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Abstract

We study a network creation game recently proposed by Fatrik uthra, Maneva, Papadimitriou
and Shenker. In this game, each player (vertex) can cred® (edges) to other players at a costof
per edge. The player’s goal is to minimize the sum consisii(@) the cost of the links he has created
and (b) the sum of the distances to all other players.

Fabrikant et al. [10] conjectured that there exists a canistasuch that, for anyy > A, all non-
transient Nash equilibria graphs are trees. In this papeatisygove the tree conjecture. More precisely,
we show that for any positive integeyp, there exists a graph built by > n( players which contains
cycles and forms a non-transient Nash equilibrium, for anyith 1 < o < y/n/2. Our construction
makes use of some interesting results on finite affine plaDesthe other hand we show that far>
12n log n every Nash equilibrium forms a tree.

The main result of Fabrikant et al. [10] is an upper bound @npttice of anarchy of)(,/«) where
a € [2,n2]. We improve this bound for every. Specifically, we derive a constant upper bound for
a < /n and fora > 12nlogn. For the intermediate values we derive an improved bound(af+
(min{s-, Z1)1/?).

Additionally, we develop characterizations of Nash edpiii and extend our results to a weighted
network creation game as well as to scenarios with costrgpari
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1 Introduction

Network design is a fundamental problem in computer sciandeoperations research. This line of research
assumes a central authority that constructs the networkhasd/arious optimization criteria to fulfill. In
practice, however, many networks are actually formed bifjsbeplayers who are motivated by their own
interests and their own objective function. For instanbe, Internet, networks for exchanging goods and
social networks are all formed by many players and not by gleiauthority. This motivates the research of
network creation by multiple selfish players.

In this work we focus on the later model and allow individuaérts to decide which edges to buy. The
appropriate concept for studying such a scenario is thatshquilibria [18], where no user has the incen-
tive to deviate from his strategy. We analyze the perforraasfcthe resulting network architectures using
the price of anarchy introduced by Koutsoupias and Papadimitriou in their seinpaper [17]. Recently,
Nash equilibria and their associated price of anarchy haem Istudied for a wide range of classical com-
puter problems such as job scheduling, routing, faciligation and, last but not least, network design and
creation, seee.qg.[1, 2, 3,7, 6, 8,11, 10, 13, 15, 17, 20F alsio includes variants of the price of anarchy,
called the price of stability [1, 2, 6].

In this paper we study a network creation game introducedayikant, Luthra, Maneva, Papadimitriou
and Shenker [10]. The game is defined as follows, therexglayers, each of which is associated with a
separate network vertex. These players have to build a ctetheundirected graph. Each player may lay
down edges to other players. Once the edges are instal®dath regarded as undirected and may be used
in both directions. The resulting network is the set of ptay@ertices) and the union of all edges laid out.
The cost of each player consists of two components. Fiisihjayer pays an edge building cost equakto
times the number of edges laid out by him, for same 0. Secondly, the player incurs a connection cost
equal to the sum of the shortest path distances to otherrglayhis game models scenarios in which peers
wish to communicate and transfer data. Each peer incursdavheg cost and pays for the communication
delays to other players.

Formally, we represent the set of players by a vertexiset {1,...,n}. A strategy for a player
v € V, is a set of vertices, C V' \ {v} such thatv creates an edge to evewy € S,. Given a com-
bination of strategies§ = (S51,...,5,), the resulting grapiG(§) = (V, E) consists of the edge set
E = Uyev Uwes, {v,w}. Inour analysis it will sometimes be convenient to assuraéttire edges have a
direction. A directed edgév, w) indicates that the playerbuilt an edge tav. The cost of a playes under
Sis Cost(v,5) = a|Su| + X yevwrs 0(v,w), wheres(v, w) is the length of the shortest path between
andw in G(S).

A combination of strategie$ forms a Nash equilibrium if, for any player € V and every other
combination of strategie§ that differ from S only in v's component,Cost(v, S) < Cost(v,U). The
induced graprG(g) is called the equilibrium graph§ is a strong Nash equilibrium if, for every player
v, strict inequality Cost(v, §) < Cost(v,U) holds. Otherwise, it is aeakNash equilibrium. In a weak
Nash equilibrium at least one player can change its stratéiipput affecting its cost. We will also use the
notion oftransientNash equilibria [10]. A transient Nash equilibrium is a wesdailibrium from which
there exists a sequence of single-player strategy chandpsh do not change the deviator’s cost, leading
to a non-equilibrium position.

For a combination of strategie®, let Cost(S) = 3,y Cost(v, S) be the total cost of all players.
Let Cost(OPT) be the cost of the social optimum that achieves the smaltesstifple value. The price of
anarchy is the worst-case ratitost(S)/ Cost(OPT), taken over all Nash equilibri&.

