Energy-Efficient Algorithms for Flow Time Minimization

Susanne Albers Hiroshi Fujiwara

Topic classification: Algorithms and data structures

Abstract

We study scheduling problems in battery-operated comgutavices, aiming at schedules with low
total energy consumption. While most of the previous work feeused on finding feasible schedules
in deadline-based settings, in this paper we are interéstethedules that guarantee a good Quality-of-
Service. More specifically, our goal is to schedule a seqauefifobs on a variable speed processor so
as to minimize the total cost consisting of the power congion@nd the total flow time of all the jobs.

We first show that when the amount of work, for any job, may t@karbitrary value, then no online
algorithm can achieve a constant competitive ratio. Tloeegimost of the paper is concerned with unit-
size jobs. We devise a deterministic constant competitiiae algorithm and show that the offline
problem can be solved in polynomial time.

1 Introduction

Embedded systems and portable devices play an ever-iimgeate in every day life. Prominent examples
are mobile phones, palmtops and laptop computers that adk hysa significant fraction of the popula-
tion today. Many of these devices are battery-operated atoeffective power management strategies are
essential to guarantee a good performance and availabflitye systems. The microprocessors built into
these devices can typically perform tasks at different @peethe higher the speed, the higher the power
consumption is. As a result, there has recently been caasilderesearch interest in dynamic speed scaling
strategies; we refer the reader to [1, 2, 3, 8, 11, 14] for ecsien of the papers that have been published in
algorithms conferences.

Most of the previous work considers a scenario where a seguehjobs, each specified by a release
time, a deadline and an amount of work that must be performeodmplete the task, has to be scheduled
on a single processor. The processor may run at variablel spstespeeds, the power consumption is
P(s) = s per time unit, wherey > 1 is a constant. The goal is to find a feasible schedule suctthibat
total power consumption over the entire time horizon is aalkas possible. While this basic framework
gives insight into effective power conservation, it igremmportant Quality-of-Service (QoS) issues in that
users typically expect good response times for their johsithErmore, in many computational systems,
jobs are not labeled with deadlines. For example, operatistems such as Window and Unix installed on
laptops do not employ deadline-based scheduling.

Therefore, in this paper, we study algorithms that miningizergy usage and at the same time guarantee
good response times. In the scientific literature, resptimseis modeled afow time The flow time of a job
is the length of the time interval between the release tingdgtla@ completion time of the job. Unfortunately,

“Institut fur Informatik, Albert-Ludwigs-Universitat feiburg, Georges-Kdhler-Allee 79, 79110 Freiburg, Gemwna
sal bers@nformati k. uni -freiburg. de.

fDepartment of Communications and Computer Engineeringid@ate School of Informatics, Kyoto University, Japan.
fujiwara@ ab2. kui s. kyot o-u. ac. j p This work was done while visiting the University of Freiburg

energy minimization and flow time minimization are orthogbabjectives. To save energy, the processor
should run at low speed, which yields high flow times. On theeotand, to ensure small flow times, the
processor should run at high speed, which results in a higlggrconsumption. In order to overcome this
conflict, Pruhs et al. [11] recently studied the problem ofimizing the average flow time of a sequence
of jobs when aixed amount of energig available. They presented a polynomial time offline athan

for unit-size jobs. However, it is not clear how to handle ¢iméine scenario where jobs arrival times are
unknown.

Instead, in this paper, we propose a different approachtégrate energy and flow time minimization:
We seek schedules that minimize the total cost consistirigeopower consumption and the flow times of
jobs. More specifically, a sequence of jobs, each specifiehlamount of work, arrives over time and must
be scheduled on one processor. Preemption of jobs is nateadloThe goal is to dynamically set the speed
of the processor so as to minimize the sum of (a) the total poaesumption and (b) the total flow times
of all the jobs. Such combined objective functions have tstedied for many other bicriteria optimization
problems with orthogonal objectives. For instance, theemaps, 9] consider a TCP acknowledgement
problem, minimizing the sum of acknowledgement costs aht@egledgement delays incurred for data
packets. In [6] the authors study network design and mirgntie total hardware and QoS costs. More
generally, in the classical facility location problem, anénimizes the sum of the facility installation and
total client service costs, see [4, 10] for surveys.

For our energy/flow-time minimization problem, we are ietted in both online and offline algorithms.
Following [12], an online algorithn! is said to be:-competitive if there exists a constansuch that, for
all job sequences, the total costd(c) satisfiesd(o) < ¢- OPT(o) + a, whereOPT(o) is the cost of an
optimal offline algorithm.

Previous work: In their seminal paper Yao et al. [14] introduced the basabfgm of scheduling a
sequence of jobs, each having a release time, a deadlinecanthis workload, so as to minimize the energy
usage. They showed that the offline problem can be solvethaltyi in polynomial time and presented two
online algorithms calledhverage Ratend Optimal Available They analyzedAverage Ratefor o > 2,
and proved an upper bound 2fa® and a lower bound of™ on the competitiveness. Bansal et al. [2]
studiedOptimal Availableand showed that its competitive ratio is exaetly. Furthermore, they developed
a new algorithm that achieves a competitivenesy af (a«—1))“e® and proved that any randomized online
algorithm has a performance ratio of at le@$t4,/3)*).

