ratio � = 1+p52 . This performance ratio was further improved to 1.6 [3].The best lower bound known for randomized on-line algorithms is due to Teia [28]. He showsthat no randomized on-line algorithm for the list update problem can have a competitive factorwhich is less than 1.5. These bounds hold against the oblivious adversary, see [6] for details.In this paper we study the problem of lookahead in on-line algorithms for the list updateproblem. An important question is what improvement can be achieved in terms of competitive-ness, if an on-line algorithm knows not only the present request to be served, but also somefuture requests. This issue is interesting from the practical as well as the theoretical point ofview. In practical applications requests do not necessarily arrive one after the other, but ratherin blocks of possibly variable size. In addition, requests may be generated faster than they canbe processed by a list update algorithm. Hence it is to be expected that some requests usuallywait in line to be processed by an on-line algorithm. In some applications it may also be possi-ble to delay the service of requests so as to wait for some incoming requests. In the theoreticalcontext a natural question is: What is it worth to know a part of the future?So far, only few on-line problems with lookahead have been studied in the literature. Previousresearch on lookahead in on-line algorithms has addressed paging problems [1, 5, 11, 23, 29, 30],2

k-server problems [5], bin packing problems [16], dynamic location problems [14] and graphproblems [17, 19, 21]. In particular, at present time, nothing is known about list update withlookahead. We begin our study of the in
uence of lookahead in the list update problem byintroducing two di�erent models of lookahead.Let � = �(1); �(2); : : : ; �(m) be a request sequence of length m. �(t) denotes the request attime t. For a given set S, card(S) denotes the cardinality of S. Let l � 1 be an integer.Weak lookahead of size l: The on-line algorithm sees the present request and the next lfuture requests. More speci�cally, when answering �(t), the on-line algorithm already knows�(t+ 1); �(t+ 2); : : : ; �(t+ l). However, requests �(s), with s � t + l + 1, are not seen by theon-line algorithm at time t.Strong lookahead of size l: The on-line algorithm sees the present request and a sequence offuture requests. This sequence contains l pairwise distinct items which also di�er from the itemrequested by the present request. More precisely, when serving request �(t), the algorithm knowsrequests �(t+1); �(t+2); : : : ; �(t0), where t0 = minfs > tjcard(f�(t); �(t+1); : : : ; �(s)g) = l+1g.The requests �(s), with s � t0 + 1, are not seen by the on-line algorithm at time t.At �rst sight weak lookahead seems to be the natural model of lookahead. However, as weshall see later, weak lookahead is only of minor advantage in the list update problem. The reasonis that an adversary that constructs a request sequence can replicate requests in the lookahead,thereby weakening the e�ect of the lookahead. In contrast, in the model of strong lookahead,we require an adversary to reveal some really signi�cant information of future requests. Stronglookahead was �rst presented in [1], where on-line paging algorithms with lookahead are studied.Strong lookahead is a model of lookahead that can improve the competitive factors of on-linepaging algorithms and has practical as well as theoretical importance. In the following, whenwe investigate on-line algorithms with lookahead, l always denotes the size of the lookahead. Wealways assume that an on-line algorithm has a lookahead of �xed size l � 1.This paper represents an in-depth study of the deterministic list update problem with strongand weak lookahead. Section 2 is concerned with lower bounds. We show that an on-linealgorithm requires a strong lookahead of size