Previous work: Fabrikant et al. [10] main interest was to analyze the pricanarchy of the game.
They easily observe that, for < 2 anda > n?, it is constant. Their main contribution is an upper bound
of O(y/a) for a € [2,n2]. This upper bound can be as large¥$1) whena = n2. Fabrikant et al. pointed
out that in their constructions as well as in experiments ttingy preformed only tree Nash equilibria were



found. The only exception was the Petersen graph that mmies transient Nash equilibrium. This fact
motivated them to formulateteee conjecturestating that there exists a constahsuch that, for anyx > A,

all non-transient Nash equilibria are trees. In other woedgry Nash equilibrium that has a cycle in the
underlying graph is transient and, in particular, weak. afyn they proved that the price of anarchy is
constant for a tree Nash equilibrium.

In a recent work Corbo and Parkes [5] study the price of ayairckthe model introduced by Fabrikant
et al. with a single variation that the edges are not bougta bingle player but by both players at the end
points of the edge.

There exists a large body of previous work on other netwosigieproblems. Anshelevich et al. [1]
investigate a network design problem where players, inengiwaph, have to connect desired terminal pairs.
They analyze the quality of the best Nash equilibrium undeapey cost sharing. Anshelevich et al. [2]
consider connection games where each player has to consetbéterminals and present algorithms for
computing approximate Nash equilibria. Further work ont ebsring in network design includes [12, 15,
19, 16]. Bala and Goyal [3] study a network formation probi@mwhich players incur cost but also benefit
from building edges to other players. They trade off theso$forming links against the potential reward
from doing so. Haller and Sarangi [13] build on this work afidva player heterogeneity.

Social and economic networks in which each player is a diffevertex in the graph play a major role
in the economic literature. For a recent and detailed rewfsocial and economics models see [14].

Our contribution: In this paper we first show that the tree conjecture is incbrid/e prove that, for any
positive integerng, there exists a graph built by > ng players that contains cycles and forms a strong Nash
equilibrium, for anya with 1 < o < /n/2. The graphs we construct ageodetic i.e. the shortest path
between any two vertices is unique, and have a diameter dhese properties are crucial in showing that
the Nash equilibrium is indeed strong. If a player deviatemfits original strategy and builds less edges or
edges to different players, then — since the original grapk geodetic — the shortest path distance cost
increases substantially. If a player decides to build mdges, then — since the graph has diameéter
the cost saving is negligible. Our construction resortotoe concepts from graph theory and geometry. In
particular, we use results on finite affine planes. To the desur knowledge, these concepts have never
been used in game theoretic investigations and might béuhelpen studying other graph oriented games.

We proceed and give improved upper bounds on the price oflaypa®ur main result here is@nstant
upper bound on the price of anarchy for bath< /n anda > 12n1log n. We prove that it > 12n log n,
the price of anarchy is in fact not larger than 1.5 and goeb &8 « increases. Interestingly, the proof
shows that il > 12n log n, any Nash equilibrium is indeed a tree. For anywve prove an upper bound of
O(1+ (min{%z, %2})1/3). Thus, ifa € O(y/n), the price of anarchy is again constant. kog [/, n| the
value increases, reaching a maximundf.!'/?) atow = n. Fora > n, the price of anarchy is decreasing.
Hence, we have constant prices of anarchy for large rangesnfl a worst case bound 6f(n!/?) instead
of O(n).

Furthermore, we analyze the structure of Nash equilibrigestigating solutions with short induced
cycles. We prove that any Nash equilibrium that forms a chlogdaph having induced cycles of length
three is indeed transient. We show that such equilibria dst éor all n. Furthermore, we show that if
a < n/2, then the only tree that forms an equilibrium is the star dad there exists Nash equilibria graphs
of n vertices which are not trees.

Additionally, we study a weighted network creation game imch playerv wishes to send a certain
amount of traffic to playew, for anyv and«. In the cost of playew, the shortest path distance #ois
multiplied by this traffic amount. We also provide an uppeutd on the price of anarchy. For a uniform
traffic matrix, we obtain for the weighted game the same bswasdour bounds for the unweighted game.

Finally, we consider settings with cost sharing where plagan pay for a fraction of an edge. The edge
exists if the total contribution by all players is at leastWe show that in both the unweighted and weighted
games part of our upper bounds on the price of anarchy caay &/e also prove that there exist strong



Nash equilibria with cycles in which the cost is split eveaipong players.

