Integrated Prefetching and Caching in Single and
Parallel Disk Systems

*
Susanne Albers
Institute for Computer Science
Freiburg University
Georges-Kohler-Allee 79
79110 Freiburg, Germany

salbers@informatik.uni-freiburg.de

ABSTRACT

We study integrated prefetching and caching in single and
parallel disk systems. There exist two very popular approx-
imation algorithms called Aggressive and Conservative for
minimizing the total elapsed time in the single disk prob-
lem. For D parallel disks, approximation algorithms are
known for both the elapsed time and stall time performance
measures. In particular, there exists a D-approximation al-
gorithm for the stall time measure that uses D —1 additional
memory locations in cache.

In the first part of the paper we investigate approximation
algorithms for the single disk problem. We give a refined
analysis of the Aggressive algorithm, showing that the orig-
inal analysis was too pessimistic. We prove that our new
bound is tight. Additionally we present a new family of
prefetching and caching strategies and give algorithms that
perform better than Aggressive and Conservative.

In the second part of the paper we investigate the problem
of minimizing stall time in parallel disk systems. We present
a polynomial time algorithm for computing a prefetching/
caching schedule whose stall time is bounded by that of an
optimal solution. The schedule uses at most 3(D — 1) ex-
tra memory locations in cache. This is the first polynomial
time algorithm for computing schedules with a minimum
stall time. Our algorithm is based on the linear program-
ming approach of [1]. However, in order to achieve minimum
stall times, we introduce the new concept of synchronized
schedules in which fetches on the D disks are performed
completely in parallel.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-

*Work supported by the Deutsche Forschungsgemeinschaft,
project project AL 464/3-1, and by the EU, projects APPOL
and APPOL II.

Permission to make digital or hard copies of all or part o§ tork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage: that copies
bear this notice and the full citation on the first page. Toyotherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.

SPAA'03, June 7-9, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-58113-661-7/03/000655.00.

Markus Buttner
Institute for Computer Science
Freiburg University
Georges-Kohler-Allee 79
79110 Freiburg, Germany

buettner@informatik.uni-freiburg.de

ity]: Nonnumerical algorithms and problems

General Terms
Algorithms

Keywords
Magnetic disk systems, prefetching, caching

1. INTRODUCTION

In today’s computer systems there is a growing gap be-
tween processor speed and memory access time. There-
fore an effective utilization of caches is increasingly impor-
tant. Prefetching and caching are well-known and exten-
sively studied techniques to improve the performance of mem-
ory hierarchies. In prefetching missing memory blocks are
loaded from slow memory, e.g. a disk, into cache before their
actual reference. Caching strategies try to keep actively ref-
erenced blocks in cache. The goal of both tools is to reduce
processor stall times that are incurred when requested data
is not available in cache. Most of the previous work on
prefetching and caching investigated these two techniques
separately, see e.g. [3, 4, 7, 8, 15, 18, 19] for some selected
papers, although there is a strong correlation. Prefetching
blocks too early can cause the eviction of blocks from cache
referenced in the near future. Caching blocks too long can
diminish the effect of prefetching.

In recent years, initiated by a paper of Cao et al. [5],
there have been a number of studies that integrate prefetch-
ing and caching. The goal is to design strategies that coor-
dinate prefetching and caching decisions. Both theoretical
and experimental studies were presented [5, 6, 9, 10, 11, 12,
13, 14, 16, 17]. It was demonstrated that an integration of
prefetching and caching leads to a substantial improvement
in systems performance.

Cao et al. [5] introduced a model for integrated prefetching
and caching that we will also use in this paper. We are given
a request sequence o = T1,...,r, consisting of n requests.
Each request specifies a block in the memory system. We
first assume that all blocks reside on a single disk. To serve
a request the requested block must be in cache. The cache
can simultaneously store k blocks. Serving a request to a
block in cache takes 1 time unit. If a requested block is not
in cache, then it must be fetched from disk, which takes F'
time units. A fetch operation may overlap with the service of

requests to blocks already in cache. If a fetch, i.e. a prefetch,
of a block is initiated at least F' requests before the reference
to the block, then the block is in cache at the time of the
request and no processor stall time is incurred. If the fetch
is started only ,7 < F', requests before the reference, then
the processor has to stall for F'— ¢ time units until the fetch
is finished. When a fetch operation is initiated, a block
must be evicted from cache to make room for the incoming
block. Thus a prefetch operation critically affects the cache
configuration in that we must also drop a block. The goal
is to minimize the total processor stall time incurred on the
entire request sequence. This is equivalent to minimizing
the elapsed time, which is the sum of the processor stall
time and the length of the request sequence. We point out
here that the input o is completely known in advance.

To illustrate the problem, consider a small example. Let
0 = b1,ba,bs,ba,bs,bs,b1,bs,bs,bs. Assume that we have a
cache of size k = 4 and that initially blocks b1, b2, b3 and bs
reside in cache. Let F' = 4. The first missing block is b5. We
could initiate the fetch for bs when starting the service of
the request to bz. The fetch would be executed while serving
requests bz, bs,bs and by and completed in time. However,
when starting this fetch, we can only evict b1, which is re-
quested again after bs. To load b; we incur 3 units of stall
time as the fetch can only overlap with the request to bs. A
better option is to start the fetch for bs at the request to bs.
We generate 1 unit of processor stall before the request to bs
but can evict be, which is requested again only at the end of
o and can be fetched back without incurring any stall time.
The stall time of this second solution is 1 time unit and the
elapsed time is 11 time units.

Integrated prefetching and caching is equally interesting
in parallel disk systems. Suppose that we have D disks and
that each memory block resides on exactly one of the disks.
Blocks from different disks may be fetched in parallel. When
starting a fetch, we can evict any block from cache, which
corresponds to the case that blocks are read-only and do
not have to be written back to disk. Of course we can take
advantage of the parallelism given by a multiple disk system.
If the processor incurs stall time to wait for the completion
of a fetch, then other fetches executed in parallel also make
progress towards completion during that time. Again we
wish to minimize the total stall time or elapsed time.

As an example consider two disks, where b1, b2, bs and by
reside on disk 1 and ¢1,c2 and c3 reside on disk 2. Again
k =4 and F = 4. Suppose that initially b1, b2, c1 and c2 are
in cache and that o = b1, b2, c1, 2, bs, c3,bs. Disk 1 initiates
a fetch for b3 at the request to ba; it evicts by. Disk 2 starts
a fetch for cs one request later and evicts ba. Disk 1 starts a
second fetch at the request to bs in order to load bs. There
is 1 unit of stall time before the request to bs. The fetch
on disk 2 benefits from this time unit so that no additional
stall time is generated before the request to cs. The second
fetch on disk 1 incurs 2 units of stall time. The total stall
time of this solution is equal to 3 time units.