(n) in order to be better than 2-competitive.Speci�cally, we prove that an on-line algorithm with strong lookahead l, where l � n�1, cannotbe better than (2� l+2n+1)-competitive. Again, n is the number of items in the list. If an on-linealgorithm is given a weak lookahead, the situation is worse. We show that a lookahead of size
(n2) is necessary to asymptotically beat the competitive factor of 2. This statement seems toimply that it would not be worthwhile to consider weak lookahead in the list update problem.However this might not be true, as more precise calculations show. We prove that if a weaklookahead of size l is given and (l+1) = Kn2 for a positive real constant K, then an on-line listupdate algorithm cannot be better than c-competitive where c = 2� 2p4K2 + 2K+4K. (Notethat this expression goes to 1 as K tends to in�nity.) Even for very small values ofK, this boundgives values which are signi�cantly below 2. For instance, if K = 1100 , we obtain a lower bound3

of c = 1:75. Recall that the list update problem is of practical interest for small lists consistingof only a few dozen items. For lists of lengths n1 = 12 and n2 = 24 the term l = 1100n2 � 1evaluates to a lookahead of size l1 = 1 and l2 = 5, respectively. If our lower bounds are relativelytight, a 1.75-competitive algorithm working on small lists would require a weak lookahead ofreasonable size. For a more extensive discussion of the bound c = 2 � 2p4K2 + 2K + 4K, werefer the reader to the table on page 9.Section 3 addresses the development of on-line algorithms for the list update problem withlookahead. We present on-line algorithms that are competitive against static o�-line algorithms.Static algorithms initially arrange the list in some order and make no other exchanges of itemsin the list while processing a request sequence. Given a request sequence �, the optimumstatic o�-line algorithm, which we call STAT, �rst sorts the items in non-increasing order ofrequest frequencies and then does no further exchanges. Formally, an on-line algorithm A isc-competitive against static o�-line algorithms if there exists a constant a such that CA(�) �c �CSTAT (�)+ a for all request sequences �. Static o�-line algorithms are weaker than dynamico�-line algorithms, which may rearrange the list after each request. However, static algorithmsare valuable from the practical point of view since they can compute an optimal ordering of thelist in O(m) time, where m is the length of the request sequence. The best dynamic o�-linealgorithm currently known is due to Reingold and Westbrook [24] and takes O(2nn!m) time.There has also been work focused on analyzing list update algorithms against static o�-linealgorithms, e.g., Bentley and McGeoch [8] have shown that the MOVE-TO-FRONT algorithmis 2-competitive against static o�-line algorithms. D'Amore et al. [4] have discussed a variantof the list update problem, called the weighted list update problem, with respect to static o�-line algorithms. We develop a simple on-line algorithm for the list update problem that, given astrong lookahead of size l � n�1, is (2� 23 � l+22n�l)-competitive. We also give an on-line algorithmwith weak lookahead that has a competitiveness of 2 � 23(pK2 + 2K � K). We compare thisperformance to the corresponding lower bound we developed. We remark that our lower boundshold against any o�-line algorithm (static or dynamic), whereas our upper bounds hold againststatic o�-line algorithms.2 Lower bounds for list update with lookaheadWe assume that the given list consists of n items, where n � 2. Furthermore, we generallyassume that the size l of the given lookahead is constant or a function of n. We show that adeterministic on-line algorithm with strong lookahead l can only be better than 2-competitive(for all list lengths) if l is linear in n. Note that the size of a strong lookahead satis�es l � n�1.Theorem 1 Let A be a deterministic on-line algorithm with strong lookahead l for the list updateproblem. Then there exists a request sequence � such thatCA(�) � (2� l + 2n+ 1) � COPT (�):4