2 Disproving the tree conjecture

We will present a family of graphs that form strong Nash ebrid and have induced cycles of length three
and five. To construct these graphs, we have to define affineglaee e.g. Mac Williams and Sloane [21].

Definition 1 An affine plane is a paifA, £), whereA is a set (of points) and is a family of subsets of
(of lines) satisfying the following four conditions.

e For any two points,there is a unigue line containing thesmso
e Each line contains at least two points.

e Given a pointz and a lineL that does not contaim, there is a unique lind.” that containsr and is
disjoint from L.

e There exists a triangle, i.e. there are three distinct poinhich do not lie on a line.
If A is finite, then the affine plane is called finite.

Two lines areparallel, in signg||, if the lines are disjoint or if they are equal. Given a pairdnd a lineL,
we denote by x| L) the unique line that is parallel tb and containg:. Parallelism defines an equivalence
relation on the lines, and the equivalence class &f denoted byL].

If ¢ is a prime power, then for the field = G F(q) the setsA = F? andL = {a+bF | a,b € A,b # 0}
are an affine plane of ordet denoted byAG(2, q). The plane containg® points and(q;)/(g) =q(qg+1)
lines. There ar@ + 1 equivalence classes € 1 real slopes, horizontal and vertical lines). Each class;has
lines and each such line contaipgoints.

We are now ready to describe the graphs representing strasg dquilibria. The graphs were also
constructed by Blokhuis and Brouwer [4] as instances of ggodraphs. For an affine plang=(2, ¢) we
define a grapttz = (V, E) with V= AU L. In the following, when we refer to a point or a line, we often
mean the corresponding vertex or player. The edgé&dstspecified as follows.

e A point and a line are connected by an edge if and only if the ¢tiontains the point.
e Two lines are connected by an edge if and only if they are |gdhral
¢ No two points are connected by an edge.

There are no self-loops or multiple copies of an edge. We tagive orientations to these edges. Every
equivalence class of a line defines a complete subgraph, of G. Letr(L) ands(L) denote the indegree
and outdegree af in K, respectively. One can easily show by induction that theigt®an orientation of
the edges of, such that, for every liné in K, |r(L) — s(L)| = 0if gis odd andr(L) — s(L)| = 1if r
is even. In order to define an orientation for the edges betywets and lines, we choose a representative
line L, 0 < i < g, for each of the; + 1 equivalence classes. The lines[6f] = {L{,..., L ,} do not
build edges to their points; rather the existing edges aile iyuthe points. As for the other equivalence
classes, aliné € [L], 0 < i < ¢ — 1, builds edges to the two poinfsN LlandL N L;?H(md 2" All the
other edges are built by the points. Every paing contained in a linéx || L9) =: L? and has exactly two
incoming edges from the linds: || L7) and(z || L7~1(m°d ), Forq = 2, we obtain the Petersen graph.
Figure 1 shows the graph structure relative to a ling [LY]. Letx,...,z, be theg points contained
in L. We number these points such tHabuilds edges ta:; andxs. LetLq,...,L,—; be theq — 1 lines
parallel toL. We number these lines such that the first »(L) lines build edges td. while L builds edges

to the remaining; — 1 — r lines. For any point:;, 1 < i < ¢, we denote by.{", ... , Ly the otherg lines
that containz;. These sets of lines are disjoint for different; since for every pair of points there is a
unique line containing this pair. Furthermore these linesdifferent fromL,, ..., L,_;. For any lineL;,
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1<i<q-—1,letzt,... xfl be theg points contained irl;. Again these point sets are disjoint for different
L; and are also different fromy, ..., z, since the lined. andL, ..., L, ; are parallel. IfL € [L], then
the structure of the graph is the same except that the ediyesdael, and its points are all built by the points.
If L ¢ [L9] then the cost of the player representings (2+s)a+(2g—1)+2(2¢—1)g = (s+2)a+4¢*—1,
wheres = s(L) = ¢ — 1 —r. If L € [L9], then the cost isa + 4¢° — 1.

T ) T3 e Tq ‘Ll ...... ‘Lr -Lr+1 ...... -qul
Lﬂlcl Lgl Lﬂlcz Lg:z L3163 L§3 qu qu z% wé 3571" 5,32 x’f”l :UZ‘H xq_l xq—l

Figure 1: The distances with respect to a line

_ Figure 2 ericts the graph structure relative to a poiritines L7, . .. ,ng+1 are theg + 1 Iines con';ain-
ingz. Foralinely, 1 <i<gq+1,letzy,...,x,_, bethe othey — 1 points of L and letLy, ..., L;_;

be theq — 1 lines parallel toL?. These sets of — 1 points and lines are disjoint for differeft Thus the
cost of the player representingis (¢ — 1)a+ (¢ + 1) +2(g + 1)(2(¢ — 1)) = (¢ — 1)a + 4¢* + q — 3.