Previous work: Cao et al. [5] introduced two popular al-
gorithms, called Conservative and Aggressive, for integrated
prefetching and caching in the single disk problem. Conser-
vative performs exactly the same block replacements as the
optimum offline paging algorithm MIN [3], while initiating a
fetch at the earliest point in time that is consistent with the
choice of blocks to be evicted. Cao et al. showed that Con-
servative achieves an approximation ratio of 2 with respect

to the elapsed time performance measure, i.e. the elapsed
time of Conservative’s schedule is at most twice the elapsed
time of an optimal schedule. This bound is tight. The Ag-
gressive algorithm starts prefetch operations as soon as pos-
sible. Whenever the algorithm is not in the middle of a fetch,
it initiates a new fetch provided it can evict a block from
cache that is not requested before the block to be fetched.
Cao et al. proved that the approximation ratio, with respect
to elapsed time, is at most min{l + F/k,2} and that this
ratio is tight for F' > k. Kimbrel and Karlin [12] analyzed
Aggressive and Conservative in parallel disk systems and
showed that the approximation ratios are essentially equal
to D. They also proposed an algorithm Reverse Aggressive,
which is the Aggressive algorithm on the reverse sequence,
and proved that the approximation guarantee is bounded
by 1+ DF/k. Again the approximation ratios are with re-
spect to the elapsed time measure. Extensive experimental
studies, in particular on the performance of the Aggressive
algorithm, were presented in [5, 6, 13, 14].

It was shown in [1] that optimal prefetching/caching sched-
ules for a single disk can be computed in polynomial time.
The idea is to formulate the prefetching and caching problem
as a linear program and to prove that there exists an opti-
mal solution that is integral. The approach was extended to
parallel disk systems and gave a D-approximation algorithm
for the stall time performance measure if the algorithm may
use D — 1 extra memory locations in cache. Note that ap-
proximating stall time is harder than approximating elapsed
time because in the stall time measure the length of the re-
quest sequence is not part of the objective function. In [2] it
was shown that the linear program of [1] can be translated
directly into a multicommodity flow problem.

Our contribution: We investigate approximation algo-
rithms for single disk systems as well as algorithms for com-
puting optimal schedules in parallel disk systems. In Sec-
tion 2 we study the single disk problem and first present a
refined analysis of the Aggressive algorithm, showing that
the analysis by Cao et al. [5] was too pessimistic. We prove
that Aggressive achieves an approximation ratio of min{1 +
F/(k+ |£] —1),2} in the elapsed time measure. Com-
pared to the bound of Cao et al. there is an additional
|£] — 1 in the denominator of the first term. If k/F is
large, which is true in most practical applications, the new
bound is much lower. Kimbrel and Karlin [12] mentioned
that in practice k/F is typically at least 200. We also show
that our analysis is tight. For any F' and k, the approx-
imation ratio of Aggressive is in general not smaller than
min{1+ F/(k+ £=1),2}. Since Aggressive is the most pop-
ular algorithm for integrated prefetching and caching, it is
important to know its true approximation guarantee.

We also give improved approximation ratios if k/F is
small. More generally, we present a new family of algo-
rithms for integrated prefetching and caching. The algo-
rithms, called Delay(d), delay the next fetch operation for
d time units, for any fixed non-negative integer d. Setting
d = 0, Delay(d) is equal to the standard Aggressive strat-
egy; for d = |o| we obtain Conservative. Hence our family
of algorithms bridges the gap between the two classical al-
gorithms for prefetching and caching. As mentioned above,
fetching blocks too early can have a negative influence on
the cache configuration and reduce the effective size of the
cache. Thus it is natural to investigate the effect of delaying
fetches by some time units. We analyze Delay(d) for any

d and show that, surprisingly, the best choice of d gives an
approximation ratio of v/3 ~ 1.73. Combining this strategy
with Aggressive, we obtain an algorithm that achieves an
approximation ratio of min{1 + F/(k + |£| — 1),+/3} and
hence performs better than both Conservative and Aggres-
sive.

In Section 3 we investigate the problem of minimizing stall
time on D parallel disks. We present a polynomial time algo-
rithm that, given a request sequence o, computes a schedule
whose stall time is bounded by that of an optimal solution
for o. The solution uses at most 3(D — 1) extra memory
locations in cache. In practice D is small, typically 4 or 5.
Thus at the expense of slightly increasing the extra memory
resources, we are able to improve the best previous approx-
imation guarantee from D to 1. In fact our algorithm is
the first polynomial time strategy for computing schedules
with a minimum stall time. Our algorithm is based on the
linear programming approach of [1]. However, in order to
obtain solutions with a smaller stall time, we introduce the
new concept of synchronized schedules in which fetches on
the D disks are performed completely in parallel. We show
that there exist synchronized schedules that achieve a min-
imum stall time provided that they may use D — 1 extra
memory locations in cache. Using linear programming we
then compute an optimal synchronized solution that uses
D —1 extra cache locations. Applying techniques from [1] we
transform an optimal fractional solution into an integral so-
lution. Compared to [1], our transformation algorithm must
use a different scheme for assigning blocks to be evicted in
the integral solution.

2. APPROXIMATION ALGORITHMS FOR
A SINGLE DISK

Throughout this section approximation ratios refer to the
elapsed time performance measure. The Aggressive algo-
rithm works as follow. Whenever the algorithm is not pre-
fetching a block, it initiates a prefetch for the next missing
block in the sequence provided it can evict a block from
cache that is not requested before the block to be fetched.
In this case it evicts the block whose next reference is fur-
thest in the future.

THEOREM 1. The approximation ratio of Aggressive is at
most min{l + F/(k+ [£] — 1),2}.

Our upper bound proofs in this section are based on the
dominance concept introduced by Cao et al. [5]. Given a re-
quest sequence o = ri,...,r, consisting of n requests and a
prefetching algorithm A, let c4(A) be the index of the next
request at time ¢ when A serves o. Let H4(i) be the set of
blocks not present in A’s cache when the next reference is
r;. Let ha(i,7), ha(i,j) > ¢, be the smallest index such that
exactly j different blocks in H 4(7) are referenced in the sub-
sequence consisting of request 7 up to (and including) request
ha(i,7). Intuitively, ha(z,7) is the index of the first refer-
ence to the j-th block not present in cache after r;—1. Index
ha(i,j) is also referred to as A’s j-th hole. The parameter
j varies between 1 and n — k. Given two prefetching algo-
rithms A and B, A’s cursor at time t dominates B’s cursor
at time t’if ca(t) > cg(t'). We say that A’s holes at time t
dominate B’s holes at time t' if ha(ca(t),j) > he(ca(t'),])
for all j. Combining these two definitions we say that A’s
state at time t dominates B’s state at time t’ if A’s cursor

at time ¢t dominated B’s cursor at time t' and A’s holes at
time t dominate B’s holes at time #'. Cao et al. [5] proved
the following domination lemma.