Irani et al. [8] investigated an extended scenario wher@tbeessor can be put into a low-power sleep
state when idle. They gave an offline algorithm that achiev8sapproximation and developed a general
strategy that transforms an online algorithm for the sgttiithout sleep state into an online algorithm for
the setting with sleep state. They obtain constant coniygetinline algorithms, but the constants are large.
For the famous cube root rufe(s) = s, the competitive ratio is 540. The factor can be reduced tasidg
the online algorithm by Bansal et al. [2]. Settings with galsleep states have been considered in [1].
Speed scaling to minimize the maximum temperature of a pearehas been addressed in [2, 3].

As mentioned above, Pruhs et al. [11] study the problem ofmining the average flow time of jobs
given a fixed amount of energy. For unit-size jobs, they aegipolynomial time algorithm that simultane-
ously computes, for each possible energy level, the schewtih smallest average flow time.

Our contribution: We investigate the problem of scheduling a sequenceejobs on a variable speed
processor so as to minimize the total cost consisting of dveep consumption and the flow times of jobs.
We first show that when the amount of work, for any job, may &karbitrary value, then any deterministic
online algorithm has a competitive ratio of at le@t'~/*). Therefore, in the remainder of the paper we
focus on unit-size jobs.

We develop a deterministic phase-based online algorithath dbhieves a constant competitive ratio.
The algorithm is simple and requires scheduling decisiori®tmade only every once in a while, which is
advantageous in low-power devices. Initially, the aldoritcomputes a schedule for the first batch of jobs

released at time 0. While these jobs are being processed|gbethm collects the new jobs that arrive in
the meantime. Once the first batch of jobs is finished, therittgo computes a schedule for the second
batch. This process repeats until no more jobs arrive. Wighich batch the processing speeds are easy to
determine. When there afeunfinished jobs in the batch, the speed is settfyc, wherec is a constant
that depends on the value af We prove that the competitive ratio of our algorithm is uppbeunded by
8.3e(1 + @)%, where® = (1 +/5)/2 ~ 1.618 is the Golden Ratio. We remark here that a phase-based
scheduling algorithm has been used also in makespan matiarizon parallel machines [13]. However, for
our problem, the scheduling strategy within the phasestamdralysis techniques employed are completely
different.

Furthermore, in this paper we develop a polynomial time rtlgm for computing an optimal offline
schedule. We would like to point out that we could use therélym by Pruhs et al. [11], but this would
yield a rather complicated algorithm for our problem. lastewe design a simple, direct algorithm based
on dynamic programming.

2 Preliminaries

Consider a sequence of jobs= o1, ..., 0, which are to be scheduled on one processor.acjabreleased
at timer; and requirep; CPU cycles. We assumg = 0 andr; < r;1,fori =1,...,n — 1. A schedule
S is given by a paiS = (s, job) of functions such thai(t) > 0 specifies the processor speed at tinaad
job(t) € {1,...,n} is the job executed at time The schedule is feasible if, for everwith 1 <i < n,

| stitob(e). it = i,

wherej(z,y) = 1if x = y andd(z,y) = 0 otherwise. We are interested in non-preemptive schednles i
which, once a job has been started, it must be run to compldtiere, a feasible schedule must additionally
satisfy that, for any job, if 6(job(t1),7) = 1 andd(job(t2),i) = 1, thend(job(t),i) = 1, forallt € [t,t2].
The energy consumption &f is

BS) = [Pls(e)ar

whereP(s) = s* specifies the power consumption of the CPU depending on #edsp We assume that
«a > 1is a real number. For any let ¢; be the completion time of joh i.e.¢; > r; is the smallest value
such that

| stsiob(e), it = p.
The flow time of jobi is f; = ¢; — r; and the flow time ofS is given by
F(S)=>_ fi
i=1

We seek schedule$ that minimize the sumg(S) = E(S) + F(S).

3 Arbitrary size jobs

We show that if the jobs’ processing requirements may takirary values, then no online algorithm can
achieve a bounded competitive ratio.

Theorem 1 The competitive ratio of any deterministic online algonitiis Q(n'~1/<) if the job processing
requirement®, ..., p, may take arbitrary values.

Proof. Attime ¢t = 0 an adversary releases a jebwith p; = 1. The adversary then observes the given
online algorithmA. Lett’ be the time such thad starts processing;. Then at timet’ + § the adversary
presents: — 1 jobs withp; = . We choosé such that < 1/(2n!/*) ande such that < 1/(n — 1). If

A’s average speed during the tirfte ¢’ + §) is at leastl /(24), then the power consumption during this time
interval is at least (55)2~! > 1nl~1/ If A's average speed is smaller thf(24), then at time’ + ¢ at
least1/2 time units ofo; are still to be processed. Suppose tHgbrocesses the remainder of with an
average speed of If s > ¢/n, then the power consumption is at lea&t!/2 > n!=V//2. If s < ¢/n
then the flow time of the jobs is at leasf (2s) > n'~/®/2. We conclude that in any casts cost is at
leastn'~ 1/« /2.