1 1 1 1 2 2 2 2 3 3 3 3 +1 +1 +1 +1
xl X Ll Lq—l .1/'1 'Iq—l Ll Lq—l xl xq_l Ll Lq—l 1‘? 1‘371 L(f Lgfl

Figure 2: The distances with respect to a paint

Lemmal Letq > 10. For «in the rangel < a < ¢ + 1, no player associated with a liné has a
different strategy that achieves a cost equal to or smahantthat ofZ’s original one. Fora in the range
1 < a < ¢+ 1, L has no strategy with a smaller cost.

Proof. We prove the lemma for a liné ¢ [L?], which builds two edges to points. This implies that the
lemma also holds for lined’ € [L9] which do not build edges to points. For, if a lidé € [L9] had a
different strategy with the same or a smaller cost, then areyll ¢ [L9] could adopt the same strategy
change while maintaining the two edges built to points. Waild result in the same or a smaller cost,
respectively. As we will show in the following, this is imzikle.

Fix aline L ¢ [LY]. We consider all possible strategy changes. Firdi,bliilds! > s+ 2 edges, then at
best there aré— s — 2 + 2¢ — 1 vertices at distancé while the other vertices are at distarizéom L. In
L’s original strategy there ar&y — 1 vertices at distancé while all other vertices are at distan2e Thus,
L’s original strategy has a cost which is at leagt — s — 2) — (I — s — 2) smaller than that of, and this
expression is strictly positive far > 1. Thus buying more than+ 2 edges does not pay off.

In the remainder of this proof we study the case thdiuilds at mosts + 2 edges and start with the
strategy Sy in which L does not build any edges at all. The resulting shortest pathdf L is given



Figure 3: Strategy changs.

in Figure 3. LinesL,1,...,L,—1 are a distance o2 away from L since these lines are connected to
Ly,...,L,. LinesL;* andL;*, 1 < i < g, are a distance df away fromL because they do not contain
x3,...,24 and are not parallel td.q, ..., L, but are connected to one line frofngfj, . ,Lffj, for any

j with 3 < j < ¢, and are also connected to one point frm{nm{] foranyj with 1 < 5 < r.
Pointsz),...,z., with r + 1 < i < ¢ — 1, are a distance o3 away because they are not contained
in Ly,..., L, but are connected to one line froﬂfj,...,LZj, forany3 < j < ¢. Finally pointsx;
and z, are a distance ot away from L because these points are only contained in libgs ..., L3
andL7?, ..., Lg?, respectively, at distance The cost difference betweefy and L's original strategy is
—(s+2)a+s(g+1)+2¢+6=(¢g+1—a)(s+2)+4 > 0and hence is a worse strategy.

Next suppose that does build edges. The edges can be of six different typdsiilds an edge to (a) a
line Lf forsome3 <i <gandl <j <gq;(b)a pointmé, for somel < i < randl < j < ¢; (c) an edge
L7 or L3?, for somel < j < ¢; (d) a pointxﬁ-, forsomer +1 <:<q¢—1andl <j <gq; (e)alineL;,
forsomer +1 < i < g — 1; (f) a pointz; or zs. In the following we investigate all of these cases, which
are also depicted in Figure 4.

T T
Ll Lq

Figure 4: The effect of edges of types (a —f).



Case (@) The IineL}“ is connected to one line frorhy?, ... ,Lf;l, which is linked toz;, and to one

line from L2, ... , Lg?, which is linked toz,. Additionally Lj” is connected to one point fromf{f, . ,x’;,

foranyr +1 <k < ¢ — 1. Thus, setting a link td.;*, line L can save a cost of at mostt- 5 relative to
Sy. HenceL can save a cost of at mast- 5 no matter how other links are laid out ly In other words,
removing the edge t&;" results in an increase in the shortest path distance coshodsts + 5.

Case (b) Pointm§ is connected to one line fromy", ..., L7 and to one line fron7?, ..., L72. From
therex; andzs can be reached. By laying out an edger:;ic,)line L saves a shortest path distance cost of
5 relative toSy and hence a value of at mdstelative to any other strategy. Again, removing this link ca
increase the shortest path distance cost by at most

Case (c) Assume w.l.o.g. that an edge Id" is built. The analysis of a link td.7* is similar. LineL?
is linked toz; and to one line fronLi?, ... y L. FurthermoreLf1 is linked to one point fromy, ..., zg,
foranyr + 1 < i < ¢ — 1. Relative toS, the shortest path distances decrease ¥y. Removing the edge
results in an increase of at mast- 5.