LeEMMA 1. Suppose that algorithm A (resp. algorithm B)
initiates a prefetch at time t (resp. t') and both algorithms
prefetch the next missing block and replace the block whose
next reference is furthest in the future. Suppose that A’s
state at time t dominates B’s state at time t'. Then A’s
state at time t + F dominates B’s state at time t' + F.

PROOF OF THEOREM 1. We assume F' < k and prove an
upper bound of 1+ F/(k+ | %] — 1) on Aggressive’s ap-
proximation ratio. If F > k, then our bound implies a 2-
approximation, which was already shown by Cao et al. [5].
The global structure of our proof is similar to that of Cao et
al. and we describe the difference. Let OPT be an optimal
prefetching algorithm. We partition the given request se-
quence into phases such that each phase consists of exactly
k+ | %] — 1 consecutive requests. We prove by induction
on the number of phases that the following invariant holds.
During each phase ¢ there is a time ¢ such that Aggressive’s
state at time t dominates OPT’s state at time t' > t — iF.
This implies that Aggressive needs at most F- (number of
phases) more time units than OPT to serve the entire re-
quest sequence, and on the average it spends at most F' extra
time units in each phase. Cao et al. divided the request se-
quence into different phases which consisted potentially of
only k requests. This resulted in a higher upper bound.

To establish the invariant consider a phase 7 and assume
that at time ¢ during phase ¢ Aggressive’s state dominates
OPT’s state at time ¢’ > t — iF. We show that for all
times 7 > 0 such that Aggressive is in phase ¢ at time t 4 7,
ca(t+7) > copr(t' + 1), where ca(t) is Aggressive’s cursor
position at time ¢. We distinguish two cases. (1) During
phase i, Aggressive never evicts a block from cache that is
requested again in phase i. (2) During phase i, Aggressive
does evict blocks that are requested again in the phase. The
first case is easy to analyze. While Aggressive serves a sub-
sequence of requests without fetching blocks, the cursor ad-
vances one request in each time step and hence OPT’s cursor
cannot pass Aggressive’s cursor. During the service and in
particular at the end of this subsequence Aggressive’s holes
dominate OPT’s holes because the k blocks in Aggressive’s
cache are all requested before any block not in cache and
thus the holes occur at the latest possible positions. While
Aggressive performs a series of fetches, Aggressive’s holes
always dominate OPT’s holes because no further holes are
introduced in the phase. Hence Aggressive’s cursor cannot
fall behind OPT’s cursor and repeating these two arguments
we obtain the desired inequality.

We next consider case (2). Let 1,1 <1 <k+ [£]—1, be
the smallest index such that Aggressive, while processing the
phase, evicts the block referenced by the I-th request in the
phase. Let t”,t"” > t, be the time when Aggressive initiates
the prefetch in which this block is evicted. Obviously [> k
because when Aggressive fetches a block during the first k
requests it can always evict a block from cache that is not
referenced during the next k requests. Let | = k + j, for
some j > 1. When Aggressive initiates the prefetch at time
t", there can be at most j blocks missing in cache that are
requested until the [-th request in the phase. If there were
more than j such blocks, then Aggressive could evict a block

whose next request has an index larger than £+ j. Thus the
algorithm has to execute at most j + |[£] -1 —j+1 =
| £] fetches (including the one just initiated) to bring all
blocks into cache that are still requested in the phase. We
distinguish again two cases depending on whether or not
these fetches are executed immediately one after the other.

Between time ¢t and " Aggressive never fetches a block
that is not requested during the first I — 1 requests of the
phase. Otherwise ther would be a time where all blocks
requested up to the I-th request are in cache and Aggressive
initiates a fetch for a block that is requested after the block
evicted. Thus all blocks fetched between ¢ and t" were not
in cache at time ¢ and using the same arguments as in case
(1) we obtain that ca(t + 7) > copr(t' + 1) for all T with
T < t" —t. At time t"” the I-th request of the phase is at
least k requests away from the current request because when
initiating a fetch Aggressive can always evict a block from
cache that is not requested during the next k references.
Now suppose that the at most | £ | fetches after time ¢ are
executed immediately one after the other. Aggressive first
fetches the j', 7' < j, blocks that are missing up to the I-
th request of the phase. By the choice of [all these blocks
were also missing at the beginning of the phase and again
Aggressive’s cursor always dominates OPT’s cursor during
these fetches. After the service of at most j'F additional
requests after time ¢" these fetches are complete. During the
next k—j'F > | £ |F—j'F = (| £]—j')F requests Aggressive
can complete all the remaining fetches for blocks in the phase
and hence completes these fetches before the [-th request.
No stall time is incurred and Aggressive’s cursor dominates
OPT’s cursor. During the rest of the phase Aggressive does
not incur stall time either and again its cursor dominates
OPT’s cursor.

We finally consider the case that the at most [£ | fetches
after ¢ are not executed immediately one after the other.
Let I’ be the index of the last request in the phase such that
at least one of the fetches still has to be executed but no
fetch is performed during the service of the request. Let
s be the time when Aggressive reaches this request. As in
the previous paragraph we can show that Aggressive’s cur-
sor dominates OPT’s cursor between ¢t and s: Aggressive
first fetches missing blocks that are referenced before the
I-th request of the phase and hence were missing at the be-
ginning of the phase. Aggressive’s cursor cannot fall behind
OPT’s cursor. Then Aggressive fetches some blocks that
are requested during the [-th request of the phase or later.
This can be done without incurring any stall time because
I'! < k < 1. To see the first inequality, observe that at
time s the next k requests are in cache because no fetch is
performed; however blocks requested in the phase are still
missing in cache and |£| — 1 < k. Again Aggressive’s cur-
sor cannot fall behind OPT’s cursor. After time s Aggressive
can fetch the at most | £ | missing blocks of the phase with-
out generating any stall time. This is because [> k implies
|£] —1 > 0 and hence F < k — 1. Aggressive’s cursor
dominates OPT’s cursor for the rest of the phase. We con-
clude, as desired, ca(t+7) > copr(t+7), for all 7 such that
Aggressive is still in the phase at time t + 7.