If ¥ < 1, then the adversary first processes the 1 small jobs of sizec and then the first jolo;.
Otherwise the adversary first handles and then takes care of the small jobs. The processor speed is
always set to 1. In the first case the cost of the adversarynwat(n — 1)%2¢ + 5 < 6 as the processing of
the small jobs takes at mogt — 1)e < 1 time units and the first job can be started no later than tima 2.
the second case the cost is bounded by2(n — 1)%2¢ < 5. This establishes the desired competitive ratio.

O

4 An online algorithm for unit-size jobs

In this section we study the case that the processing reqaires of all jobs are the same, ig. = 1,

for all jobs. We develop a deterministic online algorithnattlachieves a constant competitive ratio, for
all a. The algorithm is calledPhasebaland aims at balancing the incurred power consumption wih th
generated flow time. I is small, then the ratio is roughly : o — 1. If « is large, then the ratio is : 1.

As the name suggests, the algorithm operates in phasesu st the number of jobs that are released
initially at time ¢ = 0. In the first phasd’hasebalprocesses these jobs in an optimal or nearly optimal
way, ignoring jobs that may arrive in the meantime. More 3@y, the speed sequence for thegjobs is
¢nife, §/(n1 —1)/c,..., §/1/c, i.e. thej-th of thesen; jobs is executed at speegf(n; — j + 1)/c for

j =1,...,n1. Herecis a constant that depends anLetn, be the number of jobs that arrive in phase 1.
Phasebalprocesses these jobs in a second phase. In general, inijpRhasebakchedules the; jobs that
arrived in phaseé — 1 using the speed sequen¢é(n; — j + 1)/c, for j = 1,...,n;. Again, jobs that arrive
during the phase are ignored until the end of the phase. Addescription of the algorithm is as follows.

Algorithm Phasebal: If o < (19 + 1/161)/10, then set: := o — 1; otherwise set := 1. Letn; be the
number of jobs arriving at time= 0 and set = 1. While n; > 0 execute the following two steps: (1) For
j=1,...,n; process thg-th job using a speed of/(n; — j + 1)/c. We refer to this entire time interval
as phasé. (2) Letn;,, be the number of jobs that arrive in phasend set := i + 1.

S5a—2
2a—1"

Theorem 2 Phasebal achieves a competitive ratio of at n(d)s{cb)(lJrcbﬁ)b (af{;;_l min{
s + =41 where® = (1 +1/5)/2 ~ 1.618 is the Golden Ratio.

Before proving Theorem 2, we briefly discuss the competitdgs. Standard algebraic manipulations
show that, forg = (19 + /161)/10, equationggg:f = 55— + 5-—7 holds. Thus, the competitive ratio

is upper bounded bl + ®)“e(55— + 5-7) < (1 + @)% - 8.22.

In the remainder of this section we analy2kasebal Let ¢, = 0 andt; be the time when phasesnds,
i.e. then,; jobs released during phase- 1 (released initially, ifi = 1) are processed in the time interval
[ti—1,1;), which constitutes phase We first study the case that= 1 and then address the case « — 1.
Given a job sequence, let Spp be the schedule dPhasebaland letSppr be an optimal schedule. We

first analyze the cost and time horizon®# . Suppose that there akephases, i.e. no new jobs arrive in

phasek. In phase the algorithm needs/ {/n; — 7 + 1 time units to complete thgth job. Thus the power
consumption in the phase is

4 g

N . N . . _ 2-1 1-1
MN(/ni—j+ D) =g+ 1= (n—j+ 1)V < ga V1) 4
j=1 j=1

The length of phaseis
T(ni)=> 1/¢ni—j+1< ﬁm—l_l/a- (1)
j=1

As for the flow time, then; jobs scheduled in the phase incur a flow time of

ng

. N . 2-1 1-1
Z(ni—]+1)/ Vni —j+1< 5770 fo - 1) +n e,

j=1

while then; 1 jobs released during the phase incur a flow time of at mgst times the length of the phase.