Case (d) Pointm§ is connected to one line fromy", ..., L7* and to one line fron.3*, ... L72. From
therex; andx, can be reached. Building an edgeﬁgasaves a shortest path distance cosi oflative to
So. Not building this edge results in an increase of at nfost

The last two cases are studied under the condition that tiex etiges built by. are also of typéde) or

().

Case (e) If L builds only edges of typée) and(f), then pointsr?, . .. 7“2 are still at distancé and by
setting a link taL; the shortest path distance cost reduces byl.

Case (f) Again, assume thak builds only edges of typée) and (f). Without an edge ta:, lines
Li', ..., Lyt are adistance ¢f away fromZ andz; is a distance of away. Building an edge to; reduces
the shortest path distance costgy 3.

With the above case distinction (a—f) we are able to finishptloef. Recall thatl, builds at most + 2
edges. IfS contains edges of types (a—d), then we simultaneously ae@h of these edges by edges of
type (e) or (f). Any such edge replacement increases the shortest paginakstost by at mostor s + 5
while the decrease is at least+ 1. Since, forg > 10, we haveg + 1 > ¢/2 + 6 > s+ 5 > 6, strategyS
is worse than’s strategy defined by grapgh. So suppose thét only builds edges of typeg) or (f). If S
builds less thar + 2 edges, then we introduce additional edges of typesr (f) until a total ofs + 2 edges
are laid out. For any additional edge, there is an edge bigildost ofa while the shortest path distance cost
decreases by at leagt- 1. If « < ¢ + 1, there is a net cost saving adds worse than’’s original strategy
given byG. If a = g + 1, thenL’s original strategy is at least as goad. O

Lemma 2 For « in the rangel < a < g + 1, no player associated with a pointhas a different strategy
that achieves a cost equal to or smaller than that'sforiginal strategy. Fora = 1, no player associated
with a point has a strategy that achieves a smaller cost.

The proof is given in Appendix A. The above two lemmata yié¢ld inain result of this section.

Theorem 1 Letq > 10. The graphG is a strong Nash equilibrium, fot < o < ¢ + 1, and a Nash
equilibrium, forl < a < ¢+ 1.

3 Improved bounds for the price of anarchy

We first consider the case that> 12nlogn, proving a constant price of anarchy. Then we address the
remaining range ofv. In both cases, for a given equilibrium gra@@§), we need the concept of a shortest
path tree rooted at a certain vertexThe root of7'(u) is vertexu and this vertex represenisyer 0 of the
tree. Given vertex layers 0 to— 1, layer: is constructed as follows. A node belongs to layet if it is not
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® Exapnding
@® Neutral

Degenerated

Figure 5: A classification of the vertices of T(u).

yet contained in layers 0 to— 1 and there is a vertexin layeri — 1 such that there is an edge connecting
v andw, i.e.{v,w} € E. We add this edge to the shortest path tree. We emphasiz# thas linked to
several vertices of layer— 1, only one such edge is added to the tree at this point. Supgpasall vertices

of V have been added @©(«) in this fashion. The edges inserted to far are referred toeasedges We
now add all remaining edges &f to 7'(u) and refer to these edges ren-tree edgesEssentially,7'(u) is
just a layered version af with distinguished tree edges.

3.1 Constant price of anarchy fora > 12nlogn

In order to establish a constant price of anarchy, we praafgfth > 12n log n, then every Nash equilibrium
graph is a tree. This implies an upper bound>@h the price of anarchy [10]. However, we here give an
improved upper bound df.5 for the considered range af

Our proof has the following structure. Given an equilibrignaph whose girth (i.e., the length of the
minimal cycle in the graph) is at lea$®log n, we prove that the graph diameter is boundedbyg n.
The proof is by contradiction. We assume that there exiseri@xu with eccentricity at leash log n and
examine its shortest path tr@&w). We show that the maximal depth &f(u) is less thar6logn. This
immediately implies that the equilibrium graph is a treejegi the bound on the girth. Also, since we
have chosen an arbitrary vertex this implies that the diamstat most log n. We complete the proof by
showing that for high edge costs the graph has a high girth.

We classify the vertices of the equilibrium graph accordmtheir location in the tre@'(u). We refer to
the vertices at depth exactiyjlog n as vertices in th&oundarylevel. We classify the vertices in the levels
before the Boundary level according to the number of desamritieir children have in the Boundary level.
We have three types of vertices. The first Bsgpanding verticesvhich lead to an exponential growth, the
second, and the most problematic, Bieutral verticeghat do not lead to a growth but have descendants in
the Boundary level, and the third abegenerate verticethat have no descendants in the Boundary level.
The vertices of the Boundary level, and at levels of larggthieare unclassified. We now give the formal
definition.

