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ABSTRACTWe study integrated prefet
hing and 
a
hing in single andparallel disk systems. There exist two very popular approx-imation algorithms 
alled Aggressive and Conservative forminimizing the total elapsed time in the single disk prob-lem. For D parallel disks, approximation algorithms areknown for both the elapsed time and stall time performan
emeasures. In parti
ular, there exists a D-approximation al-gorithm for the stall time measure that uses D�1 additionalmemory lo
ations in 
a
he.In the �rst part of the paper we investigate approximationalgorithms for the single disk problem. We give a re�nedanalysis of the Aggressive algorithm, showing that the orig-inal analysis was too pessimisti
. We prove that our newbound is tight. Additionally we present a new family ofprefet
hing and 
a
hing strategies and give algorithms thatperform better than Aggressive and Conservative.In the se
ond part of the paper we investigate the problemof minimizing stall time in parallel disk systems. We presenta polynomial time algorithm for 
omputing a prefet
hing/
a
hing s
hedule whose stall time is bounded by that of anoptimal solution. The s
hedule uses at most 3(D � 1) ex-tra memory lo
ations in 
a
he. This is the �rst polynomialtime algorithm for 
omputing s
hedules with a minimumstall time. Our algorithm is based on the linear program-ming approa
h of [1℄. However, in order to a
hieve minimumstall times, we introdu
e the new 
on
ept of syn
hronizeds
hedules in whi
h fet
hes on the D disks are performed
ompletely in parallel.
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1. INTRODUCTIONIn today's 
omputer systems there is a growing gap be-tween pro
essor speed and memory a

ess time. There-fore an e�e
tive utilization of 
a
hes is in
reasingly impor-tant. Prefet
hing and 
a
hing are well-known and exten-sively studied te
hniques to improve the performan
e of mem-ory hierar
hies. In prefet
hing missing memory blo
ks areloaded from slow memory, e.g. a disk, into 
a
he before theira
tual referen
e. Ca
hing strategies try to keep a
tively ref-eren
ed blo
ks in 
a
he. The goal of both tools is to redu
epro
essor stall times that are in
urred when requested datais not available in 
a
he. Most of the previous work onprefet
hing and 
a
hing investigated these two te
hniquesseparately, see e.g. [3, 4, 7, 8, 15, 18, 19℄ for some sele
tedpapers, although there is a strong 
orrelation. Prefet
hingblo
ks too early 
an 
ause the evi
tion of blo
ks from 
a
hereferen
ed in the near future. Ca
hing blo
ks too long 
andiminish the e�e
t of prefet
hing.In re
ent years, initiated by a paper of Cao et al. [5℄,there have been a number of studies that integrate prefet
h-ing and 
a
hing. The goal is to design strategies that 
oor-dinate prefet
hing and 
a
hing de
isions. Both theoreti
aland experimental studies were presented [5, 6, 9, 10, 11, 12,13, 14, 16, 17℄. It was demonstrated that an integration ofprefet
hing and 
a
hing leads to a substantial improvementin systems performan
e.Cao et al. [5℄ introdu
ed a model for integrated prefet
hingand 
a
hing that we will also use in this paper. We are givena request sequen
e � = r1; : : : ; rn 
onsisting of n requests.Ea
h request spe
i�es a blo
k in the memory system. We�rst assume that all blo
ks reside on a single disk. To servea request the requested blo
k must be in 
a
he. The 
a
he
an simultaneously store k blo
ks. Serving a request to ablo
k in 
a
he takes 1 time unit. If a requested blo
k is notin 
a
he, then it must be fet
hed from disk, whi
h takes Ftime units. A fet
h operation may overlap with the servi
e of



requests to blo
ks already in 
a
he. If a fet
h, i.e. a prefet
h,of a blo
k is initiated at least F requests before the referen
eto the blo
k, then the blo
k is in 
a
he at the time of therequest and no pro
essor stall time is in
urred. If the fet
his started only i; i < F , requests before the referen
e, thenthe pro
essor has to stall for F � i time units until the fet
his �nished. When a fet
h operation is initiated, a blo
kmust be evi
ted from 
a
he to make room for the in
omingblo
k. Thus a prefet
h operation 
riti
ally a�e
ts the 
a
he
on�guration in that we must also drop a blo
k. The goalis to minimize the total pro
essor stall time in
urred on theentire request sequen
e. This is equivalent to minimizingthe elapsed time, whi
h is the sum of the pro
essor stalltime and the length of the request sequen
e. We point outhere that the input � is 
ompletely known in advan
e.To illustrate the problem, 
onsider a small example. Let� = b1; b2; b3; b4; b4; b5; b1; b4; b4; b2. Assume that we have a
a
he of size k = 4 and that initially blo
ks b1; b2; b3 and b4reside in 
a
he. Let F = 4. The �rst missing blo
k is b5. We
ould initiate the fet
h for b5 when starting the servi
e ofthe request to b2. The fet
h would be exe
uted while servingrequests b2; b3; b4 and b4 and 
ompleted in time. However,when starting this fet
h, we 
an only evi
t b1, whi
h is re-quested again after b5. To load b1 we in
ur 3 units of stalltime as the fet
h 
an only overlap with the request to b5. Abetter option is to start the fet
h for b5 at the request to b3.We generate 1 unit of pro
essor stall before the request to b5but 
an evi
t b2, whi
h is requested again only at the end of� and 
an be fet
hed ba
k without in
urring any stall time.The stall time of this se
ond solution is 1 time unit and theelapsed time is 11 time units.Integrated prefet
hing and 
a
hing is equally interestingin parallel disk systems. Suppose that we have D disks andthat ea
h memory blo
k resides on exa
tly one of the disks.Blo
ks from di�erent disks may be fet
hed in parallel. Whenstarting a fet
h, we 
an evi
t any blo
k from 
a
he, whi
h
orresponds to the 
ase that blo
ks are read-only and donot have to be written ba
k to disk. Of 
ourse we 
an takeadvantage of the parallelism given by a multiple disk system.If the pro
essor in
urs stall time to wait for the 
ompletionof a fet
h, then other fet
hes exe
uted in parallel also makeprogress towards 
ompletion during that time. Again wewish to minimize the total stall time or elapsed time.As an example 
onsider two disks, where b1; b2; b3 and b4reside on disk 1 and 
1; 
2 and 
3 reside on disk 2. Againk = 4 and F = 4. Suppose that initially b1; b2; 
1 and 
2 arein 
a
he and that � = b1; b2; 
1; 
2; b3; 
3; b4. Disk 1 initiatesa fet
h for b3 at the request to b2; it evi
ts b1. Disk 2 startsa fet
h for 
3 one request later and evi
ts b2. Disk 1 starts ase
ond fet
h at the request to b3 in order to load b4. Thereis 1 unit of stall time before the request to b3. The fet
hon disk 2 bene�ts from this time unit so that no additionalstall time is generated before the request to 
3. The se
ondfet
h on disk 1 in
urs 2 units of stall time. The total stalltime of this solution is equal to 3 time units.Previous work: Cao et al. [5℄ introdu
ed two popular al-gorithms, 
alled Conservative and Aggressive, for integratedprefet
hing and 
a
hing in the single disk problem. Conser-vative performs exa
tly the same blo
k repla
ements as theoptimum o�ine paging algorithm MIN [3℄, while initiating afet
h at the earliest point in time that is 
onsistent with the
hoi
e of blo
ks to be evi
ted. Cao et al. showed that Con-servative a
hieves an approximation ratio of 2 with respe
t