We obtain i
—1
2 2—1/«a 1-1/c 1-1/c
(5527 (n; —1)+2n;)+ Z Nit1 59N .
=1
The second sum is bounded By~ -2+ max{n;, n; 1} 1/* < ¥ 2a_,271/% and we conclude

a—1 i=1 a—1""

-

.
Il
—_

9(Spp) <

k
9(Spp) <23 (525 (n Y = 1) 4, 4 e, 2)
=1

We next have to lower bound the cost of an optimal schedulghi$cend it will be convenient to also
consider a pseudo-optimal scheddlgopr. This is the best schedule that satisfies the constraint dhat
any time, if there arex jobs waiting (which have arrived but have not been finishéwn the processor
speed is at least/n. We show that the objective function valg&Spo pr) is not far from the true optimum

9(Sopr)-

Lemma 1 For any job sequenceySropr) < 29(Sopr)-

Proof. Consider the optimal schedul¢Sopr). We may assume w.l.0.g. that in this schedule the speed
only changes when a jobs gets finished of new jobs arrive.ifRkbgre were an interval with varying speed
but no jobs arriving or being completed, we could replacesfieed assignment by the average speed in this
interval. By the convexity of the power functiaf(s), this cannot increase the objective function value.
Based on this observation, we partition the time horizow@p into a sequence of intervali, . .., I,
such that, for any such interval, the number of jobs waitingdnot change. Ldt(1;) and F'(1;) be the
energy consumption and flow time, respectively, generatdg i = 1,...,m. We haveE([;) = s{J; and
F(I;) = n;d;, wheres; is the speedy; is the number of jobs waiting iy andd; is the length off;. Clearly
9(Sopr) = X (B(L) + F(L)).
Now we changeSpp7 as follows. In any interval; with s; < ¢/n; we raise the speed tg'n;, incurring

an energy consumption efo;, which is equal ta'(Z;) in original schedul&» 7. In this modification step,
the flow time of jobs can only decrease. Because of the inedesiseed, the processor may run out of jobs
in some intervals. Then the processor is simply idle. Weinbdaschedule whose cost is bounded by

" (E(L;)+2F(1;)) < 29(Sopr) and that satisfies the constraint that the processor spaekést/n
in intervals withn unfinished job. Hence(Spoprr) < 29(Sopr) O

Lemma?2 For ¢ = 1, in Spopr the ny jobs released at timg, are finished by timé; and then; jobs
released during phase— 1 are finished by time;, fori = 2,... k.

5

Proof. We show the lemma inductively. As for the jobs released at timg, the schedul&po pr processes
the j-th of these jobs at a speed of at legsét; — 7 + 1 because there are at least j + 1 unfinished jobs
waiting. Thus then; jobs are completed no later than’'L, 1/ ¢/n1 — j + 1, which is equal to the length
of the first phase, see (1).

Now suppose that jobs released by tithe, are finished by time; and consider the;,; jobs released
in phasei. At time ¢; there are at most thesg, ; unfinished jobs. Let;.; be the actual number of jobs
waiting at that time. Again, thg-th of these jobs is processed at a speed of at leasi — j + 1)/ so
that the execution of thesg ., ends no later thaﬁjm“(nzﬂ —Jj+1)" /e and this sum is not larger than
the length of phasé+ 1, see (1). O

Lemma 3 If a schedule has to processjobs during a time period of length < n /a — 1, then its total
costis atleast'LAT (n,T) > (n/T)*T +T.

Proof. Suppose that the schedule processes jobs during a totapérnoe of 77 < T' time units. By the
convexity of the power functiof(s) = s*, the power consumption is smallest if theunits are split evenly
among the jobs. Clearly the flow time is at lea®t time units. Thus the total cost is at legsy/7")* + 1".
The function(n/z)* + «x is decreasing, for < n{/«a — 1, so that(n/T")* + T’ > (n/T)* + T. O

Lemma4 For a > 2, the inequalityg(Spopr) > CL=%(1 + ®)~L(1 4+ §o/a-l)yl—a gk 2=t/
Sk T(n;) holds, wherel' = a/(a — 1) and® = (1 + /5)/2.

Proof. By Lemma 2, fori > 2, then, jobs arriving in phase — 1 are finished by time; in Spopr. Thus
Sopr processes these jobs in a window of length at rfidgst;_1) + 7'(n;). LetT’(n;) = min{7T(n;—1) +
T(n;),n; Vo — 1}. Applying Lemma 3, we obtain that the jobs incur a cost of at least

n né

+ T’(nz) = (T(ni_l) _|_ZT(nZ.))0¢_1 + T’(ni) > (T(ni_l) _|_ZT(ni))04_1 + T(nz)

n@

(T"(ni))~

The last inequality holds becauggn;) < n; < n;¥/a —1, for « > 2 and hencel”(n;) > T(n;).
Similarly, for then, jobs released at time= 0, the cost it at least

n
(T'(n1))>"

Summing up, the total cost &fpp pr is at least

a k

k
(T((T(n1))o-t +Z T(n;1) +T(m))“*1 + 2 Tlos)

= i=1

In the following we show that the first two terms in the abovpression are at lea§t' ~*(1 + ®)~1(1 +
po/(2a-1)y1-a 52k p2-1/a which establishes the lemma to be proven. Sifie;) < Cn, /%, i
fices to show

k ng

2

W i (nz‘lff/a%—nzl 1/0{)(171

To this end we partition the sequence of job humbers . ., ny into subsequences such that, within each
subsequencey; > ®*/2a=1p, | More formally, the first subsequence starts with intlex= 1 and ends
with the smallest index; satisfyingn,, < ®*/(*~Yn, .. Suppose that — 1 subsequences have been