Proof: We construct a request sequence � = �(1); �(2); : : : using the following algorithm.Algorithm LIST-REQUEST: The �rst l+ 1 requests �(1); �(2); : : : ; �(l+ 1) are requests tothe last l + 1 items in the initial list. For t � l + 2 the request �(t) is constructed as follows.After A has served �(t � l � 1), determine the item x which has the highest position in thecurrent list among items not contained in f�(t� l); �(t� l + 1); : : : ; �(t� 1)g. Set �(t) = x.Given this request sequence �, we compare the cost incurred by A to the cost incurred bythe optimal algorithm OPT. It is not hard to see that OPT can process each request sequencesuch that its amortized cost on each request is at most (n + 1)=2. OPT can simply use theoptimum static algorithm STAT (which initially sorts the items in non-increasing order of requestfrequencies and makes no other exchanges). Hence OPT's amortized cost during l+1 successiverequests in � is at most (l + 1)(n+ 1)=2.We evaluate A's cost on request sequence �. For simplicity, we handle paid exchanges madeby A in the following way. Whenever A moves an item x closer to the front of the list using paidexchanges, we charge the cost of these paid exchanges to the next request to x. This chargingscheme will be used in the remainder of this proof, including Lemma 1 and its proof. Lemma 1shows that on any l+1 successive requests, A incurs a cost of at leastPli=0(n� i). This impliesthat CA(�) � c �COPT (�), wherec = Pli=0(n� i)(l + 1)(n+ 1)=2 = (l + 1)n� (l + 1)l=2(l+ 1)(n+ 1)=2 = 2n� ln + 1 = 2� l + 2n+ 1 : 2Lemma 1 Let CA(~�(t)) be the cost incurred by A when processing the subsequence ~�(t) =�(t); �(t+ 1); : : : ; �(t+ l). Then CA(~�(t)) �Pli=0(n� i) for all t � 1.Proof: For t � 1, let S(t) = ft; t + 1; : : : ; t + lg and let CA(�(t)) be the cost incurred by Awhen processing request �(t). We prove by induction on t that for all t � 1 and for all k, wheren� l � k � n, the inequalitycard(fs 2 S(t)jCA(�(s)) � kg) � n� k + 1 (1)holds. This implies the lemma.For an item x and t � 1, let pos(x; t) denote x's position in the list immediately after A hasserved �(t�1). By the construction of �, any l+1 successive requests in � are pairwise distinct.Thus for any s 2 S(t), CA(�(s)) � pos(�(s); t) because paid exchanges applied to the item �(s)during the time interval [t; s� 1] are charged to request �(s).We proceed with the inductive proof. Inequality (1) holds at time t = 1. By inductionhypothesis it holds at time t� 1. We show that the inequality is also satis�ed at time t. When5

making the transition from S(t� 1) to S(t), we lose time t� 1. Thus, the induction hypothesisimplies that for all k, n� l � k � n,card(fs 2 S(t) n f(t+ l)gjCA(�(s)) � kg) � n� k: (2)If pos(�(t+ l); t) = n, then the inequality (1) obviously holds for all k, n� l � k � n. So supposepos(�(t+ l); t) < n. After A has served �(t� 1), the items �(s) with s 2 S(t) n f(t+ l)g occupyall positions pos(�(t+ l); t)+1; pos(�(t+ l); t)+2; : : : ; n. We observe that for k > pos(�(t+ l); t)card(fs 2 S(t) n f(t+ l)gjCA(�(s)) � kg) � n� k + 1:Since inequality (2) holds, inequality (1) must be satis�ed for all k, n� l � k � n. 2Next we consider algorithms with weak lookahead.Theorem 2 Let A be a deterministic on-line algorithm with weak lookahead l for the list updateproblem.a) If l = o(n2) and A is c-competitive, then c � 2.b) If l + 1 = Kn2 and A is c-competitive, then c � 2� 2p4K2 + 2K + 4K:Proof: For integers j with 1 � j � minfl+1; n�1g, we construct request sequences �jn and thenuse lim supn!1 Cmax(n), where Cmax(n) = maxfCA(�jn)=COPT(�jn) j 1 � j � minfl+ 1; n� 1gg, tobound A's competitive factor from below.If j = l + 1 then we generate a request sequence using the algorithm LIST-REQUESTproposed in the proof of Theorem 1. If j < l + 1 we use a slightly di�erent algorithm. Let x1be the �rst item in the initial list. The request sequence �jn consists of a series of phases eachof which contains exactly l + 1 requests. In each phase, the �rst j requests are made to itemsx 6= x1, while the remaining l + 1 � j requests are made to item x1. More precisely, the �rst jrequests in the �rst phase are