The rest of the proof is identical to that of Cao et al.
Let t + to,t + t1,...,t + t, be the cursor positions where
Aggressive initiates fetches after time ¢ but still within the
current phase. If OPT is executing a fetch at time t+t4,0 <
q < r,thenlet t+t; be the time when this fetch was initiated;

otherwise let t; = t;. Cao et al. proved inductively that
Aggressive’s state at time t + t; dominates OPT’s state at
time ¢’ + t; and that Aggressive’s state at time t + ¢, + F
also dominates OPT’s state at time t' + ¢, + F. The proof
makes no assumptions on the phase length and only relies
on the fact that ca(t + 7) > copr(t' + 7), for all 7 such
that Aggressive is still in phase i. Thus we also have that
Aggressive’s state at time t + ¢, + F dominates OPT’s state
at time t' +t.+F > t'+t,.. We conclude that Aggressive is in
phase i+1 at time T' = t+t,+ F and that its state dominates
OPT’s state at time t' +¢. > t—iF+t. >T—(i+1)F. O

THEOREM 2. The approximation ratio of Aggressive is in
general not smaller than min{1 + F/(k + £=1),2}, for any
F>1.

PROOF. We assume F' < k. For F' > k, a lower bound of 2
was already shown by Cao et al. [5]. Consider any pair F' and
k such that F'—1 divides k—1 and let [= % We construct
a request sequence in phases, each consisting of k+I requests.
In each phase we request blocks ai,...,ar—;. In phase ¢,7 >
1, we request [new blocks bi,... b} which have not been
referenced before in the sequence. These are requested at
the end of the phase. After the requests to a1 we request
the new blocks b’i_l, e bf_l from the previous phase, and
these blocks will not be requested again during the rest of
the sequence. Suppose that Aggressive has initially blocks
ai,...,ax_; and b2, ...,bY in its cache. Then the first three
phases are as follows.

0 0 1 1
o = al,b%,...,bll,ag,...,ak_l,bé,...,bl2, //phase 1
al’b%""’bé’a2""’ak_1’b§""’bgl_’ //phase 2
ai,bi,..., b a2,...,aK-1,b3,...,b;,... //phase 3

In the first phase Aggressive starts fetching the missing
blocks b1, ...,b; after the service of a;. It first evicts a; and
then blocks b?,...,bY ; since the latter are not requested
again. Aggressive needs [-F = % -F = k—1+1 time units
to complete the fetches and hence has one unit of stall time
before the service of b;. Aggressive then loads the missing
block a; by evicting b) and incurs F — 1 units of stall time.
At the beginning of phase 2 Aggressive has blocks a1, ... ar—;
and b1, ..., b} inits cache. The situation is the same as at the
beginning of phase 1 except that the b% take the role of the
b?- and the b? take the role of the b},j =1,...,l. The same
pattern repeats during the other phases. Thus Aggressive
needs k + [4+ F' time units to serve a phase. On the other
hand, an optimal strategy starts fetching the missing blocks
in any phase i after the service of b’i_l and can thus evict
the blocks b% *,...,bi ! to load bi,...,b;. OPT incurs two
units of stall time in each phase and needs k& + [+ 2 time
units for any phase. The ratio of Aggressive’s time to the
optimal time is 1 + (F — 2)/(k + £=% + 2) and this can be
arbitrarily close to the stated bound. []

In addition to the Aggressive algorithm Cao et al. [5] pro-
posed the Conservative strategy. Conservative performs ex-
actly the same replacements as the optimum offline paging
algorithm MIN [3] while initiating a fetch at the earliest op-
portunity that is consistent with the choice of the block to be
evicted. We now present a family of algorithms that contains
Aggressive and Conservative at two ends of its spectrum.
Using this family we construct an algorithm that performs

better than Aggressive and Conservative. Let d be a non-
negative integer. Intuitively the following algorithm delays
a fetch for d time units.

Algorithm Delay(d): Let r; be the next request to be
served and rj,j > ¢, the next reference where the requested
block is missing in cache. If all blocks in cache are requested
before r;, serve r; without initiating a fetch. Otherwise let
d' = min{d, j — i} and let b be the block whose next request
is furthest in the future after request ;4 _1. Initiate a fetch
for r; at the earliest point in time after 7;_1 such the evicted
block b is not requested again before r;.

Obviously, for d = 0 we obtain the standard Aggressive
strategy. For d = n,n being the length of the request se-
quence, we obtain the Conservative algorithm. Before prov-
ing the next theorem, we mention a few implications.

THEOREM 3. For any non-negative integer d, Delay(d)

achieves an approzrimation ratio of
_ d+F d+2F 3(d+F)
c = max{“F, T GeF |

COROLLARY 1. Setting do = |3(v/3 — 1)F], the approzi-
mation ratio co of Delay(do) tends to V3.

Algorithm Combination: If co < 1+F/(k+| %] —1), ex-
ecute Delay(dp), otherwise execute the standard Aggressive
strategy.

COROLLARY 2. The approzrimation ratio of Combination
is min{1 + F/(k + [£] — 1),co}, which tends to min{l +
F/(k+ %] -1),V3}.

PROOF OF THEOREM 3. In the following we call our ap-
proximation algorithm DL for short, omitting the given pa-
rameter d. We partition the prefetching/caching schedule
by DL and OPT into segments S&; and Spg,4 > 1, such
that DL’s state at the end of S%; dominates OPT’s state at
the end of S, pr and the length of S%; is at most ¢ times
the length of S5pr, where ¢ = max{#, dd"_','_—ZIf, ﬁ%;’:)}.
This establishes the theorem. The segments Spr, have the
property that DL is never in the middle of a fetch at the end
of S4,. Suppose that Spy,...,S85, and Sopr,...,S5pr
have been constructed so far. Let ¢ be the time at the end
of S%; and t' be the time at the end of S& pp. We show how
to construct the next segments S5, and S5py. If we are at
the beginning of the request sequence and no segments have
been constructed so far, we set ¢ = t' = 0 and show how to
build up the first segments.

DL’s next segment starts immediately after ¢ and OPT’s
next segment starts immediately after ¢'. We have to deter-
mine where the segments end and use s to denote the end of
DL’s segment and s’ to identify the end of OPT’s segment.
If at time ¢ all k£ blocks in DL’s cache are requested before
the next missing block, the segments are easily specified.
Suppose that DL serves § requests after ¢t without initiating
a fetch because all blocks in cache are requested before the
next missing block. Then DL’s cursor at time s = t+§ dom-
inates OPT’s cursor at time s’ = #' + § and DL’s holes at
time s also dominate OPT’s holes at time s’ because DL’s
holes occur at the latest possible positions. We have the
desired domination and the two segments have in fact the
same length.