(1 —I—CI))(I + (I)oz/(Qoz—l))a—l

constructed. Then thiest sequence starts at indgx= ¢;_; + 1 and ends with the smallest index > b;
such that,, < ®*/(2¢=Yp,_ ;. The last subsequence ends with index
We will prove (3) by considering the individual subsequenc&ince within a subsequeneg,; <

n;®=/22=1) we haven; e < 2?3, Therefore, for any subsequenteusing the limit of the
geometric series

= bl

which upper bounds terms on the right hand side of (3). Adfeiéft hand side of (3), we have for the first
subsequence,

a

af/(2a—1)ya—1 2—-1/a
(I+®)(1+2) 11/aa1+z 1-1/a | 1-1/a*"1 z (1+®)n '
(ny) (i—1 +nz)
For any other subsequenteave have
/(2a—1)\a—1 S ng'
1+2){A+2) Z 1-1/a 1-1/a\ 21
> (1+(I))(1+(I)a/(2a—1))a—1 " nbllil/a —
(”bﬁl + 1y,)
na
> (1+(I))(1+(I)a/(2a—1))a—1 by oo
(((I)(a 1)/(20— 1)+1))
> (1—|—(I)) 2— 1/o¢.
The above inequalities together with (4) imply (3). O

With the above lemma we able to derive our first intermediasailt.

Lemma 5 For o > 2 and¢ = 1, the competitive ratio of Phasebal is at mést+ ®)(1 + o/ (2e—1))(a=1)

4 4
(a—1)a-1 (2a—1 + ﬁ)'

Proof. Using (2) as well as Lemmas 1 and 4 we obtain that the comyeetiitio ofPhasebals bounded by

42 ((2 -) 2—1/04_”171/0{)

(L+@)(L + /D) (e T)

Considering the terms of order*~1/®, we obtain the performance ratio we are aiming at. It reméins

show thatn1 1/O‘/T (n;) does not violate this ratio. Note th@{n;) > 1. Thus, |fn1 /e < 9 we have
ni T () <2 < 4G M e + a2 (5)
If n) !/ > 2, then we use the fact that
T(n;) > Z25((ns + 1)1V = 1) > Leqni=H/e
and we can argue as in (5), singe— 1)/a < 1. O

We next turn to the case that= « — 1. The global structure of the analysis is the same but some
of the calculations become more involved. We start againnayyaing the cost and time é¢thasebal As
before we assume that there @rphases. In phase Phasebalusesl/ {/(n; — j + 1)/(a — 1) time units
to process thg-th job. This yields a power consumption of

n;g .4 1-1/a
S (ML) 2ol -+ (a-pete

et a—1

with
«

20— 1"

Cp=(a—1)a""
The length of the phase is given by

Zl/("l‘]“)”a.

a—1

Here we have
Crl(n; + 1)V — 1) < T(ny) < Cp(n} "/ = 1/a) (6)
with)
Cr=a(a—1)a"!
In phasei then; jobs processed during the phase incur a flow time of

4

s 1/a n;
>4/ (PLER) T =)V S 1) < Con? 1)+ (a1
- o — -

Jj=1 j=1

with
«

200 — 17
while then;; jobs arriving in the phase incur a cost of at moest,7'(n;). We obtain

Cp = (a— 1)«

k k
9(Spp) < (Cp+ CF) > (n}~ Ve 1) 4207 anfl/a + oo — 1)t e 7)
=1 =1

We next lower bound the cost of an optimal schedule.

Lemma 6 There exists an optimal schedu¥e pr having the property that if there ane unfinished jobs
waiting at any time, then the processor speed is at lggst/(a — 1).

Proof. By convexity of the power functior(s) we may assume w.l.0.g. that the processor speed only
changes inSp pr when a job get finished or new jobs arrive. Now suppose thae tisean intervall of
length§ with n unfinished jobs but a speed of less thafm /(o — 1). We show that we can improve the
schedule. I/ we increase the speed tgn /(o — 1). We can reduce the length &fto ds/ {/n/(a — 1)
because the original work load 6% can be completed in that amount of time. Simultaneously, hifethe
remaining intervals in which the unfinished jobs are processed by ds/ {/n/(a — 1) time units to the

left. The cost saving caused by this modification is

65 — ds(n/(a— 1))V 4 n(6 — s/ ¢/n/(a —1)).

We show that this expression is strictly positive, for. {/n/(a — 1). This is equivalent to showing that

fls) =5 =s(n/(a= 1))V 4 n(l - s/{/n/(a 1))

is strictly positive for the considered range ©f Computingf’(s) we obtain thatf(s) decreasing, for

s < /n/(a—1). Sincef({/n/(a — 1)) = 0 the lemma follows. O

8

Lemma?7 For c = a — 1, in Sppr then; jobs released at timg, are finished by timeé; and then; jobs
released during phase— 1 are finished by time;, fori = 2,... k.

