
Energy-Efficient Algorithms for Flow Time Minimization

Susanne Albers∗ Hiroshi Fujiwara†

Topic classification: Algorithms and data structures

Abstract

We study scheduling problems in battery-operated computing devices, aiming at schedules with low
total energy consumption. While most of the previous work has focused on finding feasible schedules
in deadline-based settings, in this paper we are interestedin schedules that guarantee a good Quality-of-
Service. More specifically, our goal is to schedule a sequence of jobs on a variable speed processor so
as to minimize the total cost consisting of the power consumption and the total flow time of all the jobs.

We first show that when the amount of work, for any job, may takean arbitrary value, then no online
algorithm can achieve a constant competitive ratio. Therefore, most of the paper is concerned with unit-
size jobs. We devise a deterministic constant competitive online algorithm and show that the offline
problem can be solved in polynomial time.

1 Introduction

Embedded systems and portable devices play an ever-increasing role in every day life. Prominent examples
are mobile phones, palmtops and laptop computers that are used by a significant fraction of the popula-
tion today. Many of these devices are battery-operated so that effective power management strategies are
essential to guarantee a good performance and availabilityof the systems. The microprocessors built into
these devices can typically perform tasks at different speeds – the higher the speed, the higher the power
consumption is. As a result, there has recently been considerable research interest in dynamic speed scaling
strategies; we refer the reader to [1, 2, 3, 8, 11, 14] for a selection of the papers that have been published in
algorithms conferences.

Most of the previous work considers a scenario where a sequence of jobs, each specified by a release
time, a deadline and an amount of work that must be performed to complete the task, has to be scheduled
on a single processor. The processor may run at variable speed. At speeds, the power consumption is
P (s) = sα per time unit, whereα > 1 is a constant. The goal is to find a feasible schedule such thatthe
total power consumption over the entire time horizon is as small as possible. While this basic framework
gives insight into effective power conservation, it ignores important Quality-of-Service (QoS) issues in that
users typically expect good response times for their jobs. Furthermore, in many computational systems,
jobs are not labeled with deadlines. For example, operatingsystems such as Window and Unix installed on
laptops do not employ deadline-based scheduling.

Therefore, in this paper, we study algorithms that minimizeenergy usage and at the same time guarantee
good response times. In the scientific literature, responsetime is modeled asflow time. The flow time of a job
is the length of the time interval between the release time and the completion time of the job. Unfortunately,

∗Institut für Informatik, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 79, 79110 Freiburg, Germany.
salbers@informatik.uni-freiburg.de .

†Department of Communications and Computer Engineering, Graduate School of Informatics, Kyoto University, Japan.
fujiwara@lab2.kuis.kyoto-u.ac.jp This work was done while visiting the University of Freiburg.

1

energy minimization and flow time minimization are orthogonal objectives. To save energy, the processor
should run at low speed, which yields high flow times. On the other hand, to ensure small flow times, the
processor should run at high speed, which results in a high energy consumption. In order to overcome this
conflict, Pruhs et al. [11] recently studied the problem of minimizing the average flow time of a sequence
of jobs when afixed amount of energyis available. They presented a polynomial time offline algorithm
for unit-size jobs. However, it is not clear how to handle theonline scenario where jobs arrival times are
unknown.

Instead, in this paper, we propose a different approach to integrate energy and flow time minimization:
We seek schedules that minimize the total cost consisting ofthe power consumption and the flow times of
jobs. More specifically, a sequence of jobs, each specified byan amount of work, arrives over time and must
be scheduled on one processor. Preemption of jobs is not allowed. The goal is to dynamically set the speed
of the processor so as to minimize the sum of (a) the total power consumption and (b) the total flow times
of all the jobs. Such combined objective functions have beenstudied for many other bicriteria optimization
problems with orthogonal objectives. For instance, the papers [5, 9] consider a TCP acknowledgement
problem, minimizing the sum of acknowledgement costs and acknowledgement delays incurred for data
packets. In [6] the authors study network design and minimize the total hardware and QoS costs. More
generally, in the classical facility location problem, oneminimizes the sum of the facility installation and
total client service costs, see [4, 10] for surveys.

For our energy/flow-time minimization problem, we are interested in both online and offline algorithms.
Following [12], an online algorithmA is said to bec-competitive if there exists a constanta such that, for
all job sequencesσ, the total costA(σ) satisfiesA(σ) ≤ c · OPT(σ) + a, whereOPT(σ) is the cost of an
optimal offline algorithm.

Previous work: In their seminal paper Yao et al. [14] introduced the basic problem of scheduling a
sequence of jobs, each having a release time, a deadline and acertain workload, so as to minimize the energy
usage. They showed that the offline problem can be solved optimally in polynomial time and presented two
online algorithms calledAverage RateandOptimal Available. They analyzedAverage Rate, for α ≥ 2,
and proved an upper bound of2ααα and a lower bound ofαα on the competitiveness. Bansal et al. [2]
studiedOptimal Availableand showed that its competitive ratio is exactlyαα. Furthermore, they developed
a new algorithm that achieves a competitiveness of2(α/(α−1))αeα and proved that any randomized online
algorithm has a performance ratio of at leastΩ((4/3)α).

Irani et al. [8] investigated an extended scenario where theprocessor can be put into a low-power sleep
state when idle. They gave an offline algorithm that achievesa 3-approximation and developed a general
strategy that transforms an online algorithm for the setting without sleep state into an online algorithm for
the setting with sleep state. They obtain constant competitive online algorithms, but the constants are large.
For the famous cube root ruleP (s) = s3, the competitive ratio is 540. The factor can be reduced to 84using
the online algorithm by Bansal et al. [2]. Settings with several sleep states have been considered in [1].
Speed scaling to minimize the maximum temperature of a processor has been addressed in [2, 3].