requests to the last j items in the initial list. If �(t) belongs tothe �rst j requests in a given phase i, where i � 2, then �(t) is constructed as follows. After Ahas served �(t� l� 1), determine the item x which is at the highest position in the current listamong items not contained in f�(t� l); �(t� l+ 1); : : : ; �(t� 1)g. Set �(t) = x.We analyze A's and OPT's cost incurred on a given sequence �jn. Again, whenever A movesan item x closer to the front of the list using paid exchanges, we charge the cost of these paidexchanges to the next request to x. We claim that in each phase, A incurs a cost of at leastjn� j(j � 1)2 + (l+ 1� j):The claim clearly holds if j = l+ 1 or if j < l+ 1 and A always stores x1 at the �rst position ofthe list. In these two cases we can use the same analysis as in the proof of Lemma 1. If j < l+1and if A does not always store x1 at the front of the list, then consider the following algorithm6

A0. The algorithm A0 always maintains the items x 6= x1 in the same order as A, but alwaysstores x1 at the �rst position of the list. It is easy to verify that in each phase, A0 does not incura higher cost than A.We show that in each phase, OPT's amortized cost is at mostj(n(n+ 1)2(n� 1) � 1n� 1) + (l+ 1� j):This bound holds true if j = l + 1 because n(n+1)2(n�1) � 1n�1 � n+12 : If j < l + 1 then OPT canapply the following static algorithm. Initially, the list is rearranged such that item x1 occupiesposition 1 in the list and such that the remaining items are sorted in order of non-increasingrequest frequencies. While processing �jn no exchanges are made. Using this static algorithm,OPT's amortized cost on a request to an item x 6= x1 is at most 1n�1(Pnk=2 k) = n(n+1)2(n�1) � 1n�1 :This bound is tight if all items x 6= x1 have the same request frequency.For j = 1; 2; : : : ;minfl + 1; n� 1g, let Cn(j) = CA(�jn)=COPT(�jn). We haveCn(j) � jn� j(j�1)2 + (l + 1� j)j(n(n+1)2(n�1) � 1n�1) + (l+ 1� j) = 2jn� j2 � j + 2l+ 2jn+ 2l+ 2 : (3)Then A's competitive factor c satis�es c � lim supn!1 Cmax(n), where Cmax(n) = maxfCn(j)j1 �j � minfl + 1; n� 1gg. Now we prove the two parts of the theorem.Part a): If l = O(1), then consider the sequence Cn(1), n = 1; 2; 3; : : : . This sequence convergesto 2 as n tends to in�nity. Now suppose l = !(1) and l = O(n2). We maximize the functionCn(j) = 2jn� j2 � j + 2l+ 2jn+ 2l+ 2 (4)subject to the constraint 0 < j � minfl + 1; n � 1g. Here we are also interested in possiblynon-integral solutions for j. We determine jn such that dCn(jn)djn = 0.dCn(jn)djn = 0 is equivalent to(2n� 2jn � 1)(jnn+ 2l+ 2)� (2jnn � j2n � jn + 2l+ 2)n = 0, 2jnn2 + 4nl+ 4n� 2j2nn � 4jnl � 4jn � jnn� 2l� 2�(2jnn2 � j2nn � jnn + 2nl + 2n) = 0, j2nn+ 4jnl + 4jn � 2nl � 2n+ 2l+ 2 = 0This implies (jn + 2(l+ 1)n)2 = 4(l+ 1)2n2 + 2(l+ 1)� 2(l+ 1)n :Since we require jn > 0, onlyjn = 1n(q4(l+ 1)2 + 2(l+ 1)n(n� 1)� 2(l+ 1))can be a solution to our maximization problem.7

De�ning D = 4(l+ 1)2 + 2(l+ 1)n(n� 1), we haveCn(jn) = 1pD (2pD � 4(l+ 1)� 1n2 (D � 4pD(l+ 1) + 4(l+ 1)2)� 1n (pD � 2(l+ 1)) + 2(l+ 1))= 1pD (2pD � 2n2D + 1n2pD(4(l+ 1)� n))= 2� 2n2pD + 1n2 (4(l+ 1)� n):Hence Cn(jn) = 2� 2n2q4(l+ 1)2 + 2(l+ 1)n(n� 1) + 1n2 (4(l+ 1)� n): (5)It is easy to verify that Cn(jn) is in fact a maximum of the function Cn(j) and that 0 < jn �minfl+ 1; n� 1g.Note that jn might not be an integer. However, since l = !(1), the sequence jn, n =1; 2; 3; : : :, is !(1). Thus, using equation (4), one can easily prove that the sequences Cn(jn) andCn(bjnc) have the same lim sup as n tends to in�nity. Taking the lim sup of the sequence Cn(jn),we obtain that A's competitive factor cannot be asymptotically better than 2, if l = o(n2). Thisproves part a) of the theorem.Part b): If (l+ 1) = Kn2, then by equation (5)Cn(jn) = 2� 2n2p4K2n4 + 2Kn4 � 2Kn3 + 4K � 1n � 2� 2p4K2 + 2K + 4K � 1nand this expression converges to 2� 2p4K2 + 2K + 4K as n tends to in�nity. 23 On-line algorithms with lookaheadIn this section we present deterministic on-line algorithms with lookahead. These algorithmsare