Proof. Can be proven inductively in the same way as Lemma 2 usingatitetat, as shown in Lemma 6,
Sopr uses a speed of at leagtn /(o — 1) when there are jobs waiting. O
Lemma 8 The inequalityy(Sopr) > Ch®(1+®) 1 (14&/Co-)(1-a) ok 27 1/ey op 5ok ()
holds.

Proof. Can be shown in the same way as Lemma 4. O

Lemma 9 For ¢ = a— 1, the competitive ratio of Phasebal is at m@kt- &) (14 &/ (2a—1))(a=1) (aff;a,l
Sa—2
200—1"

Proof. Using (6), (7) and Lemma 9 we obtain that the competitiveorgtbounded by

7

Cp+ Cp) (2™ — 1) + 2027 4+ afa — 1)/o1pl 71/
Zf:l(c%fa"?_l/a + Op((n; + 1)1V — 1)) '

(1 4 ®)(1 + /(2= 1)(@=1) i ((

Let g1 (n;) = (Cp + Cp)(n2 Y = 1) +20n> Y + a(a — 1)1/2=1n} 7/ be the term in the numerator

andga(n;) = C}‘“n?il/a +C7((n;+1)' "1/ —1) be the term in the denominator of the above expression.
To establish the desired competitive ratio, it suffices tmsthat
gi(n1) _ Cp+Cp+2Cr

<
g2(ni) — oL e

because the last fraction is exactly equal(—ogg% ggj. To prove the latter inequality we show that

f(x) = C3%g1(z) — (Cg + CFp + 207)go(z) is smaller than 0, for alt > 1. Differentiating f(z), we

obtain
ror = we vt et (-2 () ke

A\
o
—
o
|
—
S~—
Qv
b
—
S
+
[—
S~—
I
Q=
7 N
[\
—
o
|
—_
N—
|
(@]
o
|
[\
—
|
[—
S~—
~

1
The first inequality holds becau{q%) ° <2a < 2and (1 - é)a < a — 1 are satisfied forr > 1 and
x > 1. Hencef’(z) is negative, for alk: > 1. Furthermore,

) - el ne (25(1- 1)~ (2-2%) o -)

20 — 1 «
1 2
275042(04—1)5_2 1 1
< - (25 (a=1) = (2-27) (50 - 2))
2_5042(04 — 1)%_2

20 — 1 (3'2é(20‘—1)—10a+4).

Let)
h(a) =32 (2a — 1) — 10a + 4.

9

Note that2s < max{2 — 2(2 — 23)(a — 1),25}. Thus, ifl < a < 3/2,
h(@) < 2(a — 1)(=6(2 — 23)(a — 1) —5+3-23) < 0
If 3/2 < o, thenh(a) < —(10 — 6-2§)(a -1)—6+3- 23 < 0. We concludef(z) < 0, forallz > 1. O

Theorem 2 now foIIows from Lemmas 5 and 9, observing that (19 + 1/161)/10 > 2 and that, for

a > ap, we have; - + 4. < 5a=2,

5 An optimal offline algorithm for unit-size jobs

We present a polynomial time algorithm for computing anmjli schedule, given a sequence of unit-size
jobs that is known offline. Pruhs et al. [11] gave an algoritthat computes schedules with minimum
average flow time, for all possible energy levels. We coulg their algorithm, summing up energy con-
sumption and flow time, for all possible energy levels, arkdngthe minimum. However, the resulting
algorithm would be rather complicated. Instead, we deviese fa simple, direct algorithm based on dy-
namic programming.

Our dynamic programming algorithm constructs an optimaledale for a given job sequeneeby
computing optimal schedules for subsequences.ofA schedule foro can be viewed as a sequence of
subschedules’, Sy, ..., Sy, Where anyS; processes a subsequence of jghs. ., j;, Starting at timer;,
such that; > r;yq fori = ji,...,ji — 1 andc;, < rj, . Inwords, jobsj; to j; are scheduled continuously
without interruption such that the completion time of anly jas after the release time of jabt 1 and the
last jobjy is finished no later than the release time of jpb+ 1. As we will prove in the next two lemmas,
the optimal speeds in such subschedufesan be determined easily. For convenience, the lemmas are
stated for a general numberof jobs that have to be scheduled in an interfvat’). The proof of the first
lemma is given in the Appendix.

Lemma 10 Considern jobs that have to be scheduled in time interf¢tat’) such that;, = t andr,, < ¢'.
Suppose thatin an optimal schedule> r; 1, fori =1,...,.n—1. f /=t > Y7 |, ¢/(a—1)/(n —i+ 1),
then thei-th job in the sequence is executed at speged {/(n —i+1)/(a —1).

Lemma 11 Considern jobs that have to be scheduled in time interf¢tat’) such that;, = t andr,, < t'.
Suppose thatin an optimal schedule> r; 1, fori =1,... ., n—1. f /=t < Y37 | ¢/(a—1)/(n —i+ 1),
then thei-th job in the sequence is executed at speed {/(n —i + 1+ ¢)/(a — 1), wherec is the unique
value suchthap"? | ¢/(a—1)/(n—i+1+c¢c) =t —t.