In the following we always assume that at time ¢ there
is a block in DL’s cache that is referenced again only after

the next block to be fetched and hence DL can initiate a
fetch. Assume that DL needs Di,D1 < d + F, time units
after ¢t to complete the next fetch. If OPT does not initiate
a fetch during the next D; time units after ¢', then we are
done. DL’s cursor at time s = t + D; dominates OPT’s
cursor at time s’ = t' + D;. This is obvious if DL does not
incur stall time to complete the fetch. If DL does incur stall
time, then DL fetches the block referenced right after ¢+ D-.
OPT’s cursor cannot pass DL’s cursor because DL’s holes
at time ¢ dominate OPT’s holes at time ¢#'. Since OPT’s
holes do not change between t' and s’ DL’s holes at time s
also dominate OPT’s holes at time s’. Again we have the
desired domination and DL’s and OPT’s segments have the
same length.

We therefore assume in the following that OPT initiates
a fetch during the next D; time units after ¢'. Suppose that
DL serves exactly d; requests after ¢ and that OPT serves
dy after ' before initiating the next fetch. If di < di, the
analysis is simple. DL’s state at time t+d; dominates OPT’s
state at time ¢’ +d} and by the Lemma 1 DL’s state at time
s =t+di +F = t+ D; dominates OPT"’s state at time
s' =t +dj + F. The ratio of DL’s segment length to OPT’s
segment length is at most D1/(d} + F) < (d + F)/F. If
dy > d; but di < d, then let r; be the next request to be
served by DL and r; be the location of the next hole at time
t. Set d = min{j — 4,d}}. Imagine we would modify DL as
follows. After time ¢ DL serves d requests before initiating a
fetch for r;. During this fetch it evicts the block whose next
reference is furthest in the future. Since DL’s state at time ¢
dominates OPT’s state at time ¢', the modified algorithm’s
state at time ¢ +d dominates OPT’s state at time t+d}. By
Lemma 1 the modified algorithm’s state at time ¢ + d + F
dominates OPT’s state at time t' + d; + F. By definition
the original DL algorithm may delay a fetch for d requests
and hence the block evicted during the first fetch after ¢ is
equal to the block evicted by the modified algorithm during
the first fetch after t. We obtain that DL’s holes at time
s = t+ D1 dominate OPT’s holes at time ¢' 4+ d} + F, which
are equal to OPT’s holes at time s’ = min{t' + Dy,t' +d} +
F}. Also, DL’s cursor at time s dominates OPT’s cursor
at time s’ because if DL incurs stall time to complete the
fetch then OPT’s cursor cannot pass because its holes were
dominated by DL’s holes. In summary we have domination
and the ratio of the segment length is upper bounded by
D,/F<(d+ F)/F.

In the remainder of this proof we assume dj > d. If at
time ¢ + D; the k blocks in DL’s cache are all referenced
before the next missing block, then the segments are easily
determined. OPT needs D} = dj +F time units to complete
the first fetch after ¢'. If DL does not incur stall time to
complete the first fetch, then its cursor at time s =t + D,
dominates OPT’s cursor at time ¢’ + D;. If DL does incur
stall time, then OP'T’s cursor cannot pass DL’s cursor during
the first fetch because DL’s holes at time ¢ dominate OPT’s
holes at time ¢'. In this case DL’s cursor at time s dominates
OPT’s cursor at time t' + D;. Thus DL’s cursor at time s
dominates OPT’s cursor at time s’ = min{t' + D1,t' + D1}
and DL’s holes at time s dominate OPT’s holes at time s’
because DL’s holes occur at the latest possible positions.
The ratio of DL’s segment length to OPT’s segment length
is at most D1/F < (d+ F)/F because F < D; < d+ F and
D} >F.

It remains to analyze the case that di > d and at time

t+ D1 there is a block in DL’s cache that is referenced after
the next missing block. Let Dy = d2 + F' be the number of
time units after t+ D1 DL needs to complete the next fetch.
We have d2 < d by the definition of DL. We distinguish
two cases. (1) di +d> < dy and (2) di +dz = dy + § for
some positive integer 6. We first consider case (1). We have
that DL’s state at time ¢t + D1 dominates OPT’s state at
time t + dj. The reason is that DL’s cursor at time t 4+ D,
dominates OPT’s cursor at time t+dj because OPT initiates
the first fetch after ¢’ within the next D; time units and DL’s
holes at time ¢ dominate OPT’s holes at time t', i.e. OPT’s
cursor cannot pass DL’s cursor during the first fetch. Since
OPT’s holes do not change between ¢’ and ¢ +d}, DL’s holes
at time t + D; also dominate OPT’s holes at time ¢ + d.
Since DL’s state at time t + D; dominates OPT’s state at
time t + di, DL’s state at time t + D; + d2 also dominates
OPT’s state at time ¢ + d} and by Lemma 1 DL’s state at
time s =t + D1 +d2 + F =t + D1 + D2 dominates OPT’s
state at time s’ = ¢ +d} + F =t + D}. The ratio of the
segment lengths is (D1 + D2)/D3 < (d} + 2F)/(d} + F) <
(d+2F)/(d+ F).

We next study case (2). First observe that DL’s cursor at
time t+ D; +d> dominates OPT’s cursor at time ¢’ + D1 +ds.
This is obvious if DL does not incur stall time to complete
the first fetch. If DL does incur stall time, then DL’s cursor
at time ¢+ D; must dominate OPT’s cursor at time t' +D} >
t' + D1 because DL’s holes at time ¢ dominate OPT’s holes
at time ¢ and OPT cannot finish the first fetch later in the
sequence than DL. Since DL’s cursor advances one step in
each of the following d> time units after t + D1 we have the
stated domination for the cursors. If OPT does not initiate a
second fetch before t' 4+ D1 +da, then we are done. As in case
(1) we have that DL’s state at time s = t+D1+D, dominates
OPT’s state at time ¢’ + D] =t + D1 +ds — §. This implies
that DL’s state at time s dominates OPT’s state at time
s' = t'+ Dy +d> because DL’s cursor at time s > t+ Dy +d»
dominates OPT’s cursor at time ¢’ + D1 +d> as shown above
and OPT’s holes do not change between t' + D1 +ds — § and
s'. The ratio of the segment lengths is (D1+D2)/(D1+d2) =
(di +6+2F)/(dy,+ 6+ F) < (d+2F)/(d+ F). If OPT
does initiate a second fetch before t' + Dy + d but at time
t + Dy + D- all k block in DL’s cache are all requested
before the next missing block, then DL’s state at time s =
t+ D1+ Dy dominates OPT’s state at time s’ = t' + D1 +d»
because DL’s holes occur at the latest possible positions.
The ratio of DL’s segment length to OPT’s segment length
is upper bounded by (D14 D2)/(D1+d2) < (d+2F)/(d+F).