to the elapsed time performan
e measure, i.e. the elapsedtime of Conservative's s
hedule is at most twi
e the elapsedtime of an optimal s
hedule. This bound is tight. The Ag-gressive algorithm starts prefet
h operations as soon as pos-sible. Whenever the algorithm is not in the middle of a fet
h,it initiates a new fet
h provided it 
an evi
t a blo
k from
a
he that is not requested before the blo
k to be fet
hed.Cao et al. proved that the approximation ratio, with respe
tto elapsed time, is at most minf1 + F=k; 2g and that thisratio is tight for F � k. Kimbrel and Karlin [12℄ analyzedAggressive and Conservative in parallel disk systems andshowed that the approximation ratios are essentially equalto D. They also proposed an algorithm Reverse Aggressive,whi
h is the Aggressive algorithm on the reverse sequen
e,and proved that the approximation guarantee is boundedby 1 +DF=k. Again the approximation ratios are with re-spe
t to the elapsed time measure. Extensive experimentalstudies, in parti
ular on the performan
e of the Aggressivealgorithm, were presented in [5, 6, 13, 14℄.It was shown in [1℄ that optimal prefet
hing/
a
hing s
hed-ules for a single disk 
an be 
omputed in polynomial time.The idea is to formulate the prefet
hing and 
a
hing problemas a linear program and to prove that there exists an opti-mal solution that is integral. The approa
h was extended toparallel disk systems and gave a D-approximation algorithmfor the stall time performan
e measure if the algorithm mayuse D � 1 extra memory lo
ations in 
a
he. Note that ap-proximating stall time is harder than approximating elapsedtime be
ause in the stall time measure the length of the re-quest sequen
e is not part of the obje
tive fun
tion. In [2℄ itwas shown that the linear program of [1℄ 
an be translateddire
tly into a multi
ommodity 
ow problem.Our 
ontribution: We investigate approximation algo-rithms for single disk systems as well as algorithms for 
om-puting optimal s
hedules in parallel disk systems. In Se
-tion 2 we study the single disk problem and �rst present are�ned analysis of the Aggressive algorithm, showing thatthe analysis by Cao et al. [5℄ was too pessimisti
. We provethat Aggressive a
hieves an approximation ratio of minf1+F=(k + b kF 
 � 1); 2g in the elapsed time measure. Com-pared to the bound of Cao et al. there is an additionalb kF 
 � 1 in the denominator of the �rst term. If k=F islarge, whi
h is true in most pra
ti
al appli
ations, the newbound is mu
h lower. Kimbrel and Karlin [12℄ mentionedthat in pra
ti
e k=F is typi
ally at least 200. We also showthat our analysis is tight. For any F and k, the approx-imation ratio of Aggressive is in general not smaller thanminf1+F=(k+ k�1F�1 ); 2g. Sin
e Aggressive is the most pop-ular algorithm for integrated prefet
hing and 
a
hing, it isimportant to know its true approximation guarantee.We also give improved approximation ratios if k=F issmall. More generally, we present a new family of algo-rithms for integrated prefet
hing and 
a
hing. The algo-rithms, 
alled Delay(d), delay the next fet
h operation ford time units, for any �xed non-negative integer d. Settingd = 0, Delay(d) is equal to the standard Aggressive strat-egy; for d = j�j we obtain Conservative. Hen
e our familyof algorithms bridges the gap between the two 
lassi
al al-gorithms for prefet
hing and 
a
hing. As mentioned above,fet
hing blo
ks too early 
an have a negative in
uen
e onthe 
a
he 
on�guration and redu
e the e�e
tive size of the
a
he. Thus it is natural to investigate the e�e
t of delayingfet
hes by some time units. We analyze Delay(d) for any



d and show that, surprisingly, the best 
hoi
e of d gives anapproximation ratio of p3 � 1:73. Combining this strategywith Aggressive, we obtain an algorithm that a
hieves anapproximation ratio of minf1 + F=(k + b kF 
 � 1);p3g andhen
e performs better than both Conservative and Aggres-sive.In Se
tion 3 we investigate the problem of minimizing stalltime onD parallel disks. We present a polynomial time algo-rithm that, given a request sequen
e �, 
omputes a s
hedulewhose stall time is bounded by that of an optimal solutionfor �. The solution uses at most 3(D � 1) extra memorylo
ations in 
a
he. In pra
ti
e D is small, typi
ally 4 or 5.Thus at the expense of slightly in
reasing the extra memoryresour
es, we are able to improve the best previous approx-imation guarantee from D to 1. In fa
t our algorithm isthe �rst polynomial time strategy for 
omputing s
heduleswith a minimum stall time. Our algorithm is based on thelinear programming approa
h of [1℄. However, in order toobtain solutions with a smaller stall time, we introdu
e thenew 
on
ept of syn
hronized s
hedules in whi
h fet
hes onthe D disks are performed 
ompletely in parallel. We showthat there exist syn
hronized s
hedules that a
hieve a min-imum stall time provided that they may use D � 1 extramemory lo
ations in 
a
he. Using linear programming wethen 
ompute an optimal syn
hronized solution that usesD�1 extra 
a
he lo
ations. Applying te
hniques from [1℄ wetransform an optimal fra
tional solution into an integral so-lution. Compared to [1℄, our transformation algorithm mustuse a di�erent s
heme for assigning blo
ks to be evi
ted inthe integral solution.
2. APPROXIMATION ALGORITHMS FOR

A SINGLE DISKThroughout this se
tion approximation ratios refer to theelapsed time performan
e measure. The Aggressive algo-rithm works as follow. Whenever the algorithm is not pre-fet
hing a blo
k, it initiates a prefet
h for the next missingblo
k in the sequen
e provided it 
an evi
t a blo
k from
a
he that is not requested before the blo
k to be fet
hed.In this 
ase it evi
ts the blo
k whose next referen
e is fur-thest in the future.Theorem 1. The approximation ratio of Aggressive is atmost minf1 + F=(k + b kF 
 � 1); 2g.Our upper bound proofs in this se
tion are based on thedominan
e 
on
ept introdu
ed by Cao et al. [5℄. Given a re-quest sequen
e � = r1; : : : ; rn 
onsisting of n requests and aprefet
hing algorithm A, let 
A(A) be the index of the nextrequest at time t when A serves �. Let HA(i) be the set ofblo
ks not present in A's 
a
he when the next referen
e isri. Let hA(i; j), hA(i; j) � i, be the smallest index su
h thatexa
tly j di�erent blo
ks in HA(i) are referen
ed in the sub-sequen
e 
onsisting of request i up to (and in
luding) requesthA(i; j). Intuitively, hA(i; j) is the index of the �rst refer-en
e to the j-th blo
k not present in 
a
he after ri�1. IndexhA(i; j) is also referred to as A's j-th hole. The parameterj varies between 1 and n � k. Given two prefet
hing algo-rithms A and B, A's 
ursor at time t dominates B's 
ursorat time t' if 
A(t) � 
B(t0). We say that A's holes at time tdominate B's holes at time t0 if hA(
A(t); j) � hB(
B(t0); j)for all j. Combining these two de�nitions we say that A'sstate at time t dominates B's state at time t' if A's 
ursor