As mentioned above, Pruhs et al. [11] study the problem of minimizing the average flow time of jobs
given a fixed amount of energy. For unit-size jobs, they devise a polynomial time algorithm that simultane-
ously computes, for each possible energy level, the schedule with smallest average flow time.

Our contribution: We investigate the problem of scheduling a sequence ofn jobs on a variable speed
processor so as to minimize the total cost consisting of the power consumption and the flow times of jobs.
We first show that when the amount of work, for any job, may takean arbitrary value, then any deterministic
online algorithm has a competitive ratio of at leastΩ(n1−1/α). Therefore, in the remainder of the paper we
focus on unit-size jobs.

We develop a deterministic phase-based online algorithm that achieves a constant competitive ratio.
The algorithm is simple and requires scheduling decisions to be made only every once in a while, which is
advantageous in low-power devices. Initially, the algorithm computes a schedule for the first batch of jobs

2

released at time 0. While these jobs are being processed, thealgorithm collects the new jobs that arrive in
the meantime. Once the first batch of jobs is finished, the algorithm computes a schedule for the second
batch. This process repeats until no more jobs arrive. Within each batch the processing speeds are easy to
determine. When there arei unfinished jobs in the batch, the speed is set toα

√

i/c, wherec is a constant
that depends on the value ofα. We prove that the competitive ratio of our algorithm is upper bounded by
8.3e(1 + Φ)α, whereΦ = (1 +

√
5)/2 ≈ 1.618 is the Golden Ratio. We remark here that a phase-based

scheduling algorithm has been used also in makespan minimization on parallel machines [13]. However, for
our problem, the scheduling strategy within the phases and the analysis techniques employed are completely
different.

Furthermore, in this paper we develop a polynomial time algorithm for computing an optimal offline
schedule. We would like to point out that we could use the algorithm by Pruhs et al. [11], but this would
yield a rather complicated algorithm for our problem. Instead, we design a simple, direct algorithm based
on dynamic programming.

2 Preliminaries

Consider a sequence of jobsσ = σ1, . . . , σn which are to be scheduled on one processor. Jobσi is released
at timeri and requirespi CPU cycles. We assumer1 = 0 andri ≤ ri+1, for i = 1, . . . , n − 1. A schedule
S is given by a pairS = (s, job) of functions such thats(t) ≥ 0 specifies the processor speed at timet and
job(t) ∈ {1, . . . , n} is the job executed at timet. The schedule is feasible if, for everyi with 1 ≤ i ≤ n,

∫ ∞

ri

s(t)δ(job(t), i)dt = pi,

whereδ(x, y) = 1 if x = y andδ(x, y) = 0 otherwise. We are interested in non-preemptive schedules in
which, once a job has been started, it must be run to completion. Here, a feasible schedule must additionally
satisfy that, for any jobi, if δ(job(t1), i) = 1 andδ(job(t2), i) = 1, thenδ(job(t), i) = 1, for all t ∈ [t1, t2].
The energy consumption ofS is

E(S) =

∫ ∞

0
P (s(t))dt,

whereP (s) = sα specifies the power consumption of the CPU depending on the speeds. We assume that
α > 1 is a real number. For anyi, let ci be the completion time of jobi, i.e. ci ≥ ri is the smallest value
such that

∫ ci

ri

s(t)δ(job(t), i)dt = pi.

The flow time of jobi is fi = ci − ri and the flow time ofS is given by

F (S) =
n
∑

i=1

fi.

We seek schedulesS that minimize the sumg(S) = E(S) + F (S).

3 Arbitrary size jobs

We show that if the jobs’ processing requirements may take arbitrary values, then no online algorithm can
achieve a bounded competitive ratio.

Theorem 1 The competitive ratio of any deterministic online algorithm isΩ(n1−1/α) if the job processing
requirementsp1, . . . , pn may take arbitrary values.

3

Proof. At time t = 0 an adversary releases a jobσ1 with p1 = 1. The adversary then observes the given
online algorithmA. Let t′ be the time such thatA starts processingσ1. Then at timet′ + δ the adversary
presentsn − 1 jobs withpi = ǫ. We chooseδ such thatδ ≤ 1/(2n1/α) andǫ such thatǫ < 1/(n − 1)2. If
A’s average speed during the time[t′, t′ + δ) is at least1/(2δ), then the power consumption during this time
interval is at least12(1

2δ)α−1 ≥ 1
2n1−1/α. If A’s average speed is smaller than1/(2δ), then at timet′ + δ at

least1/2 time units ofσ1 are still to be processed. Suppose thatA processes the remainder ofσ1 with an
average speed ofs. If s ≥ α

√
n, then the power consumption is at leastsα−1/2 ≥ n1−1/α/2. If s < α

√
n

then the flow time of the jobs is at leastn/(2s) ≥ n1−1/α/2. We conclude that in any caseA’s cost is at
leastn1−1/α/2.

If t′ < 1, then the adversary first processes then − 1 small jobs of sizeǫ and then the first jobσ1.
Otherwise the adversary first handlesσ1 and then takes care of the small jobs. The processor speed is
always set to 1. In the first case the cost of the adversary is atmost(n − 1)2ǫ + 5 ≤ 6 as the processing of
the small jobs takes at most(n − 1)ǫ < 1 time units and the first job can be started no later than time 2.In
the second case the cost is bounded by3 + 2(n − 1)2ǫ ≤ 5. This establishes the desired competitive ratio.