We finally have to consider the case that OPT initiates a
second fetch before ¢’ + D1 + d2 but at time ¢t + D1 + D2
there is a block DL’s cache that is requested after the next
missing block. DL needs Ds = d3+ F' time units with ds < d
to complete the next fetch. Suppose that OPT initiates the
second fetch at time t' + D} + ¢, with 6’ < . As above we
have that DL’s state at time t + D1 4+ D2 dominates OPT’s
state at time t' + D}. This implies that DL’s state at time
t + D; + D, dominates OPT’s state at time ¢’ + D} + ¢’
because DL’s cursor at time ¢t + Dy + D2 dominates OPT’s
cursor at time t' + D} 4+ > ¢ + D] + §' and OPT’s holes
do not change between t' 4+ D} and #' 4+ D] + §'. It follows
that DL’s state at time t + D; + Dy + d3 dominates OPT’s
state at time t' + D] + ¢’ and by Lemma 1 DL’s state at
time s = t + D1 + D2 + d3 + F dominates OPT’s state at
time s’ =t + D} + 6’ + F. DL’s segment length is at most

3(d+F) while OPT’s segment length is at least (d+2F). [

3. MINIMIZING STALL TIME IN PARAL-
LEL DISK SYSTEMS

In this section we present a polynomial time algorithm for
systems with D parallel disks that, given a request sequence
o, computes a prefetching/caching schedule whose stall time
is at most that of an optimal solution. The schedule uses
not more than 3(D — 1) extra memory locations in cache.

The basic idea is to use the linear programming approach
of [1] but to model the objective function, which measures
the stall time of a schedule, in a different way. For this pur-
pose we consider synchronized schedules that are defined as
follows. Consider a prefetching/caching schedule for o. A
fetch operation executed from time ¢; to time t intersects
a fetch operation performed from ¢, to t4 if there is a t with
t1 <t <t and to <t <t but t; # t2 (and hence t] # t5).
Clearly, fetch operations executed on the same disk cannot
intersect. A prefetching/caching schedule is synchronized
if no two fetch operations intersect. Intuitively, in a syn-
chronized schedule fetch operations on different disks are
executed completely in parallel, starting and ending at ex-
actly the same time. For a given o, let sopr(o) be the
stall time of an optimal schedule for . We show that there
exist synchronized schedules that achieve a minimum stall
time provided that they may use up to D — 1 extra cache
locations.

LEMMA 2. For any o, there exists a synchronized sched-
ule that achieves a stall time of at most sopr(o) and uses
not more than D — 1 extra memory locations in cache.

PROOF. Let S be an optimal prefetching/caching sched-
ule using k cache locations. We show how to modify S so
that the resulting schedule is synchronized and the stall time
does not increase. Suppose that (a) up to time ¢ schedule
S is synchronized and uses at most D — 1 extra cache lo-
cations and (b) from time ¢ on the schedule is not synchro-
nized but uses no extra cache locations. Moreover assume
that at time ¢t a fetch operation is initiated that intersects
fetches on other disks. (Initially, ¢ is the first point in time
at which a fetch operation intersecting other fetches starts.)
Let t' be the time when the fetch ends. Suppose that the
fetch from ¢ to t' intersects d, 1 < d < D — 1, fetches on
other disks. Let t1,...,tq be the times when these fetches
start. Furthermore, let a1,...,aq be the blocks fetched and
b1,...,bqa be the blocks evicted during these fetch opera-
tions. The schedule is now modified as follows. We delete
the fetch operations initiated at times ¢1,...,ts and instead
fetch ai,...,aq into the D — 1 available extra cache loca-
tions starting at time t. At time ¢, when these fetches end,
we evict b1, ..., bq from cache so that the D — 1 extra cache
locations are again available. The stall time does not in-
crease during this modification because a possible stall time
incurred at the end of the fetch at time ¢’ was already needed
for the original fetch from ¢ to t'. At the end of the fetch
blocks b1,...,bq are available for eviction because b; was
available at time ¢; < ¢/, 1 < i < d. From time t' on the
schedule uses only k cache locations. Repeating this step
for times ¢, ¢ > t', at which intersecting fetches are initi-
ated, we obtain a synchronized schedule with stall time at
most sopr(c). O

We now describe a 0-1 linear program for computing an
optimal synchronized prefetching/caching schedule that uses
k + D — 1 cache locations. Let n be the number of requests
in the given sequence o. The linear program has to deter-
mine the intervals in which the synchronized fetches are per-
formed. As in [1] we consider intervals I = (i,7) of length
at most F' in the request sequence, ¢ = 0,...,n — 1 and
j =1,...,n. The length of an interval is |I| = j —¢ — 1.
Such an interval represents a fetch that starts after request
r; and ends before r;. Since a fetch takes F' time units,
F — |I| units of stall time are incurred at the end of I. For
each such interval we introduce a variable z(I) that is 1
if (synchronized) fetches are performed in interval I and 0
otherwise. The stall time of a synchronized schedule is easy
to compute; it is just the sum of the stall times incurred
at the end of fetch intervals. Thus we wish to minimize
>, a(I)(F — |1)).

The rest of the linear program is similar to that given
in [1], except that several constraints simplify. We say that
in interval (i,j) is properly contained in an interval (i, j'),
ie. (4,7) C (¢,4"), if i > 4’ and j < j'. We have to ensure
that at any time only one set of synchronized fetches is per-
formed. Therefore, for any i with 1 <7 < n — 1 we add the
constraint » . ; ;. 2(I) < 1.

The linear program also has to determine the blocks to
be fetched and evicted in each interval. We assume without
loss of generality that the cache initially contains a set S;nit
of k+ D — 1 blocks from disk 1 which are never requested in
o. Let S4 be the set of blocks in o that are stored on disk d,
1<d< D,andlet S = S1U...USpUS;nit. For any interval
I and any block a € S we introduce a variable fr , that is
1 if a is fetched in interval I and 0 otherwise. Furthermore,
for any I and any block a € S there is a variable es , that
is 1 if a is evicted in I and 0 otherwise. We have to ensure
that, for any interval I and any disk d, 1 < d < D, only one
block from disk d is fetched. Of course such a fetch can only
be performed if z(I) = 1. Thus we add

VI,d Y fra < z(I).

aESy

We also have to make sure that in each interval the number
of blocks fetched is equal to the number of blocks evicted,

i.e. we have
VI fra=) era

a€S a€S

When a request is served, the requested block must be in
cache. For any a € S1U...USp let i1 < i2 < ... < 4
be the indices of the requests to a. We add the constraints
EI(_:(O,il) fr,o = 1 and EI(_:(O,il)eI,a = 0, which guaran-
tee that a is in cache at the time of its first request. We
additionally impose, for j =1,...,1 — 1,

> fre=

IC(45,%5+41) IC(i5,%5+41)

€I,a <]-7

which implies that if a is in cache at the time of its jth
reference then it is also in cache at the time of its (j + 1)st
reference. Finally we have ZIC(il,n) er,a < 1. Of course, a
block may not be fetched or evicted when it is referenced.
Thus we have, for j =1,...,1,

2. fre= D

I:(ij—1,55+1) I:(ij—1,i5+1)

BI,a = O.