at time t dominated B's 
ursor at time t0 and A's holes attime t dominate B's holes at time t0. Cao et al. [5℄ provedthe following domination lemma.Lemma 1. Suppose that algorithm A (resp. algorithm B)initiates a prefet
h at time t (resp. t0) and both algorithmsprefet
h the next missing blo
k and repla
e the blo
k whosenext referen
e is furthest in the future. Suppose that A'sstate at time t dominates B's state at time t0. Then A'sstate at time t+ F dominates B's state at time t0 + F .Proof of Theorem 1. We assume F � k and prove anupper bound of 1 + F=(k + b kF 
 � 1) on Aggressive's ap-proximation ratio. If F > k, then our bound implies a 2-approximation, whi
h was already shown by Cao et al. [5℄.The global stru
ture of our proof is similar to that of Cao etal. and we des
ribe the di�eren
e. Let OPT be an optimalprefet
hing algorithm. We partition the given request se-quen
e into phases su
h that ea
h phase 
onsists of exa
tlyk + b kF 
 � 1 
onse
utive requests. We prove by indu
tionon the number of phases that the following invariant holds.During ea
h phase i there is a time t su
h that Aggressive'sstate at time t dominates OPT's state at time t0 � t � iF .This implies that Aggressive needs at most F � (number ofphases) more time units than OPT to serve the entire re-quest sequen
e, and on the average it spends at most F extratime units in ea
h phase. Cao et al. divided the request se-quen
e into di�erent phases whi
h 
onsisted potentially ofonly k requests. This resulted in a higher upper bound.To establish the invariant 
onsider a phase i and assumethat at time t during phase i Aggressive's state dominatesOPT's state at time t0 � t � iF . We show that for alltimes � > 0 su
h that Aggressive is in phase i at time t+ � ,
A(t+ �) � 
OPT (t0 + �), where 
A(t) is Aggressive's 
ursorposition at time t. We distinguish two 
ases. (1) Duringphase i, Aggressive never evi
ts a blo
k from 
a
he that isrequested again in phase i. (2) During phase i, Aggressivedoes evi
t blo
ks that are requested again in the phase. The�rst 
ase is easy to analyze. While Aggressive serves a sub-sequen
e of requests without fet
hing blo
ks, the 
ursor ad-van
es one request in ea
h time step and hen
e OPT's 
ursor
annot pass Aggressive's 
ursor. During the servi
e and inparti
ular at the end of this subsequen
e Aggressive's holesdominate OPT's holes be
ause the k blo
ks in Aggressive's
a
he are all requested before any blo
k not in 
a
he andthus the holes o

ur at the latest possible positions. WhileAggressive performs a series of fet
hes, Aggressive's holesalways dominate OPT's holes be
ause no further holes areintrodu
ed in the phase. Hen
e Aggressive's 
ursor 
annotfall behind OPT's 
ursor and repeating these two argumentswe obtain the desired inequality.We next 
onsider 
ase (2). Let l; 1 � l � k + bFk 
 � 1, bethe smallest index su
h that Aggressive, while pro
essing thephase, evi
ts the blo
k referen
ed by the l-th request in thephase. Let t00; t00 � t, be the time when Aggressive initiatesthe prefet
h in whi
h this blo
k is evi
ted. Obviously l > kbe
ause when Aggressive fet
hes a blo
k during the �rst krequests it 
an always evi
t a blo
k from 
a
he that is notreferen
ed during the next k requests. Let l = k + j, forsome j � 1. When Aggressive initiates the prefet
h at timet00, there 
an be at most j blo
ks missing in 
a
he that arerequested until the l-th request in the phase. If there weremore than j su
h blo
ks, then Aggressive 
ould evi
t a blo
k



whose next request has an index larger than k+ j. Thus thealgorithm has to exe
ute at most j + b kF 
 � 1 � j + 1 =b kF 
 fet
hes (in
luding the one just initiated) to bring allblo
ks into 
a
he that are still requested in the phase. Wedistinguish again two 
ases depending on whether or notthese fet
hes are exe
uted immediately one after the other.Between time t and t00 Aggressive never fet
hes a blo
kthat is not requested during the �rst l � 1 requests of thephase. Otherwise ther would be a time where all blo
ksrequested up to the l-th request are in 
a
he and Aggressiveinitiates a fet
h for a blo
k that is requested after the blo
kevi
ted. Thus all blo
ks fet
hed between t and t00 were notin 
a
he at time t and using the same arguments as in 
ase(1) we obtain that 
A(t + �) � 
OPT (t0 + �) for all � with� � t00 � t. At time t00 the l-th request of the phase is atleast k requests away from the 
urrent request be
ause wheninitiating a fet
h Aggressive 
an always evi
t a blo
k from
a
he that is not requested during the next k referen
es.Now suppose that the at most b kF 
 fet
hes after time t00 areexe
uted immediately one after the other. Aggressive �rstfet
hes the j0, j0 � j, blo
ks that are missing up to the l-th request of the phase. By the 
hoi
e of l all these blo
kswere also missing at the beginning of the phase and againAggressive's 
ursor always dominates OPT's 
ursor duringthese fet
hes. After the servi
e of at most j0F additionalrequests after time t00 these fet
hes are 
omplete. During thenext k�j0F � b kF 
F�j0F = (b kF 
�j0)F requests Aggressive
an 
omplete all the remaining fet
hes for blo
ks in the phaseand hen
e 
ompletes these fet
hes before the l-th request.No stall time is in
urred and Aggressive's 
ursor dominatesOPT's 
ursor. During the rest of the phase Aggressive doesnot in
ur stall time either and again its 
ursor dominatesOPT's 
ursor.We �nally 
onsider the 
ase that the at most b kF 
 fet
hesafter t00 are not exe
uted immediately one after the other.Let l0 be the index of the last request in the phase su
h thatat least one of the fet
hes still has to be exe
uted but nofet
h is performed during the servi
e of the request. Lets be the time when Aggressive rea
hes this request. As inthe previous paragraph we 
an show that Aggressive's 
ur-sor dominates OPT's 
ursor between t00 and s: Aggressive�rst fet
hes missing blo
ks that are referen
ed before thel-th request of the phase and hen
e were missing at the be-ginning of the phase. Aggressive's 
ursor 
annot fall behindOPT's 
ursor. Then Aggressive fet
hes some blo
ks thatare requested during the l-th request of the phase or later.This 
an be done without in
urring any stall time be
ausel0 � k < l. To see the �rst inequality, observe that attime s the next k requests are in 
a
he be
ause no fet
h isperformed; however blo
ks requested in the phase are stillmissing in 
a
he and b kF 
 � 1 < k. Again Aggressive's 
ur-sor 
annot fall behind OPT's 
ursor. After time s Aggressive
an fet
h the at most b kF 
 missing blo
ks of the phase with-out generating any stall time. This is be
ause l > k impliesb kF 
 � 1 > 0 and hen
e F � k � 1. Aggressive's 
ursordominates OPT's 
ursor for the rest of the phase. We 
on-
lude, as desired, 
A(t+�) � 
OPT (t+�), for all � su
h thatAggressive is still in the phase at time t+ � .The rest of the proof is identi
al to that of Cao et al.Let t + t0; t + t1; : : : ; t + tr be the 
ursor positions whereAggressive initiates fet
hes after time t but still within the
urrent phase. If OPT is exe
uting a fet
h at time t+tq ; 0 �q � r, then let t+t0q be the time when this fet
h was initiated;