2

4 An online algorithm for unit-size jobs

In this section we study the case that the processing requirements of all jobs are the same, i.e.pi = 1,
for all jobs. We develop a deterministic online algorithm that achieves a constant competitive ratio, for
all α. The algorithm is calledPhasebaland aims at balancing the incurred power consumption with the
generated flow time. Ifα is small, then the ratio is roughly1 : α − 1. If α is large, then the ratio is1 : 1.
As the name suggests, the algorithm operates in phases. Letn1 be the number of jobs that are released
initially at time t = 0. In the first phasePhasebalprocesses these jobs in an optimal or nearly optimal
way, ignoring jobs that may arrive in the meantime. More precisely, the speed sequence for then1 jobs is
α
√

n1/c,
α
√

(n1 − 1)/c, . . . , α
√

1/c, i.e. thej-th of thesen1 jobs is executed at speedα
√

(n1 − j + 1)/c for
j = 1, . . . , n1. Herec is a constant that depends onα. Let n2 be the number of jobs that arrive in phase 1.
Phasebalprocesses these jobs in a second phase. In general, in phasei Phasebalschedules theni jobs that
arrived in phasei− 1 using the speed sequenceα

√

(ni − j + 1)/c, for j = 1, . . . , ni. Again, jobs that arrive
during the phase are ignored until the end of the phase. A formal description of the algorithm is as follows.

Algorithm Phasebal: If α < (19 +
√

161)/10, then setc := α − 1; otherwise setc := 1. Let n1 be the
number of jobs arriving at timet = 0 and seti = 1. While ni > 0 execute the following two steps: (1) For
j = 1, . . . , ni, process thej-th job using a speed ofα

√

(ni − j + 1)/c. We refer to this entire time interval
as phasei. (2) Letni+1 be the number of jobs that arrive in phasei and seti := i + 1.

Theorem 2 Phasebal achieves a competitive ratio of at most(1+Φ)(1+Φ
α

(2α−1))(α−1) αα

(α−1)α−1 min{5α−2
2α−1 ,

4
2α−1 + 4

α−1}, whereΦ = (1 +
√

5)/2 ≈ 1.618 is the Golden Ratio.

Before proving Theorem 2, we briefly discuss the competitiveness. Standard algebraic manipulations
show that, forα0 = (19 +

√
161)/10, equation5α0−2

2α0−1 = 4
2α0−1 + 4

α0−1 holds. Thus, the competitive ratio

is upper bounded by(1 + Φ)αe(4
2α0−1 + 4

α0−1) < (1 + Φ)αe · 8.22.
In the remainder of this section we analyzePhasebal. Let t0 = 0 andti be the time when phasei ends,

i.e. theni jobs released during phasei − 1 (released initially, ifi = 1) are processed in the time interval
[ti−1, ti), which constitutes phasei. We first study the case thatc = 1 and then address the casec = α − 1.
Given a job sequenceσ, let SPB be the schedule ofPhasebaland letSOPT be an optimal schedule. We
first analyze the cost and time horizon ofSPB. Suppose that there arek phases, i.e. no new jobs arrive in

4

phasek. In phasei the algorithm needs1/ α
√

ni − j + 1 time units to complete thej-th job. Thus the power
consumption in the phase is

ni
∑

j=1

(α
√

ni − j + 1)α/ α
√

ni − j + 1 =
ni
∑

j=1

(ni − j + 1)1−1/α ≤ α
2α−1 (n

2−1/α
i − 1) + n

1−1/α
i .

The length of phasei is

T (ni) =
ni
∑

j=1

1/ α
√

ni − j + 1 ≤ α
α−1n

1−1/α
i . (1)

As for the flow time, theni jobs scheduled in the phase incur a flow time of

ni
∑

j=1

(ni − j + 1)/ α
√

ni − j + 1 ≤ α
2α−1(n

2−1/α
i − 1) + n

1−1/α
i ,

while theni+1 jobs released during the phase incur a flow time of at mostni+1 times the length of the phase.
We obtain

g(SPB) ≤
k
∑

i=1

(2α
2α−1 (n

2−1/α
i − 1) + 2n

1−1/α
i) +

k−1
∑

i=1

ni+1
α

α−1n
1−1/α
i .

The second sum is bounded by
∑k−1

i=1
α

α−1 max{ni, ni+1}2−1/α ≤
∑k

i=1
2α

α−1n
2−1/α
i and we conclude

g(SPB) ≤ 2
k
∑

i=1

(α
2α−1 (n

2−1/α
i − 1) + n

1−1/α
i + α

α−1n
2−1/α
i). (2)

We next have to lower bound the cost of an optimal schedule. Tothis end it will be convenient to also
consider a pseudo-optimal scheduleSPOPT . This is the best schedule that satisfies the constraint that, at
any time, if there aren jobs waiting (which have arrived but have not been finished),then the processor
speed is at leastα

√
n. We show that the objective function valueg(SPOPT) is not far from the true optimum

g(SOPT).

Lemma 1 For any job sequence,g(SPOPT) ≤ 2g(SOPT).

Proof. Consider the optimal scheduleg(SOPT). We may assume w.l.o.g. that in this schedule the speed
only changes when a jobs gets finished of new jobs arrive. For,if there were an intervalI with varying speed
but no jobs arriving or being completed, we could replace thespeed assignment by the average speed in this
interval. By the convexity of the power functionP (s), this cannot increase the objective function value.
Based on this observation, we partition the time horizon ofSOPT into a sequence of intervalsI1, . . . , Im

such that, for any such interval, the number of jobs waiting does not change. LetE(Ii) andF (Ii) be the
energy consumption and flow time, respectively, generated in Ii, i = 1, . . . ,m. We haveE(Ii) = sα

i δi and
F (Ii) = niδi, wheresi is the speed,ni is the number of jobs waiting inIi andδi is the length ofIi. Clearly
g(SOPT) =

∑m
i=1(E(Ii) + F (Ii)).