Proof. We will use Lagrangian multipliers to determine the optimspeeds. Let; be the length of the time
interval allotted to jok in an optimal schedule. We first prove that' ¢, =t —¢. If >0 t; <t — ¢,
then there must exist anwith t; < {/(a« —1)/(n —i+ 1) and hences; > ¢/(n—i+1)/(a —1). We
show that the schedule cannot be optimal. Supposesthats™" + ¢, with s = \/(n —i+1)/(a—1)
and some > 0. In the original schedule we reduce the speed szjﬁbsfpt +e—¢,forsomed < € <e.
This results in a power saving 6" + €)*~1 — (s + ¢ — ¢)*~! while the flow time increases by
(n—i+1)(1/(sP" +e—€)—1/(s +¢€)). The net cost saving is

F) = (7" + e = (s e =) = (n— i+ DA/ (57" +e =) =1/ (57" +).
The derivativef’(¢) = (a — 1)(s?" + ¢ — €)*2 — (n —i + 1)/(s?" + € —)% is positive, fore’ < .

Hencef(¢') is increasing. Sinc¢() = 0, we obtain thatf (¢') is positive and the original schedule is not
optimal. We concludg_? , t; =t' —t.

10

We next determine the optimal time allotments The power consumption of theth job is(1/t;)!
while the flow time of the-th job is3”}_, t; — r;, using the fact that; > r; 41, fori =1,...,n — 1. Thus
we have to minimize

n n n

ST =i+ D=

i=1 i=1 i=1

flt1, ... ty)

subject to the constraint]" ; t; = T'with T' = ¢’ — t. Thus we have to minimize

n n

g(tl, - ,tn,)\) = Z(l/ti)ail + Z(TL — i+ 1)151' — zn:n' +)\(T — zn:ti)
=1

i=1 1=1 i=1

with Langrangian multipliet\. Computing the partial derivatives

% = —(a—1D)A/t)*+(n—i+1) =\
= I'—XiLt

we obtainthat; = ¢/(a —1)/(n —i+1—), 1 < i < n, represent the only local extremum where: 0
is the unique value such that” |, ¢/(a —1)/(n —i+1—) = T. Sincef(ty,...,t,) is convex and the
functionT' — >~1 , ¢; is convex, the Kuhn-Tucker conditions imply that the locefemum is a minimum.
The lemma follows by replacing A by c. O

Of course, an optimal schedule for a givemeed not satisfy the condition that > r;,1, fori =
1,...,n — 1. In fact, this is the case if the speeds specified in LemmaadiQla do not give a feasible
schedule, i.e. there exists arsuch thatc; = 22:1 t; < rip1, With t; = 1/s; ands; as specified in the
lemmas. Obviously, this infeasibility is easy to check irelr time.

We are now ready to describe our optimal offline algorithm saudo-code of which is presented in
Figure 1. Given a jobs sequence consisting: gbbs, the algorithm constructs optimal schedules for sub-
problems of increasing size. L&Yi,: + /| be the subproblem consisting of job® i 4 [assuming that the
processing may start at time and must be finished by timeg, ;. ;, wherel < i <mnand0 <! <n —1.
We definer, 1 = oco. LetC[i,i + [] be the cost of an optimal schedule Bfi,: + []. We are eventually
interested inC[1,n]. In an initialization phase, the algorithm starts by conmmoptimal schedules for
PJi,i] of lengthl = 0, see lines 1 to 3 of the pseudo-coder;lf; — r; > /o — 1, then Lemma 11 implies
that the optimal speed for jobis equal to{/1/(a« — 1). If ;41 — r; < ¥/ — 1, then by Lemma 11 the
optimal speed id/(r;+1 — r;). Note that this value can also be infinitysif,; = r;. The calculation of
C[i,4] in line 3 will later on ensure that in this case an optimal sicthe will not complete jols by ;4.

Algorithm Dynamic Programming

1.fori:=1tondo

2. ifrig—r > Va—1thenS[i| == /1/(a — 1) elseS[i] := 1/(rix1 — 1i);

3. Cli,i] :== (Sl +1/S[4];

4.forl:=1ton—1do

5. fori:=1ton—1I(do

6 Cli,i +1] = minj<j; 1 i{Ci, j] + C[j + 1,7 +] };

7 Compute an optimal schedule fBfi, i +] according to Lemmas 10 and 11 assuming

c; >rjpforj=i,...,i+1—1andlets;,...,s;;; be the computed speeds;
8. if schedule is feasiblthen C := "/ 271 + Y7 (i 4+ 1 — j + 1) /s; elseC = oc;
9. if C < Cli,i+1]thenC[i,i+1] := CandS[j] :=s;forj=i,... i+,

Figure 1: The dynamic programming algorithm

11

After the initialization phase the algorithm considerspgalblemsP[i, i+ (] for increasing. An optimal
solution toP[i, i+ 1] has the property that either (a) there exists an ideih j < i+ such that; < ;4
or(b)cj > rjpqforj =i,...,i+1— 1. In case(a) an optimal schedule faP[i,i + [] is composed of
optimal schedules foP/[i, j] and P[j + 1,4 + [], which is reflected in line 6 of the pseudo-code. In case (b)
we can compute optimal processing speeds according to Lerihand 11, checking if the speeds give
indeed a feasible schedule. This is done in lines 7 and 8 oélti@ithm. In a final step the algorithm
checks if case (a) or (b) holds. The algorithm has a runnimg tf O(n> log p), wherep is the inverse of
the desired precision. Note that in Lemma détan be computed only approximately using binary search.