otherwise let t0q = tq. Cao et al. proved indu
tively thatAggressive's state at time t + tq dominates OPT's state attime t0 + t0q and that Aggressive's state at time t + tr + Falso dominates OPT's state at time t0 + t0r + F . The proofmakes no assumptions on the phase length and only relieson the fa
t that 
A(t + �) � 
OPT (t0 + �), for all � su
hthat Aggressive is still in phase i. Thus we also have thatAggressive's state at time t+ tr +F dominates OPT's stateat time t0+t0r+F � t0+tr. We 
on
lude that Aggressive is inphase i+1 at time T = t+tr+F and that its state dominatesOPT's state at time t0+ tr � t� iF + tr � T � (i+1)F .Theorem 2. The approximation ratio of Aggressive is ingeneral not smaller than minf1 + F=(k + k�1F�1 ); 2g, for anyF > 1.
Proof. We assume F � k. For F > k, a lower bound of 2was already shown by Cao et al. [5℄. Consider any pair F andk su
h that F�1 divides k�1 and let l = k�1F�1 . We 
onstru
ta request sequen
e in phases, ea
h 
onsisting of k+l requests.In ea
h phase we request blo
ks a1; : : : ; ak�l. In phase i; i �1, we request l new blo
ks bi1; : : : ; bil whi
h have not beenreferen
ed before in the sequen
e. These are requested atthe end of the phase. After the requests to a1 we requestthe new blo
ks bi�11 ; : : : ; bi�1l from the previous phase, andthese blo
ks will not be requested again during the rest ofthe sequen
e. Suppose that Aggressive has initially blo
ksa1; : : : ; ak�l and b01; : : : ; b0l in its 
a
he. Then the �rst threephases are as follows.� = a1; b01; : : : ; b0l ; a2; : : : ; ak�l; b11; : : : ; b1l ; ==phase 1a1; b11; : : : ; b1l ; a2; : : : ; ak�1; b21; : : : ; b2l ; ==phase 2a1; b21; : : : ; b2l ; a2; : : : ; ak�l; b31; : : : ; b3l ; : : : ==phase 3In the �rst phase Aggressive starts fet
hing the missingblo
ks b11; : : : ; b1l after the servi
e of a1. It �rst evi
ts a1 andthen blo
ks b01; : : : ; b0l�1 sin
e the latter are not requestedagain. Aggressive needs l �F = k�1F�1 �F = k�1+ l time unitsto 
omplete the fet
hes and hen
e has one unit of stall timebefore the servi
e of b1l . Aggressive then loads the missingblo
k a1 by evi
ting b0l and in
urs F � 1 units of stall time.At the beginning of phase 2 Aggressive has blo
ks a1; : : : ak�land b11; : : : ; b1l in its 
a
he. The situation is the same as at thebeginning of phase 1 ex
ept that the b1j take the role of theb0j and the b2j take the role of the b1j ; j = 1; : : : ; l. The samepattern repeats during the other phases. Thus Aggressiveneeds k + l + F time units to serve a phase. On the otherhand, an optimal strategy starts fet
hing the missing blo
ksin any phase i after the servi
e of bi�11 and 
an thus evi
tthe blo
ks bi�11 ; : : : ; bi�1l to load bi1; : : : ; bil . OPT in
urs twounits of stall time in ea
h phase and needs k + l + 2 timeunits for any phase. The ratio of Aggressive's time to theoptimal time is 1 + (F � 2)=(k + k�1F�1 + 2) and this 
an bearbitrarily 
lose to the stated bound.In addition to the Aggressive algorithm Cao et al. [5℄ pro-posed the Conservative strategy. Conservative performs ex-a
tly the same repla
ements as the optimum o�ine pagingalgorithm MIN [3℄ while initiating a fet
h at the earliest op-portunity that is 
onsistent with the 
hoi
e of the blo
k to beevi
ted. We now present a family of algorithms that 
ontainsAggressive and Conservative at two ends of its spe
trum.Using this family we 
onstru
t an algorithm that performs



better than Aggressive and Conservative. Let d be a non-negative integer. Intuitively the following algorithm delaysa fet
h for d time units.Algorithm Delay(d): Let ri be the next request to beserved and rj ; j � i, the next referen
e where the requestedblo
k is missing in 
a
he. If all blo
ks in 
a
he are requestedbefore rj , serve ri without initiating a fet
h. Otherwise letd0 = minfd; j� ig and let b be the blo
k whose next requestis furthest in the future after request ri+d0�1. Initiate a fet
hfor rj at the earliest point in time after ri�1 su
h the evi
tedblo
k b is not requested again before rj .Obviously, for d = 0 we obtain the standard Aggressivestrategy. For d = n; n being the length of the request se-quen
e, we obtain the Conservative algorithm. Before prov-ing the next theorem, we mention a few impli
ations.Theorem 3. For any non-negative integer d, Delay(d)a
hieves an approximation ratio of
 = maxf d+FF ; d+2Fd+F ; 3(d+F )d+2F g.Corollary 1. Setting d0 = b 12 (p3� 1)F 
, the approxi-mation ratio 
0 of Delay(d0) tends to p3.Algorithm Combination: If 
0 < 1+F=(k+b kF 
�1), ex-e
ute Delay(d0), otherwise exe
ute the standard Aggressivestrategy.Corollary 2. The approximation ratio of Combinationis minf1 + F=(k + b kF 
 � 1); 
0g, whi
h tends to minf1 +F=(k + b kF 
 � 1);p3g.Proof of Theorem 3. In the following we 
all our ap-proximation algorithm DL for short, omitting the given pa-rameter d. We partition the prefet
hing/
a
hing s
heduleby DL and OPT into segments SiDL and SiOPT ; i � 1, su
hthat DL's state at the end of SiDL dominates OPT's state atthe end of SiOPT and the length of SiDL is at most 
 timesthe length of SiOPT , where 
 = maxf d+FF ; d+2Fd+F ; 3(d+F )d+2F g.This establishes the theorem. The segments SDL have theproperty that DL is never in the middle of a fet
h at the endof SiDL. Suppose that S1DL; : : : ; SiDL and S1OPT ; : : : ; SiOPThave been 
onstru
ted so far. Let t be the time at the endof SiDL and t0 be the time at the end of SiOPT . We show howto 
onstru
t the next segments Si+1DL and Si+1OPT . If we are atthe beginning of the request sequen
e and no segments havebeen 
onstru
ted so far, we set t = t0 = 0 and show how tobuild up the �rst segments.DL's next segment starts immediately after t and OPT'snext segment starts immediately after t0. We have to deter-mine where the segments end and use s to denote the end ofDL's segment and s0 to identify the end of OPT's segment.If at time t all k blo
ks in DL's 
a
he are requested beforethe next missing blo
k, the segments are easily spe
i�ed.Suppose that DL serves Æ requests after t without initiatinga fet
h be
ause all blo
ks in 
a
he are requested before thenext missing blo
k. Then DL's 
ursor at time s = t+Æ dom-inates OPT's 
ursor at time s0 = t0 + Æ and DL's holes attime s also dominate OPT's holes at time s0 be
ause DL'sholes o