Now we changeSOPT as follows. In any intervalIi with si < α
√

ni we raise the speed toα
√

ni, incurring
an energy consumption ofniδi, which is equal toF (Ii) in original scheduleSOPT . In this modification step,
the flow time of jobs can only decrease. Because of the increased speed, the processor may run out of jobs
in some intervals. Then the processor is simply idle. We obtain a schedule whose cost is bounded by
∑m

i=1(E(Ii) + 2F (Ii)) ≤ 2g(SOPT) and that satisfies the constraint that the processor speed itat least α
√

n
in intervals withn unfinished job. Henceg(SPOPT) ≤ 2g(SOPT) 2

Lemma 2 For c = 1, in SPOPT the n1 jobs released at timet0 are finished by timet1 and theni jobs
released during phasei − 1 are finished by timeti, for i = 2, . . . , k.

5

Proof. We show the lemma inductively. As for then1 jobs released at timet0, the scheduleSPOPT processes
thej-th of these jobs at a speed of at leastα

√
n1 − j + 1 because there are at leastn− j + 1 unfinished jobs

waiting. Thus then1 jobs are completed no later than
∑n1

j=1 1/ α
√

n1 − j + 1, which is equal to the length
of the first phase, see (1).

Now suppose that jobs released by timeti−1 are finished by timeti and consider theni+1 jobs released
in phasei. At time ti there are at most theseni+1 unfinished jobs. Letni+1 be the actual number of jobs
waiting at that time. Again, thej-th of these jobs is processed at a speed of at least(ni+1 − j + 1)1/α so
that the execution of theseni+1 ends no later than

∑ni+1

j=1 (ni+1 − j + 1)−1/α and this sum is not larger than
the length of phasei + 1, see (1). 2

Lemma 3 If a schedule has to processn jobs during a time period of lengthT ≤ n α
√

α − 1, then its total
cost is at leastFLAT (n, T) ≥ (n/T)αT + T .

Proof. Suppose that the schedule processes jobs during a total timeperiod ofT ′ ≤ T time units. By the
convexity of the power functionP (s) = sα, the power consumption is smallest if theT ′ units are split evenly
among then jobs. Clearly the flow time is at leastT ′ time units. Thus the total cost is at least(n/T ′)α +T ′.
The function(n/x)α + x is decreasing, forx ≤ n α

√
α − 1, so that(n/T ′)α + T ′ ≥ (n/T)α + T . 2

Lemma 4 For α ≥ 2, the inequalityg(SPOPT) ≥ C1−α(1 + Φ)−1(1 + Φα/(2α−1))1−α∑k
i=1 n

2−1/α
i +

∑k
i=1 T (ni) holds, whereC = α/(α − 1) andΦ = (1 +

√
5)/2.

Proof. By Lemma 2, fori ≥ 2, theni jobs arriving in phasei − 1 are finished by timeti in SPOPT . Thus
SOPT processes these jobs in a window of length at mostT (ni−1) + T (ni). Let T ′(ni) = min{T (ni−1) +
T (ni), ni

α
√

α − 1}. Applying Lemma 3, we obtain that theni jobs incur a cost of at least

nα
i

(T ′(ni))α−1
+ T ′(ni) ≥

nα
i

(T (ni−1) + T (ni))α−1
+ T ′(ni) ≥

nα
i

(T (ni−1) + T (ni))α−1
+ T (ni).

The last inequality holds becauseT (ni) ≤ ni ≤ ni
α
√

α − 1, for α ≥ 2 and henceT ′(ni) ≥ T (ni).
Similarly, for then1 jobs released at timet = 0, the cost it at least

nα
1

(T (n1))α−1
+ T (n1).

Summing up, the total cost ofSPOPT is at least

nα
1

(T (n1))α−1
+

k
∑

i=2

nα
i

(T (ni−1) + T (ni))α−1
+

k
∑

i=1

T (ni).

In the following we show that the first two terms in the above expression are at leastC1−α(1 + Φ)−1(1 +

Φα/(2α−1))1−α∑k
i=1 n2−1/α, which establishes the lemma to be proven. SinceT (ni) ≤ Cn

1−1/α
i , it suf-

fices to show

(1 + Φ)(1 + Φα/(2α−1))α−1







nα
1

(

n
1−1/α
1

)α−1 +
k
∑

i=2

nα
i

(

n
1−1/α
i−1 + n

1−1/α
i

)α−1






≥

k
∑

i=1

n
2−1/α
i . (3)

To this end we partition the sequence of job numbersn1, . . . , nk into subsequences such that, within each
subsequence,ni ≥ Φα/(2α−1)ni+1. More formally, the first subsequence starts with indexb1 = 1 and ends
with the smallest indexe1 satisfyingne1 < Φα/(2α−1)ne1+1. Suppose thatl − 1 subsequences have been

6

constructed. Then thel-st sequence starts at indexbl = el−1 + 1 and ends with the smallest indexel ≥ bl

such thatnel
< Φα/(2α−1)nel+1. The last subsequence ends with indexk.

We will prove (3) by considering the individual subsequences. Since within a subsequenceni+1 ≤
niΦ

−α/(2α−1), we haven
2−1/α
i+1 ≤ n

2−1/α
i /Φ. Therefore, for any subsequencel, using the limit of the

geometric series
el
∑

i=bl

n
2−1/α
i ≤ n

2−1/α
bl

/(1 − 1/Φ) = (1 + Φ)n
2−1/α
bl

, (4)

which upper bounds terms on the right hand side of (3). As for the left hand side of (3), we have for the first
subsequence,

(1 + Φ)(1 + Φα/(2α−1))α−1







nα
1

(

n
1−1/α
1

)α−1 +
e1
∑

i=2

nα
i

(

n
1−1/α
i−1 + n

1−1/α
i

)α−1






≥ (1 + Φ)n

2−1/α
1 .