6 Conclusions and open problems

In this paper we have investigated online and offline algori for computing schedules that minimize
power consumption and jobs flow times. An obvious open probik improve the competitive ratio in
the online setting. We believe that the following algorithias an improved performance: Whenever there
arei unfinished jobs waiting, set the processor speed/io Although the algorithm is computationally
more expensive in that the processor speed must be adjultatbver new jobs arrive, we conjecture that it
achieves a constant competitive ratio that is independent énother interesting direction is to study the
case that the jobs’ processing requirements may takeampitalues but that preemption of jobs is allowed.

References

[1] J. Augustine, S. Irani and C. Swamy. Optimal power-dotvategiesProc. 45th Annual IEEE Sympo-
sium on Foundations of Computer Sciens80-539, 2004.
[2] N. Bansal, T. Kimbrel and K. Pruhs. Dynamic speed scalonganage energy and temperatiReoc.
45th Annual IEEE Symposium on Foundations of Computer &i620-529, 2004.
[3] N. Bansal and K. Pruhs. Speed scaling to manage temperdtoc. 22nd Annual Symposium on
Theoretical Aspects of Computer Science (STAS&)jnger LNCS 3404, 460-471, 2005.
[4] G. Cornuéjols, G.L. Nemhauser and L.A. Wolsey. The yacitated facility location problem. In P.
Mirchandani and R. Francis (edsiscrete Location Theory119-171, John Wiley & Sons, 1990.
[5] D.R. Dooly, S.A. Goldman, and S.D. Scott. On-line analgf the TCP acknowledgment delay prob-
lem. Journal of the ACM48:243-273, 2001.
[6] A. Fabrikant, A. Luthra, E. Maneva, C.H. PapadimitricadeS. Shenker. On a network creation game.
Proc. 22nd Annual ACM Symposium on Principles of Distridu@®mputing 347-351, 2003.
[7] G. Hardy, J.E. Littlewood and G. Polymequalities Cambridge University Press, 1994.
[8] S. Irani, S. Shukla and R. Gupta. Algorithms for powerisgs. Proc. 14th Annual ACM-SIAM Sym-
posium on Discrete Algorithm87-46, 2003.
[9] A.R. Karlin, C. Kenyon and D. Randall. Dynamic TCP ackreggement and other stories about
e/(e —1). Proc. 31st ACM Symposium on Theory of Compuytitiy—509, 2001.
[10] P. Mirchandani and R. Francis (edDjscrete Location Theorydohn Wiley & Sons, 1990.
[11] K. Pruhs, P. Uthaisombut and G. Woeginger. Getting #& besponse for your ergroc. 9th Scandi-
navian Workshop on Algorithm Theory (SWASpringer LNCS 3111, 15-25, 2004.
[12] D.D. Sleator und R.E. Tarjan. Amortized efficiency daftlupdate and paging rulesSommunications
of the ACM 28:202-208, 1985.
[13] D. Shmoys, J. Wein and D.P. Williamson. Scheduling aranachines on-lineSIAM Journal on
Computing 24:1313-1331, 1995.
[14] F. Yao, A. Demers and S. Shenker. A scheduling modeldduced CPU energfroc. 36th Annual
Symposium on Foundations of Computer ScieBzd—382, 1995.

12

Appendix

Proof of Lemma 10. We first assume that = oo, i.e. there is no time constraint with respect to the end of
the schedule. Using a speedspfor thei-th job, the job is processed in an interval of lengfh;. Since the

optimal schedule satisfies > r;,1, fori = 1,...,n — 1, the flow time of thei-th job is Z§:1 1/sj — 1.
To determine the optimal speeds we have to minimize the \@ltiee total cost
n n
f(s1y...y8 Zsf‘l Zn—z—kl/sl Zn
1= =1
Computing the partial derivatives
0
8_£ = (a— 1)3?‘_2 —(n—i+1)/s?,
fori = 1,...,n, we obtain that; = ¢/(n—i+1)/(a—1), fori = 1,...,n, represent the only local
extremum. This extremum is indeed a minimum sirfi¢ey, . .., s,) is a convex function.

The speeds; = {/(n — i+ 1)/(a — 1) are optimal if there is no restriction ¢h Jobi is executed in an
interval of lengtht; = ¢/(a—1)/(n —i+1). Thus, if>" 1 t; = >0, Y(a—1)/(n—i+1) <t —1t,
then the settings of; are still optimal and we obtain the lemma. O

13