With respect to the blocks a € Sini: we only require
ZIQ(O,n) €I,a S 1.

We have n min{F +1,n} variables (1) and O(n> min{F+
1,n}) variables fr,, and er,. Note that we can assume
k < n since otherwise we could simply load the requested
blocks into cache and then serve all requests. Also, we can
assume D < n because otherwise we just ignore the disks
that do not contain a block requested in o. Relaxing the
0-1 variables to 0 < z(I), fr,a,er,a < 1, we can compute
in polynomial time a solution whose value is bounded by
sopt(c). The idea of the following analysis is to show that a
fractional solution to the relaxed linear program is a convex
combination of polynomially many integral solutions. We
can then select one of these integral solutions and achieve a
minimum stall time.

Let Z = {I|z(I) > 0}. Asis [1] we can modify the frac-
tional solution such that for any two intervals I = (3,;) and
I' = (i',5')in Z with I C I' we have : = ¢’ or j = j, i.e.
intervals share a common endpoint if one is properly con-
tained in the other. Based on this relation we can define a
linear order < on Z. The intervals are ordered by increasing
startpoints and, if intervals have the same startpoint, they
are ordered by increasing endpoints.

In order to be able to apply techniques from [1] it is
crucial that in each interval I € Z all D disks fetch an
amount of exactly z(I). Clearly, there is at least one disk
d with }° s fr.a = z(I) since otherwise we could decrease
z(I). To establish this property for all I and d, we sched-
ule dummy fetches on the idle disks in I. Since these fetches
must not change the configuration of the k4D —1 cache loca-
tions, we introduce D —1 additional cache positions that ini-
tially contain D—1 blocks 49, ...,b% ; from disk 1 which are
never requested in o. We then consider the intervals in Z in
the order of <. Let I be the jth interval considered. For any
of the at most D—1 disks dwith 6q = 2(I) =3 s, fra >0
we fetch a new block b, from disk d to an extent of §4 and
evict an amount of §; of the blocks b%,...,bH_; with the
smallest index [that reside in the extra D — 1 cache loca-
tions. Blocks &%, 1 < d < D and j > 0 are never requested
in 0. The dummy blocks keep disks busy that are originally
idle. It is sufficient to use at D — 1 cache locations because,
as mentioned before, in each interval there is at least one
disk that fetches to an extent of z(I).

We modify the optimal fractional solution even further.
More specifically, it is an easy exercise to show that there
is an optimal fractional solution that satisfies the following
properties on the fetches and evictions. Consider the inter-
vals in the order < and let C denote the cache configuration
after we have performed fetches and evictions corresponding
to the first 7 intervals in the order. Let I be the (5 + 1)st
interval.

e For any d, 1 < d < D, we fetch the block from disk d
that is not completely in C' and whose next reference
is earliest.

e If we evict a block from disk d in I, then it is the block
from disk d which is partially or completely in C and
whose next reference is furthest in the future.

Based on these properties it is possible to view the prefetch-
ing/caching schedule as a process over time. For any I € Z,
define dist(I) = Y, _;2(I'), i.e. dist(I) is the sum of the
x(I') where I' precedes I in the order <. The time in-
terval associated with I is [dist(]), dist(I) + =(I)]. Hence

there is a unique interval I associated with each time. For
any interval I € 7 and any disk d, 1 < d < D, we sort
the blocks fetched from disk d in I by increasing order of
their next reference. Let a1,...,a; be the blocks in this or-
der. Block a; is fetched for fr q, time units starting at time
dist(I) + Z;;ll fi,a;- Hence at each time instant we fetch a
unique block from each disk.

As in [1], for any ¢ in the range [0,1), we construct an
integral feasible solution that uses D — 1 cache locations in
addition to the k+2(D —1) locations we already use. Let Z;
be the set of intervals I in Z associated with time instances
ti = t+ 1, for all « > 0. Each interval I in Z; is part of the
solution for t. If I € Z; is the interval associated with time
t;, then for any disk d we fetch the block that is loaded from
disk d at time ¢;. The algorithm for assigning evictions is
slightly different from the one described in [1]. We maintain
a set Q; that is initially empty and consider the intervals in
7 in the order <. Let I be the current interval and a1, ..., a;
be the blocks evicted in I. If aj, 1 < j <, is fetched back
at time t;, for some ¢ > 0, before its next reference, then
add a; to Q¢. If I € 7 and @ currently contains at least D
blocks, then remove D arbitrary blocks from @Q: and evict
them during I. If Q; currently contains less than D blocks,
then remove only these available blocks and evict them in
1.

LEMMA 3. For any t € [0,1), solution Z; is an integral
feasible solution that uses a total of at most k + 3(D — 1)
cache locations.

Proor. The intervals in Z; are disjoint. Moreover, by
the definition of our algorithm for scheduling evictions, each
block that is assigned to @: and hence evicted in an interval
of Z; is also fetched back before its next reference in an
interval of Z;. Hence Z; is a feasible solution. The optimal
fractional solution used to construct Z; uses 2(D — 1) extra
memory locations in cache. We will show that at most D—1
intervals in Z; do not have an eviction assigned. If we load
the blocks fetched in those intervals into D —1 extra memory
locations, then Z; is a feasible solution that uses at most
3(D — 1) extra cache locations.

Consider our algorithm for scheduling evictions and sup-
pose that we just finished processing interval I € Z. For
any disk d let sq the last point in time such that disk d
fetches a block that has been evicted in intervals I' < I but
not yet been fetched back at time instances corresponding
to I' < I. Suppose that there exists a time before s4 such
that disk d fetches a block that has not yet been evicted in
intervals I' < I. Let s be the earliest point in time with
the property and let a4 be the block fetched at this point in
time. Let bg be any block that has been evicted in intervals
I' < I and is fetched back after s!,. Since by is fetched after
aq the next reference to by must be after the next reference
to aq. The last eviction of by in intervals I' < I must be an
eviction where by is discarded to an extent of 1. If by were
discarded only partially, then our optimal fractional solution
would have evicted the rest of by in the operations where ag
is evicted because by’s next reference is later. Thus when by
is fetched back after s} it is fetched back to an extent of 1
and this fetch is performed continuously without interrup-
tion. This implies that our algorithm added bg to Q:. Let
E4 be the total amount of evictions of blocks from disk d up
to the current interval I, i.e. Eq =3, c5, > 1<y €170 Part

of this amount is fetched back continuously until time s;.
Blocks fetched back later are, as mentioned before, fetched
to an extent of 1 and added to Q:. Hence, when the algo-
rithm finishes processing I, |Eq — t] + 1 blocks from disk
d have been assigned to @); and summing over all disks a
total of ZdDzl(LEd —t] + 1) blocks have been assigned to
Q:. Let X(I) = >, .;z(I'). When the algorithm finishes
processing I, it has tried to assign D(| X (I) —t] + 1) evic-
tions because Z; contains | X (I) — ¢] + 1 intervals I' with
I' < T in each of which we schedule D fetches and evictions.
Moreover, X (I) = 25:1 E, because in our fractional solu-
tion in each interval I’ the amount of fetches and evictions
is exactly x(I'). Hence