competitive against static o�-line algorithms. In the following we consider strong and weaklookahead in parallel because the algorithms and analyses are very similar for both kinds oflookahead. We assume that we are given a request sequence � of length m. If a strong lookaheadof size l is given, then for all t � 1 we de�ne a value �(t). If card(f�(t); �(t+1); : : : ; �(m)g)< l+1then let �(t) = m; otherwise let �(t) = minft0 > tjcard(f�(t); �(t+ 1); : : : ; �(t0)g) = l+ 1g: Thevalue �(t) is the time of the request farthest in the future that can be seen at time t. Note thatif a strong lookahead l is provided, then l � n � 1.Algorithm FREQUENCY-COUNT(l): Serve the request sequence in a series of blocksB(i). Each block is a subsequence of consecutive requests that will be served together. If astrong lookahead l is given, then B(1) = �(1); �(2); : : : ; �(�(1)) and B(i) = �(tei�1+1); �(tei�1+2); : : : ; �(�(tei�1+1)) for i � 2. Here tei�1 denotes the end of block B(i�1). If a weak lookaheadl is provided, then B(i) = �((i � 1)(l + 1) + 1); �((i� 1)(l + 1) + 2); : : : ; �(minfi(l + 1); mg)for i � 1. Each block is processed as follows. At the beginning of each block, sort the items8

Competitive Factors Value of (l + 1) forl + 1 Lower Bound Upper Bound n = 15 n = 20 n = 25 n = 301500n2 1.88 1.96 0.45 0.8 1.25 1.81200n2 1.82 1.94 1.125 2 3.125 4.51100n2 1.75 1.91 2.25 4 6.25 9150n2 1.67 1.88 4.5 8 12.5 18120n2 1.54 1.82 11.25 20 31.25 45110n2 1.42 1.76 22.5 40 62.5 90Table 1. Competitive factors for list update with weak lookaheadin the list such that they are in non-increasing order of request frequencies with respect to thecurrent block. Execute this step using as few exchanges as possible. (This restriction ensuresthat items with the same request frequency are not exchanged.) After this rearrangement, servethe requests in the current block without making any further exchanges.Note that the sorting of the items can be implemented as follows. First determine the items withthe highest request frequency in the current block, and move these items in an order preservingway to the front of the list. Then determine the items with the next lower request frequency andmove these items (in an order preserving way) as close to the front of the list as possible, butwithout passing the items with the highest request frequency. Repeat this process for the otherrequest frequencies. The sorting step is accomplished using paid exchanges that are counted inFREQUENCY-COUNT(l)'s cost.We evaluate the performance of FREQUENCY-COUNT(l) for a �xed n.Theorem 3 Let l � n � 1. The algorithm FREQUENCY-COUNT(l) with strong lookahead lis c-competitive against static o�-line algorithms, wherec � 2� 23 � l + 22n� l :Theorem 4 Let K > 0 be a real constant. If a weak lookahead l is given with (l + 1) = Kn2,then FREQUENCY-COUNT(l) is c-competitive against static o�-line algorithms, wherec � 2� 23(pK2 + 2K �K):The terms subtracted from 2 in the bounds given in Theorems 3 and 4 are positive for all l �n� 1 and K > 0, respectively. Notice that FREQUENCY-COUNT(l) can be (4=3)-competitiveif a large lookahead is given. Table 1 compares, for various values of a weak lookahead l andvarious n, the performance of FREQUENCY-COUNT(l) to the lower bounds derived in Section2. Note that the lower bounds hold asymptotically.In order to prove the two theorems, we start with a general analysis of the algorithmFREQUENCY-COUNT(l) (also called FC) that applies to strong and weak lookahead. We9