ur at the latest possible positions. We have thedesired domination and the two segments have in fa
t thesame length.In the following we always assume that at time t thereis a blo
k in DL's 
a
he that is referen
ed again only after

the next blo
k to be fet
hed and hen
e DL 
an initiate afet
h. Assume that DL needs D1; D1 � d + F , time unitsafter t to 
omplete the next fet
h. If OPT does not initiatea fet
h during the next D1 time units after t0, then we aredone. DL's 
ursor at time s = t + D1 dominates OPT's
ursor at time s0 = t0 +D1. This is obvious if DL does notin
ur stall time to 
omplete the fet
h. If DL does in
ur stalltime, then DL fet
hes the blo
k referen
ed right after t+D1.OPT's 
ursor 
annot pass DL's 
ursor be
ause DL's holesat time t dominate OPT's holes at time t0. Sin
e OPT'sholes do not 
hange between t0 and s0 DL's holes at time salso dominate OPT's holes at time s0. Again we have thedesired domination and DL's and OPT's segments have thesame length.We therefore assume in the following that OPT initiatesa fet
h during the next D1 time units after t0. Suppose thatDL serves exa
tly d1 requests after t and that OPT servesd01 after t0 before initiating the next fet
h. If d01 � d1, theanalysis is simple. DL's state at time t+d1 dominates OPT'sstate at time t0+d01 and by the Lemma 1 DL's state at times = t + d1 + F = t + D1 dominates OPT's state at times0 = t0+ d01+F: The ratio of DL's segment length to OPT'ssegment length is at most D1=(d01 + F ) � (d + F )=F . Ifd01 > d1 but d01 � d, then let ri be the next request to beserved by DL and rj be the lo
ation of the next hole at timet. Set �d = minfj � i; d01g. Imagine we would modify DL asfollows. After time t DL serves �d requests before initiating afet
h for rj . During this fet
h it evi
ts the blo
k whose nextreferen
e is furthest in the future. Sin
e DL's state at time tdominates OPT's state at time t0, the modi�ed algorithm'sstate at time t+ �d dominates OPT's state at time t+d01. ByLemma 1 the modi�ed algorithm's state at time t + �d + Fdominates OPT's state at time t0 + d01 + F . By de�nitionthe original DL algorithm may delay a fet
h for d requestsand hen
e the blo
k evi
ted during the �rst fet
h after t isequal to the blo
k evi
ted by the modi�ed algorithm duringthe �rst fet
h after t. We obtain that DL's holes at times = t+D1 dominate OPT's holes at time t0+ d01+F , whi
hare equal to OPT's holes at time s0 = minft0+D1; t0+ d01+Fg. Also, DL's 
ursor at time s dominates OPT's 
ursorat time s0 be
ause if DL in
urs stall time to 
omplete thefet
h then OPT's 
ursor 
annot pass be
ause its holes weredominated by DL's holes. In summary we have dominationand the ratio of the segment length is upper bounded byD1=F � (d+ F )=F .In the remainder of this proof we assume d01 > d. If attime t + D1 the k blo
ks in DL's 
a
he are all referen
edbefore the next missing blo
k, then the segments are easilydetermined. OPT needs D01 = d01+F time units to 
ompletethe �rst fet
h after t0. If DL does not in
ur stall time to
omplete the �rst fet
h, then its 
ursor at time s = t +D1dominates OPT's 
ursor at time t0 +D1. If DL does in
urstall time, then OPT's 
ursor 
annot passDL's 
ursor duringthe �rst fet
h be
ause DL's holes at time t dominate OPT'sholes at time t0. In this 
ase DL's 
ursor at time s dominatesOPT's 
ursor at time t0 +D1. Thus DL's 
ursor at time sdominates OPT's 
ursor at time s0 = minft0 +D1; t0 +D01gand DL's holes at time s dominate OPT's holes at time s0be
ause DL's holes o

ur at the latest possible positions.The ratio of DL's segment length to OPT's segment lengthis at most D1=F � (d+F )=F be
ause F � D1 � d+F andD01 � F .It remains to analyze the 
ase that d01 > d and at time



t+D1 there is a blo
k in DL's 
a
he that is referen
ed afterthe next missing blo
k. Let D2 = d2 + F be the number oftime units after t+D1 DL needs to 
omplete the next fet
h.We have d2 � d by the de�nition of DL. We distinguishtwo 
ases. (1) d1 + d2 � d01 and (2) d1 + d2 = d01 + Æ forsome positive integer Æ. We �rst 
onsider 
ase (1). We havethat DL's state at time t + D1 dominates OPT's state attime t + d01. The reason is that DL's 
ursor at time t +D1dominates OPT's 
ursor at time t+d01 be
ause OPT initiatesthe �rst fet
h after t0 within the nextD1 time units and DL'sholes at time t dominate OPT's holes at time t0, i.e. OPT's
ursor 
annot pass DL's 
ursor during the �rst fet
h. Sin
eOPT's holes do not 
hange between t0 and t0+d01, DL's holesat time t + D1 also dominate OPT's holes at time t + d01.Sin
e DL's state at time t + D1 dominates OPT's state attime t + d01, DL's state at time t +D1 + d2 also dominatesOPT's state at time t + d01 and by Lemma 1 DL's state attime s = t +D1 + d2 + F = t +D1 +D2 dominates OPT'sstate at time s0 = t0 + d01 + F = t0 + D01. The ratio of thesegment lengths is (D1 +D2)=D01 � (d01 + 2F )=(d01 + F ) �(d+ 2F )=(d+ F ).We next study 
ase (2). First observe that DL's 
ursor attime t+D1+d2 dominates OPT's 
ursor at time t0+D1+d2.This is obvious if DL does not in
ur stall time to 
ompletethe �rst fet
h. If DL does in
ur stall time, then DL's 
ursorat time t+D1 must dominate OPT's 
ursor at time t0+D01 �t0 +D1 be
ause DL's holes at time t dominate OPT's holesat time t0 and OPT 
annot �nish the �rst fet
h later in thesequen
e than DL. Sin
e DL's 
ursor advan
es one step inea
h of the following d2 time units after t+D1 we have thestated domination for the 
ursors. If OPT does not initiate ase
ond fet
h before t0+D1+d2, then we are done. As in 
ase(1) we have thatDL's state at time s = t+D1+D2 dominatesOPT's state at time t0+D01 = t0+D1+d2� Æ. This impliesthat DL's state at time s dominates OPT's state at times0 = t0+D1+d2 be
ause DL's 
ursor at time s > t+D1+d2dominates OPT's 
ursor at time t0+D1+d2 as shown aboveand OPT's holes do not 
hange between t0+D1+d2�Æ ands0. The ratio of the segment lengths is (D1+D2)=(D1+d2) =(d01 + Æ + 2F )=(d01 + Æ + F ) � (d + 2F )=(d + F ). If OPTdoes initiate a se
ond fet
h before t0 +D1 + d2 but at timet + D1 + D2 all k blo
k in DL's 
a
he are all requestedbefore the next missing blo
k, then DL's state at time s =t+D1+D2 dominates OPT's state at time s0 = t0+D1+d2be
ause DL's holes o