=,

Definition 2 Let G(S) be an equilibrium graph and let € V. LetT'(u) be a shortest path tree rooted at
u. We say that a vertex € V, at a depth smaller thafilog n in T'(u), is:

e Expanding - If v has at least two children with at least one descendent in thenBary level.



e Neutral - If v has exactly one child with at least one descendent in the @ayrievel.

e Degenerate- If v does not have any descendent in the Boundary level.

An example to this classification is given in Figure 5. Notatthertices at leveb log n (the Boundary
level) and higher levels are not classified. Our target ishtmwsthat there are vertices in the Boundary
level. This implies that there are no vertices in levels bigihan6 log . It is important to note that since
the graph has girth at leas? log n, there is a unique treéB(u) up to level6 log n (the Boundary level).

In the next Lemma we show that Degenerate children of a Nlevgrgex v and their descendants are
connected only through to vertices out of the subtree ofin 7'(u).

Lemma 3 Let G(§) be an equilibrium graph whose girth at leag2logn. Letwv be a Neutral vertex in
T(u) and let D, (v) be the set of its Degenerate children and their descenddrif¥@. Every path from

—.

x € Dy(v)toy € V' \ D,(v) in G(S) must go throughv.

Proof. We show that any path from to y must go through.. Suppose that there is a path that does not go
throughv then either it goes through a vertexXrom the Boundary level or the entire path does not cross
the Boundary level. However, is Degenerate and wlogis its descendant and can not be in the Boundary
level since it violates the definition Degenerate vertexusllit must be thad(u, z) < 6logn. Now if every
vertex z on the path frome to y satisfies that(u, z) < 6logn then there is a cycle of length less than
12log n. We conclude that any path fromto y must go through. O

The above Lemma shows that Neutral vertices have a crudalinaconnecting Degenerate vertices.
The next Lemma will use this property to show that althougiyrdeutral vertices can be found in the tree,
the number of times that two Neutral vertices can appearecutisely on a path from is limited.

—.

Lemma 4 LetG(S) be an equilibrium graph whose girth is at ledstlog n. Letu = wg, w1, ..., w; = v
be a shortest path from to v. An edge on the path is said to be a Neutral edge if both of idpeints are
Neutral vertices. The total number of Neutral edgesliss n.

Proof. Let (w;_1,w;) be a Neutral edge on the path framto v. There are two possible types of Neutral
edges. Edges which are bought by their tail (ug.1) or edges which are bought by their head (ig).
We assume w.l.0.g that the number of edges which are boughtbytail is larger than the number of edges
which are bought by their head. We bound the total numberaf 8leutral edges wittvog n. This gives the
desired bound o2 log n.

Let (w;,—1,w;, ), (Wiy—1,wiy), .-, (w;,, —1,w;,, ) be the Neutral edges on the path which are bought by
their tail. We show thatn < logn. Let D, (w;;) be the set of all the Degenerate childrerugf and their
descendants. By Lemma 3 every path from a vertéx inD,, (w;, ) to a vertex inD,, (w;; ) goes throughv; .
Let n; denote the size ab, (w;;). Now since we are in equilibrium the benefitof, ; from buying the
edge(w;; -1, w;;) is larger than the benefit from buying the edge; 1, w;,;+1). Thus,n; > >33, ng.
As aresultn; > 2m7~! andm is bounded byog n. 0

Based on the above Lemma we prove the main result of thisoseciie show that every equilibrium
graph whose girth is at lea$® log n must be a tree whose maximal deptl6 isg n.

Proposition 1 If G(§) is an equilibrium graph whose girth is at leak log n then the diameter dﬁ(g) is

-,

at most6 log n andG(S) is a tree.



Proof. For the sake of contradiction, we start by assuming that idn@eter is at leadilogn. Letu € V

be a vertex on one of the endpoints of the diameter. We looksioetest path tree rooted @t Sinceu is

one of the diameter endpoints our assumption impliesitligeither Neutral or Expanding vertex. We show
that the number of descendants at the Boundary level (itices at a depth ofxactly 6logn) is at least

n. As it is not possible to have vertices in the Boundary level we reach to a contradictidnis Bbviously
implies that the maximal depth is at mdstog n» and that there are no cycles. ket V', we denote with

d the depth ofv in T'(u) and withb the number of Neutral edges on the path franto v. We label a
vertex by(d, b). For example, the label for the roatis (0,0) becausel = 0 andb = 0. Letv be a non-
Degenerate vertex whose labelis b), and letN (d, b) be a lower bound on the number of its descendants
at the Boundary level. (Note that two vertices might havegame label, but have different number of