use a potential function � to analyze the performance of our on-line algorithm. � is the numberof inversions in FC's list with respect to STAT's list. Given two lists containing the same items,an inversion is an unordered pair of items fx; yg such that x occurs before y in one list while xoccurs after y in the other list. We assume that FC and STAT start with the same list, so thatthe initial potential is zero.Consider a request sequence �. Initially, STAT rearranges the items in the list using paidexchanges. Each paid exchange incurs a cost of 1 and can increase the potential by 1. In thefollowing we bound FC's amortized cost in each block of �. We consider an arbitrary blockB. Let CFC(B) be the actual cost FC incurs in processing B and let �� be the change in thepotential function between the beginning and the end of the given block. The sum CFC(B)+��is FC's amortized cost in block B. Furthermore, let S be the set of items in the list, and letSB be the set of items requested in block B. For an item x 2 SB and A 2 fFC, STATg, letCA(x) be the cost that algorithm A incurs when serving a request to item x in block B. fB(x)denotes the request frequency of item x in block B, i.e., fB(x) is the number of times item xis requested in B. Finally, let j = card(SB) be the number of di�erent items requested in B.Note that j = l + 1 if we deal with strong lookahead.Lemma 2CFC(B) + �� � 2 Xx2SB CSTAT (x) + 43 Xx2SB(fB(x)� 1)CSTAT (x)� 13j(j + 1)Proof: For a subset M � S we introduce the following de�nitions.1. For A 2 fFC, STATg and x 2 SB letCA(x;M) = card(fy 2M j y = x or item y precedes item x in A's listwhen A serves a request to x in block Bg):CA(x;M) is the cost caused by M when A serves a request to item x.2. Let ��+(M) be the number of inversions fx; yg created between items x 2 SB and y 2Mwhen B is served, and let ���(M) be the number of inversions fx; yg removed betweenitems x 2 SB and y 2M . Set ��(M) = ��+(M)����(M):3. Let p(M) be the number of paid exchanges FC incurs when swapping an item x 2 SB withan item y 2M at the beginning of the block.Notice that for any x 2 SB and A 2 fFC, STATg, CA(x) = CA(x; SB) + CA(x; S n SB) and�� = ��(SB)+��(S nSB): We have CFC(x; S nSB) = 0 for all x 2 SB . Thus FC's amortizedcost in block B satis�esCFC(B) + �� = Xx2SB fB(x)CFC(x; SB) + p(SB) + p(S n SB) + ��(SB) + ��(S n SB):10

Claim 1 p(S n SB) + ��(S n SB) � 2 Xx2SB CSTAT (x; S n SB)Proof of Claim 1: We haveXx2SB CSTAT (x; S n SB) = Xx2SB Xy2SnSB CSTAT (x; fyg):Suppose FC moves an item x 2 SB closer to the front of the list using paid exchanges and swapsx with an item y 2 S n SB. If an inversion is removed, then the potential decreases by 1. If aninversion is created, then the pair fx; yg incurs a cost of 2 on the left hand side of the inequalityin the claim. But CSTAT (x; fyg) = 1. This proves the claim. 2Claim 2 Xx2SB fB(x)CFC(x; SB) + p(SB)����(SB) � Xx2SB fB(x)CSTAT (x; SB)Proof of Claim 2: For any x 2 SB and A 2 fFC, STATg we have CA(x; fxg) = 1. Thisimplies that the inequality in the claim is equivalent toXx2SB Xy2SBy 6=x fB(x)CFC(x; fyg) + p(SB)����(SB) � Xx2SB Xy2SBy 6=x fB(x)CSTAT(x; fyg): (6)Consider any pair fx; yg with x; y 2 SB and x 6= y. Suppose y is before x in FC's list afterthe rearrangement of the items in SB. Note that FC orders the items x and y optimally.Case 1: If FC does not swap x and y at the beginning of the block, thenfB(x)CFC(x; fyg) + fB(y)CFC(y; fxg) � fB(x)CSTAT (x; fyg) + fB(y)CSTAT(y; fxg):Case 2: If FC swaps x and y and the potential decreases, thenfB(x)CFC(x; fyg) + fB(y)CFC(y; fxg) + 1� 1 � fB(x)CSTAT(x; fyg) + fB(y)CSTAT (y; fxg):Case 3: If FC swaps x and y and the potential increases, thenfB(x)CFC(x; fyg) + fB(y)CFC(y; fxg) + 1 � fB(x)CSTAT (x; fyg) + fB(y)CSTAT(y; fxg);because fB(y) > fB(x). Adding the appropriate inequalities for all such pairs, we obtain in-equality (6). 2Claim 3 ��+(SB) � 13 Xx2SB fB(x)CSTAT(x; SB)Proof of Claim 3: Suppose FC moves an item x closer to the front of the list and creates aninversion with an item y 2 SB. Notice that x must be requested at least twice in block B andthat CSTAT (x; fyg) = 1. If x is requested three times, then we may charge a cost of 1=3 to eachof these fB(x) requests. 11