ur at the latest possible positions.The ratio of DL's segment length to OPT's segment lengthis upper bounded by (D1+D2)=(D1+d2) � (d+2F )=(d+F ).We �nally have to 
onsider the 
ase that OPT initiates ase
ond fet
h before t0 + D1 + d2 but at time t + D1 + D2there is a blo
k DL's 
a
he that is requested after the nextmissing blo
k. DL needs D3 = d3+F time units with d3 � dto 
omplete the next fet
h. Suppose that OPT initiates these
ond fet
h at time t0 +D01 + Æ0, with Æ0 � Æ. As above wehave that DL's state at time t+D1 +D2 dominates OPT'sstate at time t0 +D01. This implies that DL's state at timet + D1 + D2 dominates OPT's state at time t0 + D01 + Æ0be
ause DL's 
ursor at time t+D1 +D2 dominates OPT's
ursor at time t0 +D01 + Æ � t0 +D01 + Æ0 and OPT's holesdo not 
hange between t0 +D01 and t0 +D01 + Æ0. It followsthat DL's state at time t+D1 +D2 + d3 dominates OPT'sstate at time t0 + D01 + Æ0 and by Lemma 1 DL's state attime s = t + D1 + D2 + d3 + F dominates OPT's state attime s0 = t0 +D01 + Æ0 + F . DL's segment length is at most

3(d+F ) while OPT's segment length is at least (d+2F ).
3. MINIMIZING STALL TIME IN PARAL-

LEL DISK SYSTEMSIn this se
tion we present a polynomial time algorithm forsystems with D parallel disks that, given a request sequen
e�, 
omputes a prefet
hing/
a
hing s
hedule whose stall timeis at most that of an optimal solution. The s
hedule usesnot more than 3(D � 1) extra memory lo
ations in 
a
he.The basi
 idea is to use the linear programming approa
hof [1℄ but to model the obje
tive fun
tion, whi
h measuresthe stall time of a s
hedule, in a di�erent way. For this pur-pose we 
onsider syn
hronized s
hedules that are de�ned asfollows. Consider a prefet
hing/
a
hing s
hedule for �. Afet
h operation exe
uted from time t1 to time t01 interse
tsa fet
h operation performed from t2 to t02 if there is a t witht1 � t � t01 and t2 � t � t02 but t1 6= t2 (and hen
e t01 6= t02).Clearly, fet
h operations exe
uted on the same disk 
annotinterse
t. A prefet
hing/
a
hing s
hedule is syn
hronizedif no two fet
h operations interse
t. Intuitively, in a syn-
hronized s
hedule fet
h operations on di�erent disks areexe
uted 
ompletely in parallel, starting and ending at ex-a
tly the same time. For a given �, let sOPT (�) be thestall time of an optimal s
hedule for �. We show that thereexist syn
hronized s
hedules that a
hieve a minimum stalltime provided that they may use up to D � 1 extra 
a
helo
ations.Lemma 2. For any �, there exists a syn
hronized s
hed-ule that a
hieves a stall time of at most sOPT (�) and usesnot more than D � 1 extra memory lo
ations in 
a
he.Proof. Let S be an optimal prefet
hing/
a
hing s
hed-ule using k 
a
he lo
ations. We show how to modify S sothat the resulting s
hedule is syn
hronized and the stall timedoes not in
rease. Suppose that (a) up to time t s
heduleS is syn
hronized and uses at most D � 1 extra 
a
he lo-
ations and (b) from time t on the s
hedule is not syn
hro-nized but uses no extra 
a
he lo
ations. Moreover assumethat at time t a fet
h operation is initiated that interse
tsfet
hes on other disks. (Initially, t is the �rst point in timeat whi
h a fet
h operation interse
ting other fet
hes starts.)Let t0 be the time when the fet
h ends. Suppose that thefet
h from t to t0 interse
ts d, 1 � d � D � 1, fet
hes onother disks. Let t1; : : : ; td be the times when these fet
hesstart. Furthermore, let a1; : : : ; ad be the blo
ks fet
hed andb1; : : : ; bd be the blo
ks evi
ted during these fet
h opera-tions. The s
hedule is now modi�ed as follows. We deletethe fet
h operations initiated at times t1; : : : ; td and insteadfet
h a1; : : : ; ad into the D � 1 available extra 
a
he lo
a-tions starting at time t. At time t0, when these fet
hes end,we evi
t b1; : : : ; bd from 
a
he so that the D� 1 extra 
a
helo
ations are again available. The stall time does not in-
rease during this modi�
ation be
ause a possible stall timein
urred at the end of the fet
h at time t0 was already neededfor the original fet
h from t to t0. At the end of the fet
hblo
ks b1; : : : ; bd are available for evi
tion be
ause bi wasavailable at time ti � t0, 1 � i � d. From time t0 on thes
hedule uses only k 
a
he lo
ations. Repeating this stepfor times t, t > t0, at whi
h interse
ting fet
hes are initi-ated, we obtain a syn
hronized s
hedule with stall time atmost sOPT (�).