descendants at the boundary level.) We claim Miéd, b) > 2-%5=*~2losn=b) Thjs implies for the root

that v (0,0) > 25— ~(2legn=0) — ;, thus proving the claim will lead to the desired contradicti
The proof will be by a backwards induction ehand b. As for the induction basis we show that
N(6logn,b) > 2~ 2= andN(d, 2log n) > 275 We first show thaiV (6 log n, b) > 2~ (2logn=b),
The only descendent at the Boundary level is the vertexf itsel N(6logn,b) = 1. Thus, we need to
show that2—(2leen—b) < 1 This follows directly from Lemma 4 sincé < 2logn. Next, we prove
6logn—

that N(d,2logn) > 27 2 . The proof here is a bit more subtle and a secondary inductiod is
needed. The basis for the secondary inductii¢ log n, 2logn) > 1, trivially holds. We assume that

6 log n—d’

N(d',2logn) > 27 =z  for everyd > d and prove it ford. Letv be a vertex at deptth with b = 2logn
which may be either Expanding or Neutral. We show that inegittasev has at least two descendants at
depthd + 2 which are either Expanding or Neutral. For the case thiat Expanding it follows from the
definition of Expanding vertex thathas at least two descendants at dep#® which are either Expanding
or Neutral. For the case thatis Neutral it follows thaty cannot have a Neutral child sinée= 2 logn and
there are at mostlog n Neutral edges by Lemma 4. Thusmust have an Expanding child which again has
by definition at least two children which are either Expagdim Neutral. We conclude that in both cases,
i.e. v is Expanding or Neutral, it has at least two descendantsmhdet 2 which are either Expanding or
Neutral. The induction hypothesis holds for these desaerd#v and we get that:

6logn—d—2 6logn—d—2 6logn—d

N(d,2logn) > N(d+2,2logn) + N(d+ 2,2logn) > 2" 2 +27 2 =27 2

This completes the proof of the basis of the primary indurctidVe assume the induction hypothesis
holds for everyd’ > d andd’ > b (note that one inequality must be sharp). Ldte a vertex at deptti with
b Neutral edges on the path from Let w be a child ofv. There are four possibilities: bothandw are
Expandingw is Expanding andv is Neutral,v is Neutral andv is Expanding and both andw are Neutral.
In the first three possibilities, as we already discussed&ghohas at least two descendants at depth2
which are either Expanding or Neutral and thus the indudtigpothesis holds for them and we have:

N(d,b) > N(d+2,b)+N(d+2,b) > 25E5" 2~ logn—b) | gHEL==2—(2logn—b) _ oH5=4—(2logn—)

In the fourth case in which bothandw are Neutral there is one more Neutral edge and we have
N(d,b) = N(d+2,b+1) = gHEn—d=2 _(2logn—b—1) _ o%%Er=d_(2logn—b)

O

So far the only assumption that we used in our proofs on thdiedgum graph is that its girth is of
length at least2logn. The next lemma connects between the girth of an equilibguaph and the edge
costa.



Lemma 5 LetG(§) be an equilibrium graph andbe any positive constant. df > cn log n then the length
of the girth ofG(.S) is at leastclog n.

Proof. Suppose for the sake of contradiction that the size of theénmailhcycle isclog n, and look on a
vertexu on the cycle that buys a cycle edge. The benefit fsbm this edge is at mosgt log n — 1)n, which
is strictly less tharenlogn = « the cost of an edge. Therefore, this is not an equilibriunplgrand we
reach to a contradiction. O

We are ready to state our main results, which is a charaatenz of every Nash equilibrium and a
constant price of anarchy whenever> 12n log n.

Theorem 2 For o > 12nlogn the price of anarchy is bounded ky+ 6"{% < 1.5 and any equilibrium
graph is a tree.

Proof. The fact that the graph is a tree follows form Lemma 5 and Fsitipo 1. Thesocial costof the
optimum, a star graph, is(n — 1) + 2(n — 1)2. By Proposition 1 we know that every Nash equilibrium
graph is a tree whose maximal deptl6i®g n. Therefore, the cost of every equilibrium graph is bounded
by a(n — 1) + 6n2 logn and the price of anarchy is bounded by

a(n —1) +6n%logn i 6n2logn . 6n logn
an—1)4+2(n—-1)2 — an+2(n—1)2—a — a

3.2 Improved upper bound for o < 12nlogn

We give a new upper bound far < 12n log n. In fact, the following theorem holds for anyand is stated
in this general form so that it can be generalized to a wethhgene in Section 5. Furthermore, it implies a
constant upper bound far < O(y/n). The proof is given in Appendix B.