We estimate the number J of inversions created between items requested twice and itemsrequested once in B. Let S1B be the set of items requested exactly once in B and let S2B be theset of items requested exactly twice in B. De�ne j1 = card(S1B) and j2 = card(S2B). We proveJ � 13 Xx2S1B[S2B CSTAT (x; S1B [S2B) + 13 Xx2S2B CSTAT (x; S1B [S2B): (7)This implies the claim. We have Px2S1B[S2B CSTAT (x; S1B [S2B) = 12(j1 + j2)(j1 + j2 + 1).First suppose that each of the j2 items in S2B causes j1 new inversions. Then J = j1j2 andPx2S2B CSTAT (x; S1B [S2B) = 12((j1 + j2)(j1 + j2 + 1) � j1(j1 + 1)): Now suppose that an itemx 2 S2B causes only j1 � kx inversions. Then, J = j1j2 �Px2S2B kx and12((j1+ j2)(j1 + j2 + 1)� j1(j1 + 1))� Xx2S2B kx � Xx2S2B CSTAT (x; S1B [S2B):Simple algebraic manipulations show thatj1j2 � 13(12(j1 + j2)(j1 + j2 + 1) + 12((j1 + j2)(j1 + j2 + 1)� j1(j1 + 1))):Using the last two inequalities, we can easily derive inequality (7). 2Summing up the inequalities in Claim 1, Claim 2 and Claim 3 we obtain, as desired,CFC(B) + �� � 2 Xx2SB CSTAT (x; S n SB) + 43 Xx2SB fB(x)CSTAT (x; SB)� 2 Xx2SB CSTAT (x) + 43 Xx2SB(fB(x)� 1)CSTAT(x)� 23 � j(j + 1)2 : 2Proof of Theorem 3: Suppose the request sequence consists of b blocks B(1); B(2); : : : ; B(b).By Lemma 2, CFC(�)=CSTAT (�) is bounded from above byPbi=1(2Px2SB(i) CSTAT (x) + 43Px2SB(i)(fB(i)(x)� 1)CSTAT (x)� (l+1)(l+2)3)CSTAT (�) :Here we may assume without loss of generality that the last block B(b) contains l + 1 distinctrequests. Hence,CFC(�)CSTAT (�) � 2� 23 � b(l+1)(l+2)2 +Pbi=1Px2SB(i)(fB(i)(x)� 1)CSTAT(x)Pbi=1Px2SB(i) fB(i)(x)CSTAT(x) :We have Pbi=1Px2SB(i)(fB(i)(x) � 1)CSTAT (x) � 0 and Pbi=1Px2SB(i) CSTAT (x) � b (l+1)(l+2)2 .Thus CFC(�)CSTAT (�) � 2� 23 � b(l+1)(l+2)2Pbi=1Px2SB(i) CSTAT (x) � 2� 23 � (l+ 2)=2n� l=2 = 2� 23 � l+ 22n� l ;where the second inequality follows from Pbi=1Px2SB(i) CSTAT (x) � bPlk=0(n � k) = b((l +1)n� l(l+ 1)=2). The above line implies the theorem. 212

Proof of Theorem 4: Again, we assume that the request sequence � consists of b blocksB(1); B(2); : : : ; B(b). Let ji be the number of di�erent items requested in block B(i). ByLemma 2, CFC(�)=CSTAT (�) is bounded from above byPbi=1(2Px2SB(i) CSTAT (x) + 43Px2SB(i)(fB(i)(x)� 1)CSTAT (x)� ji(ji+1)3)Pbi=1(Px2SB(i) CSTAT (x) +Px2SB(i)(fB(i)(x)� 1)CSTAT(x)) :Note that Px2SB(i) CSTAT (x) � jin and that Pbi=1 ji(ji + 1) � bj(j + 1); where j = 1b Pbi=1 ji.Hence, CFC(�)CSTAT (�) � Pbi=1(2jn� j(j+1)3 + 43Px2SB(i)(fB(i)(x)� 1)CSTAT(x))Pbi=1(jn+Px2SB(i)(fB(i)(x)� 1)CSTAT (x)) :Since 2jn� 13 j(j+1)jn � 43 , we obtainCFC(�)CSTAT (�) � Pbi=1(2jn� 13j(j + 1) + 43(l+ 1� j))Pbi=1(jn+ (l+ 1� j)) = 2jn� 13j2 � 53j + 43(l+ 1)jn� j + (l+ 1) :We have (l+ 1) = Kn2. We maximize the functionCn(j) = 2jn� 13j2 � 53j + 43Kn2jn� j +Kn2subject to the constraint 0 < j � minfKn2; ng. Using the same techniques as in the proof ofTheorem 2 we can show that jn = 1n�1 (pK2n4 +Kn2(2n� 1)(n� 1)�Kn2) is the solution tothis maximization problem and thatCn(jn) = 2� 13(2(n� 1)2qK2n4 +Kn2(2n� 1)(n� 1)� 2Kn2(n� 1)2 � 1n� 1):The above expression goes to c = 2� 23(pK2 + 2K �K) as n tends to in�nity.We remark that it is possible to derive more precise but also more complicated bounds onthe competitive factor if one takes into account that Px2SB(i) CSTAT (x) � jin� ji(ji�1)2 : 24 Conclusion and open problemsIn this paper we have investigated the list update problem with lookahead. We have de�ned twodi�erent models of lookahead and developed lower and upper bounds on the competitivenessthat can be achieved by deterministic on-line algorithms with lookahead. However, our boundsare not tight; we conjecture that the algorithms FREQUENCY-COUNT(l) perform better thanwe can actually prove. One open problem is to tighten the gaps between the lower and upperbounds. Our on-line algorithms with lookahead are competitive against static o�-line algorithms.Another open problem is to develop algorithms that are competitive against dynamic o�-linealgorithms, too. 13

References[1] S. Albers. The in