We now des
ribe a 0-1 linear program for 
omputing anoptimal syn
hronized prefet
hing/
a
hing s
hedule that usesk+D� 1 
a
he lo
ations. Let n be the number of requestsin the given sequen
e �. The linear program has to deter-mine the intervals in whi
h the syn
hronized fet
hes are per-formed. As in [1℄ we 
onsider intervals I = (i; j) of lengthat most F in the request sequen
e, i = 0; : : : ; n � 1 andj = 1; : : : ; n. The length of an interval is jIj = j � i � 1.Su
h an interval represents a fet
h that starts after requestri and ends before rj . Sin
e a fet
h takes F time units,F � jIj units of stall time are in
urred at the end of I. Forea
h su
h interval we introdu
e a variable x(I) that is 1if (syn
hronized) fet
hes are performed in interval I and 0otherwise. The stall time of a syn
hronized s
hedule is easyto 
ompute; it is just the sum of the stall times in
urredat the end of fet
h intervals. Thus we wish to minimizePI x(I)(F � jIj).The rest of the linear program is similar to that givenin [1℄, ex
ept that several 
onstraints simplify. We say thatin interval (i; j) is properly 
ontained in an interval (i0; j0),i.e. (i; j) � (i0; j0), if i � i0 and j � j0. We have to ensurethat at any time only one set of syn
hronized fet
hes is per-formed. Therefore, for any i with 1 � i � n� 1 we add the
onstraint P(i�1;i+1)�I x(I) � 1.The linear program also has to determine the blo
ks tobe fet
hed and evi
ted in ea
h interval. We assume withoutloss of generality that the 
a
he initially 
ontains a set Sinitof k+D�1 blo
ks from disk 1 whi
h are never requested in�. Let Sd be the set of blo
ks in � that are stored on disk d,1 � d � D, and let S = S1[: : :[SD[Sinit. For any intervalI and any blo
k a 2 S we introdu
e a variable fI;a that is1 if a is fet
hed in interval I and 0 otherwise. Furthermore,for any I and any blo
k a 2 S there is a variable eI;a thatis 1 if a is evi
ted in I and 0 otherwise. We have to ensurethat, for any interval I and any disk d, 1 � d � D, only oneblo
k from disk d is fet
hed. Of 
ourse su
h a fet
h 
an onlybe performed if x(I) = 1. Thus we add8I; dXa2Sd fI;a � x(I):We also have to make sure that in ea
h interval the numberof blo
ks fet
hed is equal to the number of blo
ks evi
ted,i.e. we have 8IXa2S fI;a =Xa2S eI;a:When a request is served, the requested blo
k must be in
a
he. For any a 2 S1 [ : : : [ SD let i1 < i2 < : : : < ilbe the indi
es of the requests to a. We add the 
onstraintsPI�(0;i1) fI;a = 1 and PI�(0;i1) eI;a = 0, whi
h guaran-tee that a is in 
a
he at the time of its �rst request. Weadditionally impose, for j = 1; : : : ; l � 1,XI�(ij ;ij+1) fI;a = XI�(ij ;ij+1) eI;a � 1;whi
h implies that if a is in 
a
he at the time of its jthreferen
e then it is also in 
a
he at the time of its (j + 1)streferen
e. Finally we have PI�(il;n) eI;a � 1. Of 
ourse, ablo
k may not be fet
hed or evi
ted when it is referen
ed.Thus we have, for j = 1; : : : ; l,XI:(ij�1;ij+1) fI;a = XI:(ij�1;ij+1) eI;a = 0:

With respe
t to the blo
ks a 2 Sinit we only requirePI�(0;n) eI;a � 1.We have nminfF+1; ng variables x(I) and O(n2minfF+1; ng) variables fI;a and eI;a. Note that we 
an assumek � n sin
e otherwise we 
ould simply load the requestedblo
ks into 
a
he and then serve all requests. Also, we 
anassume D � n be
ause otherwise we just ignore the disksthat do not 
ontain a blo
k requested in �. Relaxing the0-1 variables to 0 � x(I); fI;a; eI;a � 1, we 
an 
omputein polynomial time a solution whose value is bounded bysOPT (�). The idea of the following analysis is to show that afra
tional solution to the relaxed linear program is a 
onvex
ombination of polynomially many integral solutions. We
an then sele
t one of these integral solutions and a
hieve aminimum stall time.Let I = fIjx(I) > 0g. As is [1℄ we 
an modify the fra
-tional solution su
h that for any two intervals I = (i; j) andI 0 = (i0; j0) in I with I � I 0 we have i = i0 or j = j0, i.e.intervals share a 
ommon endpoint if one is properly 
on-tained in the other. Based on this relation we 
an de�ne alinear order < on I. The intervals are ordered by in
reasingstartpoints and, if intervals have the same startpoint, theyare ordered by in
reasing endpoints.In order to be able to apply te
hniques from [1℄ it is
ru
ial that in ea
h interval I 2 I all D disks fet
h anamount of exa
tly x(I). Clearly, there is at least one diskd withPa2Sd fI;a = x(I) sin
e otherwise we 
ould de
reasex(I). To establish this property for all I and d, we s
hed-ule dummy fet
hes on the idle disks in I. Sin
e these fet
hesmust not 
hange the 
on�guration of the k+D�1 
a
he lo
a-tions, we introdu
e D�1 additional 
a
he positions that ini-tially 
ontainD�1 blo
ks b01; : : : ; b0D�1 from disk 1 whi
h arenever requested in �. We then 
onsider the intervals in I inthe order of <. Let I be the jth interval 
onsidered. For anyof the at most D�1 disks d with Æd = x(I)�Pa2Sd fI;a > 0we fet
h a new blo
k bjd from disk d to an extent of Æd andevi
t an amount of Æd of the blo
ks bl1; : : : ; blD�1 with thesmallest index l that reside in the extra D � 1 
a
he lo
a-tions. Blo
ks bjd, 1 � d � D and j > 0 are never requestedin �. The dummy blo
ks keep disks busy that are originallyidle. It is suÆ
ient to use at D� 1 
a
he lo
ations be
ause,as mentioned before, in ea
h interval there is at least onedisk that fet
hes to an extent of x(I).We modify the optimal fra
tional solution even further.More spe
i�
ally, it is an easy exer
ise to show that thereis an optimal fra
tional solution that satis�es the followingproperties on the fet
hes and evi
tions. Consider the inter-vals in the order < and let C denote the 
a
he 
on�gurationafter we have performed fet
hes and evi
tions 
orrespondingto the �rst j intervals in the order. Let I be the (j + 1)stinterval.� For any d, 1 � d � D, we fet
h the blo
k from disk dthat is not 
ompletely in C and whose next referen
eis earliest.� If we evi
t a blo
k from disk d in I, then it is the blo
kfrom disk d whi
h is partially or 
ompletely in C andwhose next referen
e is furthest in the future.Based on these properties it is possible to view the prefet
h-ing/
a
hing s
hedule as a pro
ess over time. For any I 2 I,de�ne dist(I) = PI0<I x(I 0), i.e. dist(I) is the sum of thex(I 0) where I 0 pre
edes I in the order <. The time in-terval asso
iated with I is [dist(I); dist(I) + x(I)℄. Hen
e