D(X(I) —t]+1) =) ([Ba—t] +1)
d=1
< DIX(I)~t+1)~> (Ba—t+1)+D -1
= D-1 -

We conclude that at most D — 1 fetch operations on the
various disks to not get an eviction assigned. []

When constructing the solutions Z; as t varies from 0 to
1, we obtain a given solution not for just one value of ¢ but
for a range of values. Let 0 = z1 < xz2 < ... < 21 =1 be
the set of values such that for all ¢ in the range [z;, zi+1) we
obtain the same solution Z;, 1 < ¢ < I. Hence Zz,,...,Zs,_,
are the different solutions we obtain. Since each Izj, 1<
j <1—1, is a synchronized schedule its stall time s(Z;) is
equal to the sum of the stall times incurred by the intervals
in Z,,. Giving Z,; a weight of z;41 — z;, we obtain that
Zé_:ll(wjﬂ — ;)8(Zs;) is equal to the value of the optimal
fractional solution. It follows that one of the Z, ; achieves
a stall time that is bounded by the value of the optimal
fractional solution and hence bounded by the minimum stall
time for o. Finding such an Z, ; is easy and in fact we do
not even have to compute explicitely all the Z,,,...,Zs,_,.
All we have to do is to compute a to such that the total
stall time of intervals in Z;, is minimum among all Z;. For
varying t, the intervals in Z; only change if an interval I € 7
starts at some time ¢;. Thus we only have to check |Z| =
O(nmin{F+1,n}) values of t. Once we have determined an
optimal to, we apply our algorithm to schedule the evictions.
This establishes our main result.

THEOREM 4. There exists a polynomial time algorithm
for integrated prefetching and caching on D parallel disks
that, given a request sequence o, computes a schedule whose
stall time is at most that of an optimal solution for o. The
schedule uses at most 3(D — 1) extra memory locations in
cache.

4. CONCLUSIONS

In this paper we presented improved prefetching/caching
algorithms for single and parallel disk systems. In the sin-
gle disk setting an interesting problem is to develop fast
algorithms that achieve an even smaller approximation ra-
tio with respect to the elapsed time performance measure.
A challenging open problem is to determine the complexity
of the parallel disk case: Is it NP-hard to construct optimal
schedules or does there exist a polynomial time algorithm?

5.
(1]

[2]

[10]

[11]

[15]

[16]

REFERENCES

S. Albers, N. Garg and S. Leonardi. Minimizing tall
time in single and parallel disk systems. Journal of the
ACM, 47:969-986, 2000.

S. Albers and C. Witt. Minimizing stall time in single
and parallel disk systems using multicommodity net-
work flows. Proc. 4th International Workshop on Ap-
prozimation Algorithms for Combinatorial Optimization
Problems APPROX), Springer LNCS 2129, 12-23, 2001.
L.A. Belady. A study of replacement algorithms for vir-
tual storage computers. IBM Systems Journal, 5:78—
101, 1966.

A. Borodin, S. Irani, P. Raghavan and B. Schieber.
Competitive paging with locality of reference. Journal
on Computer and System Sciences, 50:244—-258, 1995.
P. Cao, E.W. Felten, A.R. Karlin and K. Li. A study
of integrated prefetching and caching strategies. Proc.
ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), 188—
196, 1995.

P. Cao, E.W. Felten, A.R. Karlin and K. Li. Imple-
mentation and performance of integrated application-
controlled caching, prefetching and disk scheduling.
ACM Transaction on Computer Systems (TOCS),
14:311-343, 1996.

A. Fiat and M. Mendel. Truly online paging with local-
ity of reference. Proc. 88th IEEE Symposium on Foun-
dations of Computer Science, 1997.

D.R. Fuchs and D.E. Knuth. Optimal prepaging and
font caching. ACM Transactions on Programming Lan-
guages and Systems, 7:62—79, 1985.

A. Gaysinsky, A. Itai, and H. Shachnai. Strongly com-
petitive algorithms for caching with pipelined prefetch-
ing. Proc. 9th Annual European Symposium on Algo-
rithms (ESA01), Springer LNCS 2161, 49-61, 2001.
D.A. Hutchinson, P. Sanders, and J.S. Vitter. Duality
between prefetching and queued writing with parallel
disks. Proc. 9th Annual European Symposium on Algo-
rithms (ESA01), Springer LNCS 2161, 62-73, 2001.
M. Kallahalla and P.J. Varman. Optimal prefetching
and caching for parallel I/O systems. Proc. 13th ACM
Symposium on Parallel Algorithms and Architectures,
2001.

T. Kimbrel and A.R. Karlin. Near-optimal parallel pre-
fetching and caching. SIAM Journal on Computing,
29:1051 — 1082, 2000. Preliminary version in FOCS96.
T. Kimbrel, P. Cao, E.W. Felten, A.R. Karlin and K. Li.
Integrated parallel prefetching and caching. Proc. ACM
International Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS), 1996.

T. Kimbrel, A. Tomkins, R.H. Patterson, B. Bershad,
P. Cao, E.W. Felten, G.A. Gibson, A.R. Karlin and
K. Li. A trace-driven comparison of algorithms for par-
allel prefetching and caching. Proc. of the ACM
SIGOPS/USENIX Association Symposium on Operat-
ing System Design and Implementation, 1996.

P. Krishnan and J.S. Vitter. Optimal prediction for
prefetching in the worst case. STAM Journal on Com-
puting, 27:1617-1636, 1998.

M. Palmer and S.B. Zdonik. Fido: A cache that learns
to fetch. Proc. 17th International Conference on Very
Large Data Bases, 255-264, 1991.

[17]

[18]

[19]

R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky
and J. Zelenka. Informed prefetching and caching. Proc.
15th Symposium on Operating Systems Principles, 79—
95, 1995.

D.D. Sleator and R.E. Tarjan. Amortized efficiency of
list update and paging rules. Communication of the
ACM, 28:202-208, 1985.

J. Vitter and P. Krishnan. Optimal prefetching via data
compression. Journal of the ACM, 43:771-793, 1996.