For any other subsequencel, we have

(1 + Φ)(1 + Φα/(2α−1))α−1
el
∑

i=bl

nα
i

(

n
1−1/α
i−1 + n

1−1/α
i

)α−1

≥ (1 + Φ)(1 + Φα/(2α−1))α−1
nα

bl
(

n
1−1/α
bl−1 + n

1−1/α
bl

)α−1

≥ (1 + Φ)(1 + Φα/(2α−1))α−1
nα

bl
(

(Φ(α−1)/(2α−1) + 1)n
1−1/α
bl

)α−1

≥ (1 + Φ)n
2−1/α
bl

.

The above inequalities together with (4) imply (3). 2

With the above lemma we able to derive our first intermediate result.

Lemma 5 For α ≥ 2 andc = 1, the competitive ratio of Phasebal is at most(1 + Φ)(1 + Φα/(2α−1))(α−1)

αα

(α−1)α−1 (4
2α−1 + 4

α−1).

Proof. Using (2) as well as Lemmas 1 and 4 we obtain that the competitive ratio ofPhasebalis bounded by

(1 + Φ)(1 + Φα/(2α−1))(α−1)
4
∑k

i=1((
α

2α−1 + α
α−1)n

2−1/α
i + n1−1/α)

∑k
i=1((

α
α−1)1−αn

2−1/α
i + T (ni))

.

Considering the terms of ordern2−1/α, we obtain the performance ratio we are aiming at. It remainsto
show thatn1−1/α

i /T (ni) does not violate this ratio. Note thatT (ni) ≥ 1. Thus, ifn1−1/α
i ≤ 2 we have

n
1−1/α
i /T (ni) ≤ 2 ≤ 4(α

α−1)α−1(α
2α−1 + α

α−1). (5)

If n
1−1/α
i > 2, then we use the fact that

T (ni) ≥ α
α−1 ((ni + 1)1−1/α − 1) ≥ 1

2
α

α−1n
1−1/α
i

and we can argue as in (5), since(α − 1)/α < 1. 2

7

We next turn to the case thatc = α − 1. The global structure of the analysis is the same but some
of the calculations become more involved. We start again by analyzing the cost and time ofPhasebal. As
before we assume that there arek phases. In phasei, Phasebaluses1/ α

√

(ni − j + 1)/(α − 1) time units
to process thej-th job. This yields a power consumption of

ni
∑

j=1

(

ni − j + 1

α − 1

)1−1/α

≤ CE(n
2−1/α
i − 1) + (α − 1)1/α−1n

1−1/α
i

with
CE = (α − 1)

1
α
−1 α

2α − 1
.

The length of the phase is given by

T (ni) =
ni
∑

j=1

1/

(

ni − j + 1

α − 1

)1/α

.

Here we have
CT ((ni + 1)1−1/α − 1) < T (ni) < CT (n

1−1/α
i − 1/α) (6)

with
CT = α(α − 1)

1
α
−1.

In phasei theni jobs processed during the phase incur a flow time of
ni
∑

j=1

(ni−j+1)/

(

ni − j + 1

α − 1

)1/α

= (α−1)1/α
ni
∑

j=1

(ni−j+1)1−1/α ≤ CF (n
2−1/α
i −1)+(α−1)1/αn

1−1/α
i

with
CF = (α − 1)

1
α

α

2α − 1
,

while theni+1 jobs arriving in the phase incur a cost of at mostni+1T (ni). We obtain

g(SPB) ≤ (CE + CF)
k
∑

i=1

(n
2−1/α
i − 1) + 2CT

k
∑

i=1

n
2−1/α
i + α(α − 1)1/α−1n

1−1/α
i . (7)

We next lower bound the cost of an optimal schedule.

Lemma 6 There exists an optimal scheduleSOPT having the property that if there aren unfinished jobs
waiting at any time, then the processor speed is at leastα

√

n/(α − 1).

Proof. By convexity of the power functionP (s) we may assume w.l.o.g. that the processor speed only
changes inSOPT when a job get finished or new jobs arrive. Now suppose that there is an intervalI of
lengthδ with n unfinished jobs but a speed of less thanα

√

n/(α − 1). We show that we can improve the
schedule. InI we increase the speed toα

√

n/(α − 1). We can reduce the length ofI to δs/ α
√

n/(α − 1)
because the original work load ofδs can be completed in that amount of time. Simultaneously, we shift the
remaining intervals in which then unfinished jobs are processed byδ − δs/ α

√

n/(α − 1) time units to the
left. The cost saving caused by this modification is

δsα − δs(n/(α − 1))1−1/α + n(δ − δs/ α

√

n/(α − 1)).

We show that this expression is strictly positive, fors < α
√

n/(α − 1). This is equivalent to showing that

f(s) = sα − s(n/(α − 1))1−1/α + n(1 − s/ α

√

n/(α − 1))

is strictly positive for the considered range ofs. Computingf ′(s) we obtain thatf(s) decreasing, for
s < α

√

n/(α − 1). Sincef(α
√

n/(α − 1)) = 0 the lemma follows. 2

8

Lemma 7 For c = α − 1, in SOPT then1 jobs released at timet0 are finished by timet1 and theni jobs
released during phasei − 1 are finished by timeti, for i = 2, . . . , k.

Proof. Can be proven inductively in the same way as Lemma 2 using the fact that, as shown in Lemma 6,
SOPT uses a speed of at leastα

√

n/(α − 1) when there aren jobs waiting. 2

Lemma 8 The inequalityg(SOPT) ≥ C1−α
T (1+Φ)−1(1+Φα/(2α−1))(1−α)∑k

i=1 n
2−1/α
i +CT

∑k
i=1 T (ni)

holds.