there is a unique interval I asso
iated with ea
h time. Forany interval I 2 I and any disk d, 1 � d � D, we sortthe blo
ks fet
hed from disk d in I by in
reasing order oftheir next referen
e. Let a1; : : : ; al be the blo
ks in this or-der. Blo
k ai is fet
hed for fI;ai time units starting at timedist(I) +Pi�1j=1 fi;aj . Hen
e at ea
h time instant we fet
h aunique blo
k from ea
h disk.As in [1℄, for any t in the range [0; 1), we 
onstru
t anintegral feasible solution that uses D � 1 
a
he lo
ations inaddition to the k+2(D�1) lo
ations we already use. Let Itbe the set of intervals I in I asso
iated with time instan
esti = t + i, for all i � 0. Ea
h interval I in It is part of thesolution for t. If I 2 It is the interval asso
iated with timeti, then for any disk d we fet
h the blo
k that is loaded fromdisk d at time ti. The algorithm for assigning evi
tions isslightly di�erent from the one des
ribed in [1℄. We maintaina set Qt that is initially empty and 
onsider the intervals inI in the order <. Let I be the 
urrent interval and a1; : : : ; albe the blo
ks evi
ted in I. If aj , 1 � j � l, is fet
hed ba
kat time ti, for some i � 0, before its next referen
e, thenadd aj to Qt. If I 2 I and Qt 
urrently 
ontains at least Dblo
ks, then remove D arbitrary blo
ks from Qt and evi
tthem during I. If Qt 
urrently 
ontains less than D blo
ks,then remove only these available blo
ks and evi
t them inI. Lemma 3. For any t 2 [0; 1), solution It is an integralfeasible solution that uses a total of at most k + 3(D � 1)
a
he lo
ations.Proof. The intervals in It are disjoint. Moreover, bythe de�nition of our algorithm for s
heduling evi
tions, ea
hblo
k that is assigned to Qt and hen
e evi
ted in an intervalof It is also fet
hed ba
k before its next referen
e in aninterval of It. Hen
e It is a feasible solution. The optimalfra
tional solution used to 
onstru
t It uses 2(D � 1) extramemory lo
ations in 
a
he. We will show that at most D�1intervals in It do not have an evi
tion assigned. If we loadthe blo
ks fet
hed in those intervals intoD�1 extra memorylo
ations, then It is a feasible solution that uses at most3(D � 1) extra 
a
he lo
ations.Consider our algorithm for s
heduling evi
tions and sup-pose that we just �nished pro
essing interval I 2 I. Forany disk d let sd the last point in time su
h that disk dfet
hes a blo
k that has been evi
ted in intervals I 0 � I butnot yet been fet
hed ba
k at time instan
es 
orrespondingto I 0 � I. Suppose that there exists a time before sd su
hthat disk d fet
hes a blo
k that has not yet been evi
ted inintervals I 0 � I. Let s0d be the earliest point in time withthe property and let ad be the blo
k fet
hed at this point intime. Let bd be any blo
k that has been evi
ted in intervalsI 0 � I and is fet
hed ba
k after s0d. Sin
e bd is fet
hed afterad the next referen
e to bd must be after the next referen
eto ad. The last evi
tion of bd in intervals I 0 � I must be anevi
tion where bd is dis
arded to an extent of 1. If bd weredis
arded only partially, then our optimal fra
tional solutionwould have evi
ted the rest of bd in the operations where adis evi
ted be
ause bd's next referen
e is later. Thus when bdis fet
hed ba
k after s0d it is fet
hed ba
k to an extent of 1and this fet
h is performed 
ontinuously without interrup-tion. This implies that our algorithm added bd to Qt. LetEd be the total amount of evi
tions of blo
ks from disk d upto the 
urrent interval I, i.e. Ed =Pa2SdPI0�I eI0;a. Part

of this amount is fet
hed ba
k 
ontinuously until time s0d.Blo
ks fet
hed ba
k later are, as mentioned before, fet
hedto an extent of 1 and added to Qt. Hen
e, when the algo-rithm �nishes pro
essing I, bEd � t
 + 1 blo
ks from diskd have been assigned to Qt and summing over all disks atotal of PDd=1(bEd � t
 + 1) blo
ks have been assigned toQt. Let X(I) = PI0�I x(I 0). When the algorithm �nishespro
essing I, it has tried to assign D(bX(I) � t
 + 1) evi
-tions be
ause It 
ontains bX(I) � t
 + 1 intervals I 0 withI 0 � I in ea
h of whi
h we s
hedule D fet
hes and evi
tions.Moreover, X(I) = PDd=1 Ed be
ause in our fra
tional solu-tion in ea
h interval I 0 the amount of fet
hes and evi
tionsis exa
tly x(I 0). Hen
eD(bX(I)� t
+ 1)� DXd=1(bEd � t
+ 1)
� D(X(I)� t+ 1)� DXd=1(Ed � t+ 1) +D � 1= D � 1:We 
on
lude that at most D � 1 fet
h operations on thevarious disks to not get an evi
tion assigned.When 
onstru
ting the solutions It as t varies from 0 to1, we obtain a given solution not for just one value of t butfor a range of values. Let 0 = x1 < x2 < : : : < xl = 1 bethe set of values su
h that for all t in the range [xi; xi+1) weobtain the same solution It, 1 � i < l. Hen
e Ix1 ; : : : ; Ixl�1are the di�erent solutions we obtain. Sin
e ea
h Ixj , 1 �j � l � 1, is a syn
hronized s
hedule its stall time s(Ixj ) isequal to the sum of the stall times in
urred by the intervalsin Ixj . Giving Ixj a weight of xj+1 � xj , we obtain thatPl�1j=1(xj+1 � xj)s(Ixj ) is equal to the value of the optimalfra
tional solution. It follows that one of the Ixj a
hievesa stall time that is bounded by the value of the optimalfra
tional solution and hen
e bounded by the minimum stalltime for �. Finding su
h an Ixj is easy and in fa
t we donot even have to 
ompute expli
itely all the Ix1 ; : : : ;Ixl�1 .All we have to do is to 
ompute a t0 su
h that the totalstall time of intervals in It0 is minimum among all It. Forvarying t, the intervals in It only 
hange if an interval I 2 Istarts at some time ti. Thus we only have to 
he
k jIj =O(nminfF+1; ng) values of t. On
e we have determined anoptimal t0, we apply our algorithm to s
hedule the evi
tions.This establishes our main result.Theorem 4. There exists a polynomial time algorithmfor integrated prefet
hing and 
a
hing on D parallel disksthat, given a request sequen
e �, 
omputes a s
hedule whosestall time is at most that of an optimal solution for �. Thes
hedule uses at most 3(D � 1) extra memory lo
ations in
a
he.

4. CONCLUSIONSIn this paper we presented improved prefet
hing/
a
hingalgorithms for single and parallel disk systems. In the sin-gle disk setting an interesting problem is to develop fastalgorithms that a
hieve an even smaller approximation ra-tio with respe
t to the elapsed time performan
e measure.A 
hallenging open problem is to determine the 
omplexityof the parallel disk 
ase: Is it NP-hard to 
onstru
t optimals
hedules or does there exist a polynomial time algorithm?
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