uence of lookahead in competitive paging algorithms. In Proc. 1st AnnualEuropean Symposium on Algorithms, Springer Lecture Notes in Computer Science, Volume726, pages 1-12, 1993.[2] S. Albers. Improved randomized on-line algorithms for the list update problem. In Proc.6th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 412{419, 1995.[3] S. Albers, B. von Stengel and Ralph Werchner. A combined BIT and TIMESTAMP algo-rithm for the list update problem. Information Processing Letters, 56:135{139, 1995.[4] F. d'Amore, A. Marchetti-Spaccamela and U. Nanni. Competitive algorithms for theweighted list update problem. Theoretical Computer Science, 108(2):371{384, 1993.[5] S. Ben-David and A. Borodin. A new measure for the study of on-line algorithms. Algo-rithmica, 11(1):73-91, 1994.[6] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos and A. Wigderson. On the power ofrandomization in on-line algorithms. Algorithmica, 11(1):2{14, 1994.[7] J.L. Bentley, K.L. Clarkson and D.B. Levine. Fast linear expected-time algorithms forcomputing maxima and convex hulls. In Proc. 1st ACM-SIAM Symposium on DiscreteAlgorithms, pages 179-187, 1990.[8] J.L. Bentley and C.C. McGeoch. Amortized analyses of self-organizing sequential searchheuristics. Communications of the ACM, 28(4):404-411, 1985.[9] J.L. Bentley, D.D. Sleator, R.E. Tarjan and V. Wei. A locally adaptive data compressionscheme. Communications of the ACM, 29(4):320-330, 1986.[10] J.R. Bitner. Heuristics that dynamically organize data structures for representing sortedlists. SIAM Journal on Computing, 8:82-110, 1979.[11] D. Breslauer. On competitive on-line paging with lookahead. In Proc. 13th Annual Sym-posium on Theoretical Aspects of Computer Science, Springer Lecture Notes in ComputerScience, Volume 1046, pages 593{603, 1996.[12] M. Burrows and D.J. Wheeler. A block-sorting lossless data compression algorithm. DECSRC Research Report 124, 1994.[13] P.J. Burville and J.F.C. Kingman. On a model for storage and search. Journal of AppliedProbability, 10(3):697-701, 1973.[14] F.K. Chung, R. Graham and M.E. Saks. A dynamic location problem for graphs. Combi-natorica, 9(2):111-131, 1989. 14

[15] M.J. Golin. Probabilistic Analysis of Geometric Algorithms. Ph.D. thesis, Princeton Uni-versity, 1991. Available as Computer Science Department Technical Report CS-TR-266-90.[16] E.F. Grove. Online bin packing with lookahead. In Proc. 6th Annual ACM-SIAM Sympo-sium on Discrete Algorithms, pages 430{436, 1995.[17] M.M. Halld�orsson and M. Szegedy. Lower bounds for on-line graph coloring. In Proc. 3rdAnnual ACM-SIAM Symposium on Discrete Algorithms, pages 211-216, 1992.[18] W.J. Hendricks. An extension of a theorem concerning an interesting Markov chain. Journalof Applied Probability, 10(4):886-890, 1973.[19] S. Irani. Coloring inductive graphs on-line. In Proc. 31st Annual IEEE Symposium onFoundations of Computer Science, pages 470-479, 1990.[20] S. Irani. Two results on the list update problem. Information Processing Letters, 38:301-306, 1991.[21] M.-Y. Kao and S.R. Tate. Online matching with blocked input. Information ProcessingLetters, 38:113-116, May 1991.[22] R. Karp and P. Raghavan. From a personal communication cited in [25].[23] E. Koutsoupias and C.H. Papadimitriou. Beyond competitive analysis. In Proc. 35th AnnualIEEE Symposium on Foundations of Computer Science, pages 394{400, 1994.[24] N. Reingold and J. Westbrook. Optimum o�-line algorithms for the list update problem.Technical Report YALEU/DCS/TR-805, August 1990.[25] N. Reingold, J. Westbrook and D.D. Sleator. Randomized competitive algorithms for thelist update problem. Algorithmica, 11(1):15-32, 1994.[26] R. Rivest. On self-organizing sequential search heuristics. Communications of the ACM,19(2):63-67, 1976.[27] D.D. Sleator and R.E. Tarjan. Amortized e�ciency of list update and paging rules. Com-munication of the ACM, 28:202-208, 1985.[28] B. Teia. A lower bound for randomized list update algorithms. Information ProcessingLetters, 47:5-9, 1993.[29] E. Torng. A uni�ed analysis of paging and caching. In Proc. 36th Annual IEEE Symposiumon Foundations of Computer Science, pages 194{203, 1995.[30] N. Young. Competitive Paging and Dual-Guided On-Line Weighted Caching and Match-ing Algorithms. Ph.D. thesis, Princeton University, 1991. Available as Computer ScienceDepartment Technical Report CS-TR-348-91.15