Proof. Can be shown in the same way as Lemma 4. 2

Lemma 9 For c = α−1, the competitive ratio of Phasebal is at most(1+Φ)(1+Φα/(2α−1))(α−1) αα

(α−1)α−1

5α−2
2α−1 .

Proof. Using (6), (7) and Lemma 9 we obtain that the competitive ratio is bounded by

(1 + Φ)(1 + Φα/(2α−1))(α−1)

∑k
i=1((CE + CF)(n

2−1/α
i − 1) + 2CT n

2−1/α
i + α(α − 1)1/α−1n

1−1/α
i)

∑k
i=1(C

1−α
T n

2−1/α
i + CT ((ni + 1)1−1/α − 1))

.

Let g1(ni) = (CE + CF)(n
2−1/α
i − 1) + 2CT n

2−1/α
i + α(α− 1)1/α−1n

1−1/α
i be the term in the numerator

andg2(ni) = C1−α
T n

2−1/α
i +CT ((ni+1)1−1/α−1) be the term in the denominator of the above expression.

To establish the desired competitive ratio, it suffices to show that

g1(n1)

g2(ni)
≤ CE + CF + 2CT

C1−α
T

because the last fraction is exactly equal toαα

(α−1)α−1
5α−2
2α−1 . To prove the latter inequality we show that

f(x) = C1−α
T g1(x) − (CE + CF + 2CT)g2(x) is smaller than 0, for allx ≥ 1. Differentiatingf(x), we

obtain

f ′(x) = α(α − 1)
2
α
−2(x + 1)−

1
α

(

(

1 − 1

α

)α(x

1 + x

)− 1
α

− 5α − 2

2α − 1
(α − 1)

)

< α(α − 1)
2
α
−2(x + 1)−

1
α

(

2(α − 1) − 5α − 2

2α − 1
(α − 1)

)

< 0.

The first inequality holds because
(

x
1+x

)− 1
α ≤ 2

1
α < 2 and

(

1 − 1
α

)α
< α − 1 are satisfied forα > 1 and

x ≥ 1. Hencef ′(x) is negative, for allx ≥ 1. Furthermore,

f(1) =
2−

1
α α2(α − 1)

2
α
−2

2α − 1

(

2
1
α

(

1 − 1

α

)α

−
(

2 − 2
1
α

)

(5α − 2)

)

<
2−

1
α α2(α − 1)

2
α
−2

2α − 1

(

2
1
α (α − 1) −

(

2 − 2
1
α

)

(5α − 2)
)

=
2−

1
α α2(α − 1)

2
α
−2

2α − 1

(

3 · 2
1
α (2α − 1) − 10α + 4

)

.

Let
h(α) = 3 · 2

1
α (2α − 1) − 10α + 4.

9

Note that2
1
α ≤ max{2 − 2(2 − 2

2
3)(α − 1), 2

2
3}. Thus, if1 < α ≤ 3/2,

h(α) < 2(α − 1)(−6(2 − 2
2
3)(α − 1) − 5 + 3 · 2

2
3) < 0

If 3/2 < α, thenh(α) < −(10 − 6 · 2 2
3)(α− 1)− 6 + 3 · 2 2

3 < 0. We concludef(x) < 0, for all x ≥ 1. 2

Theorem 2 now follows from Lemmas 5 and 9, observing thatα0 = (19 +
√

161)/10 ≥ 2 and that, for
α > α0, we have 4

2α−1 + 4
α−1 < 5α−2

2α−1 .

5 An optimal offline algorithm for unit-size jobs

We present a polynomial time algorithm for computing an optimal schedule, given a sequence of unit-size
jobs that is known offline. Pruhs et al. [11] gave an algorithmthat computes schedules with minimum
average flow time, for all possible energy levels. We could use their algorithm, summing up energy con-
sumption and flow time, for all possible energy levels, and taking the minimum. However, the resulting
algorithm would be rather complicated. Instead, we devise here a simple, direct algorithm based on dy-
namic programming.

Our dynamic programming algorithm constructs an optimal schedule for a given job sequenceσ by
computing optimal schedules for subsequences ofσ. A schedule forσ can be viewed as a sequence of
subschedulesS1, S2, . . . , Sm, where anySj processes a subsequence of jobsj1, . . . , jk starting at timerj1

such thatci > ri+1 for i = j1, . . . , jk − 1 andcjk
≤ rjk

. In words, jobsj1 to jk are scheduled continuously
without interruption such that the completion time of any job i is after the release time of jobi + 1 and the
last jobjk is finished no later than the release time of jobjk + 1. As we will prove in the next two lemmas,
the optimal speeds in such subschedulesSj can be determined easily. For convenience, the lemmas are
stated for a general numbern of jobs that have to be scheduled in an interval[t, t′). The proof of the first
lemma is given in the Appendix.

Lemma 10 Considern jobs that have to be scheduled in time interval[t, t′) such thatr1 = t andrn < t′.
Suppose that in an optimal scheduleci > ri+1, for i = 1, . . . , n−1. If t′−t ≥

∑n
i=1

α
√

(α − 1)/(n − i + 1),
then thei-th job in the sequence is executed at speedsi = α

√

(n − i + 1)/(α − 1).

Lemma 11 Considern jobs that have to be scheduled in time interval[t, t′) such thatr1 = t andrn < t′.
Suppose that in an optimal scheduleci > ri+1, for i = 1, . . . , n−1. If t′−t <

∑n
i=1

α
√

(α − 1)/(n − i + 1),
then thei-th job in the sequence is executed at speedsi = α

√

(n − i + 1 + c)/(α − 1), wherec is the unique
value such that

∑n
i=1

α
√

(α − 1)/(n − i + 1 + c) = t′ − t.

Proof. We will use Lagrangian multipliers to determine the optimumspeeds. Letti be the length of the time
interval allotted to jobi in an optimal schedule. We first prove that

∑n
i=1 ti = t′ − t. If

∑n
i=1 ti < t′ − t,

then there must exist ani with ti < α
√

(α − 1)/(n − i + 1) and hencesi > α
√

(n − i + 1)/(α − 1). We
show that the schedule cannot be optimal. Suppose thatsi = sopt

i + ǫ, with sopt
i = α

√

(n − i + 1)/(α − 1)
and someǫ > 0. In the original schedule we reduce the speed of jobi to sopt

i + ǫ − ǫ′, for some0 < ǫ′ < ǫ.
This results in a power saving of(sopt

i + ǫ)α−1 − (sopt
i + ǫ − ǫ′)α−1 while the flow time increases by

(n − i + 1)(1/(sopt
i + ǫ − ǫ′) − 1/(sopt

i + ǫ)). The net cost saving is

f(ǫ′) = (sopt
i + ǫ)α−1 − (sopt

i + ǫ − ǫ′)α−1 − (n − i + 1)(1/(sopt
i + ǫ − ǫ′) − 1/(sopt

i + ǫ)).

The derivativef ′(ǫ′) = (α − 1)(sopt
i + ǫ − ǫ′)α−2 − (n − i + 1)/(sopt

i + ǫ − ǫ′)2 is positive, forǫ′ < ǫ.
Hencef(ǫ′) is increasing. Sincef(0) = 0, we obtain thatf(ǫ′) is positive and the original schedule is not
optimal. We conclude

∑n
i=1 ti = t′ − t.

10

We next determine the optimal time allotmentsti. The power consumption of thei-th job is(1/ti)
α−1

while the flow time of thei-th job is
∑i

j=1 tj − ri, using the fact thatci > ri+1, for i = 1, . . . , n − 1. Thus
we have to minimize

f(t1, . . . , tn) =
n
∑

i=1

(1/ti)
α−1 +

n
∑

i=1

(n − i + 1)ti −
n
∑

i=1

ri

subject to the constraint
∑n

i=1 ti = T with T = t′ − t. Thus we have to minimize

g(t1, . . . , tn, λ) =
n
∑

i=1

(1/ti)
α−1 +

n
∑

i=1

(n − i + 1)ti −
n
∑

i=1

ri + λ(T −
n
∑

i=1

ti)

with Langrangian multiplierλ. Computing the partial derivatives

∂g
∂ti

= −(α − 1)(1/ti)
α + (n − i + 1) − λ

∂g
∂λ = T −∑n

i=1 ti

we obtain thatti = α
√

(α − 1)/(n − i + 1 − λ), 1 ≤ i ≤ n, represent the only local extremum whereλ < 0
is the unique value such that

∑n
i=1

α
√

(α − 1)/(n − i + 1 − λ) = T . Sincef(t1, . . . , tn) is convex and the
functionT −∑n

i=1 ti is convex, the Kuhn-Tucker conditions imply that the local extremum is a minimum.
The lemma follows by replacing−λ by c. 2

Of course, an optimal schedule for a givenσ need not satisfy the condition thatci > ri+1, for i =
1, . . . , n − 1. In fact, this is the case if the speeds specified in Lemmas 10 and 11 do not give a feasible
schedule, i.e. there exists ani such thatci =

∑i
j=1 tj ≤ ri+1, with ti = 1/si andsi as specified in the

lemmas. Obviously, this infeasibility is easy to check in linear time.
We are now ready to describe our optimal offline algorithm, a pseudo-code of which is presented in

Figure 1. Given a jobs sequence consisting ofn jobs, the algorithm constructs optimal schedules for sub-
problems of increasing size. LetP [i, i + l] be the subproblem consisting of jobsi to i + l assuming that the
processing may start at timeri and must be finished by timeri+l+1, where1 ≤ i ≤ n and0 ≤ l ≤ n − i.
We definern+1 = ∞. Let C[i, i + l] be the cost of an optimal schedule forP [i, i + l]. We are eventually
interested inC[1, n]. In an initialization phase, the algorithm starts by computing optimal schedules for
P [i, i] of lengthl = 0, see lines 1 to 3 of the pseudo-code. Ifri+1 − ri ≥ α

√
α − 1, then Lemma 11 implies

that the optimal speed for jobi is equal to α
√

1/(α − 1). If ri+1 − ri < α
√

α − 1, then by Lemma 11 the
optimal speed is1/(ri+1 − ri). Note that this value can also be infinity ifri+1 = ri. The calculation of
C[i, i] in line 3 will later on ensure that in this case an optimal schedule will not complete jobi by ri+1.

Algorithm Dynamic Programming
1. for i := 1 to n do
2. if ri+1 − ri ≥ α

√
α − 1 then S[i] := α

√

1/(α − 1) elseS[i] := 1/(ri+1 − ri);
3. C[i, i] := (S[i])α−1 + 1/S[i];
4. for l := 1 to n − 1 do
5. for i := 1 to n − l do
6. C[i, i + l] := mini≤j<i+l{C[i, j] + C[j + 1, i + l]};
7. Compute an optimal schedule forP [i, i + l] according to Lemmas 10 and 11 assuming

cj > rj+1 for j = i, . . . , i + l − 1 and letsi, . . . , si+l be the computed speeds;
8. if schedule is feasiblethen C :=

∑i+l
j=i s

α−1
j +

∑i+l
j=i(i + l − j + 1)/sj elseC := ∞;

9. if C < C[i, i + l] then C[i, i + l] := C andS[j] := sj for j = i, . . . , i + l;

Figure 1: The dynamic programming algorithm

11

After the initialization phase the algorithm considers subproblemsP [i, i+l] for increasingl. An optimal
solution toP [i, i+ l] has the property that either (a) there exists an indexj with j < i+ l such thatcj ≤ rj+1

or (b) cj > rj+1 for j = i, . . . , i + l − 1. In case(a) an optimal schedule forP [i, i + l] is composed of
optimal schedules forP [i, j] andP [j + 1, i + l], which is reflected in line 6 of the pseudo-code. In case (b)
we can compute optimal processing speeds according to Lemmas 10 and 11, checking if the speeds give
indeed a feasible schedule. This is done in lines 7 and 8 of thealgorithm. In a final step the algorithm
checks if case (a) or (b) holds. The algorithm has a running time ofO(n3 log ρ), whereρ is the inverse of
the desired precision. Note that in Lemma 11,c can be computed only approximately using binary search.

6 Conclusions and open problems

In this paper we have investigated online and offline algorithms for computing schedules that minimize
power consumption and jobs flow times. An obvious open problem is improve the competitive ratio in
the online setting. We believe that the following algorithmhas an improved performance: Whenever there
are i unfinished jobs waiting, set the processor speed toα

√
i. Although the algorithm is computationally

more expensive in that the processor speed must be adjusted whenever new jobs arrive, we conjecture that it
achieves a constant competitive ratio that is independent of α. Another interesting direction is to study the
case that the jobs’ processing requirements may take arbitrary values but that preemption of jobs is allowed.

References

[1] J. Augustine, S. Irani and C. Swamy. Optimal power-down strategies.Proc. 45th Annual IEEE Sympo-
sium on Foundations of Computer Science, 530-539, 2004.

[2] N. Bansal, T. Kimbrel and K. Pruhs. Dynamic speed scalingto manage energy and temperature.Proc.
45th Annual IEEE Symposium on Foundations of Computer Science, 520–529, 2004.

[3] N. Bansal and K. Pruhs. Speed scaling to manage temperature. Proc. 22nd Annual Symposium on
Theoretical Aspects of Computer Science (STACS), Springer LNCS 3404, 460–471, 2005.

[4] G. Cornuéjols, G.L. Nemhauser and L.A. Wolsey. The uncapacitated facility location problem. In P.
Mirchandani and R. Francis (eds.),Discrete Location Theory, 119–171, John Wiley & Sons, 1990.

[5] D.R. Dooly, S.A. Goldman, and S.D. Scott. On-line analyis of the TCP acknowledgment delay prob-
lem.Journal of the ACM, 48:243–273, 2001.

[6] A. Fabrikant, A. Luthra, E. Maneva, C.H. Papadimitriou and S. Shenker. On a network creation game.
Proc. 22nd Annual ACM Symposium on Principles of Distributed Computing, 347–351, 2003.

[7] G. Hardy, J.E. Littlewood and G. Pólya.Inequalities. Cambridge University Press, 1994.
[8] S. Irani, S. Shukla and R. Gupta. Algorithms for power savings.Proc. 14th Annual ACM-SIAM Sym-

posium on Discrete Algorithms, 37–46, 2003.
[9] A.R. Karlin, C. Kenyon and D. Randall. Dynamic TCP acknowledgement and other stories about

e/(e − 1). Proc. 31st ACM Symposium on Theory of Computing, 502–509, 2001.
[10] P. Mirchandani and R. Francis (eds.).Discrete Location Theory. John Wiley & Sons, 1990.
[11] K. Pruhs, P. Uthaisombut and G. Woeginger. Getting the best response for your erg.Proc. 9th Scandi-

navian Workshop on Algorithm Theory (SWAT), Springer LNCS 3111, 15–25, 2004.
[12] D.D. Sleator und R.E. Tarjan. Amortized efficiency of list update and paging rules.Communications

of the ACM, 28:202-208, 1985.
[13] D. Shmoys, J. Wein and D.P. Williamson. Scheduling parallel machines on-line.SIAM Journal on

Computing, 24:1313-1331, 1995.
[14] F. Yao, A. Demers and S. Shenker. A scheduling model for reduced CPU energy,Proc. 36th Annual

Symposium on Foundations of Computer Science, 374–382, 1995.

12

Appendix

Proof of Lemma 10. We first assume thatt′ = ∞, i.e. there is no time constraint with respect to the end of
the schedule. Using a speed ofsi for thei-th job, the job is processed in an interval of length1/si. Since the
optimal schedule satisfiesci > ri+1, for i = 1, . . . , n − 1, the flow time of thei-th job is

∑i
j=1 1/sj − ri.

To determine the optimal speeds we have to minimize the valueof the total cost

f(s1, . . . , sn) =
n
∑

i=1

sα−1
i +

n
∑

i=1

(n − i + 1)/si −
n
∑

i=1

ri.

Computing the partial derivatives

∂f

∂si
= (α − 1)sα−2

i − (n − i + 1)/s2
i ,

for i = 1, . . . , n, we obtain thatsi = α
√

(n − i + 1)/(α − 1), for i = 1, . . . , n, represent the only local
extremum. This extremum is indeed a minimum sincef(s1, . . . , sn) is a convex function.

The speedssi = α
√

(n − i + 1)/(α − 1) are optimal if there is no restriction ont′. Jobi is executed in an
interval of lengthti = α

√

(α − 1)/(n − i + 1). Thus, if
∑n

i=1 ti =
∑n

i=1
α
√

(α − 1)/(n − i + 1) ≤ t′ − t,
then the settings ofsi are still optimal and we obtain the lemma. 2

13