Theorem3 Let « > 0. For any Nash equilibriumN, the price of anarchy is bounded by
15(1 + (min{2, 22 })1/3),

The next theorem implies that the only critical part in boagdhe price of anarchy is the sum of the
shortest path distances between players. The proof is giv&ppendix B.

Theorem 4 In any Nash equilibriumV, the total cost incurred by the players in building edgesadsrded
by twice the cost of the social optimum. There exists a s$topi@th tree such that, for any player the
number of non-tree edges built bys bounded byt + |(n — 1)/a].

4 Characterizations of Nash equilibria

We give further characterization of Nash equilibria. Oustficontribution is to show that, for any and
any a < n/2, there exist transient Nash equilibria which are not tréd& then show that every Nash
equilibrium which is chordal graph is a transient Nash elaiim. An undirected graph is chordal if every
cycle of length at least four has a chord, i.e. has an edgeecting two non-adjacent vertices on the cycle.
Chordal graphs play a very important role in graph theorg,esg. [9]. Finally, we show that far < n /2
every Nash equilibrium which is a tree must be star. The grobthe results are given in Appendix C.

Theorem 5 For any integem and for any integer cost < n/2, there exists a Nash equilibrium forming a
non-tree chordal graph on vertices.
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Theorem 6 Leta > 1 and N be a Nash equilibrium that has a cycle in the associated g@ph (V, E).
If G is chordal, thenN is transient.

Theorem 7 For a < n/2, the star is the only Tree which is an equilibrium graph.

We note that forx = n/2, the construction of Theorem 5 is an equilibrium graph whgcalso a tree with
diameter3, and as a result Theorem 7 is tight.

5 A weighted network creation game

So far, we have considered an unweighted network creatioegawhich all players incur the same traffic.
We now study a weighted game in which playesends a traffic amount af,,, > 0 to playerv, with u # v.

In the cost of playet:, the shortest path distance betweeandv is multiplied byw,,. LetW = (wyy)u,v

be the resulting: x n traffic matrix. We usew,;, = min,., w,, t0 denote smallest traffic entry and
Wmax = MaX,£, Wy, t0 denote the largest one. Bt = 37, >°7" | wy, be the sum of the traffic values.
We extend the upper bounds of Section 3 to the weighted caggn Ave assume that there are at least 2
players. The following theorem is a generalization of TleeoB. In the unweighted case we havg;,, = 1
and the bounds given in the next theorem are identical todh&heorem 3, up to constant factors. The
proof is given in Appendix D.

Theorem8 a) Let0 < a < wniy,n?. For any Nash equilibriumV, the price of anarchy is bounded by
60(1 + min{(a?/ (w2, )3, W/ (wiminn*a)/3,n}).

b) Letwminn? < a < wman?. Then the price of anarchy is bounded by + 3 min{/a/wmin,
W/(\/awmin(n — 1)), n}.

) Letwyaxn? < a. Then the price of anarchy is bounded by 4.

6 Cost sharing

We study the effect of cost sharing where players can pay faaciion of an edge. An edge exists if the
total contribution is at least. We first show that the bounds on the price of anarchy devdlop8ection 3
and 5 essentially carry over. We then prove that there ex@tg Nash equilibria containing cycles in which
the cost is split evenly among players. We present the pindippendix E.

Theorem 9 a) In the unweighted scenario the bounds of Theorem 3 holth thle weighted scenario the
bound of Theorem 8 hold.

Theorem 10 For n > 6 and « in the range%n2 +n<a< %nz — n, there exist strong Nash equilibria
with n players that contain cycle an in which the cost is split eyemhong players.
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Appendix A

Proof of Lemma 2. Consider an arbitrary point. We study all possible strategy changesz lbuilds
I > g — 1 edges then at best there &re 2 vertices at distancé and the remaining vertices at distaricdn
2's original strategy, there akg+ 1 vertices at distance 1 while the other vertices are at dist&n The cost
difference between the new and old strateg§/ is (¢ — 1))a+ [ — (¢ — 1), and this value is stricly positive
if > 1 and zero ifa = 1.

In the following we assume that builds at mosty — 1 edges and first investigate the strategpyin
which = does not build any edges. The new graph relative te shown in Figure 6. Any lind.?, with
3<i<qg+1landl <j <gq-—1,is atdistance from x because these lines are not connectefljt@r

L% but are each connected to one point fref. .., =} ; and to one point from:7, ..., 27 ;. Similarly,
any pointz}, with 3 < i < ¢+ 1andl < j < ¢ — 1is at distance3 because the point is not contained
in L{ or Lj but is contained in one line fromi,..., L) ; and in one line fromL{,... L2 ;. Any line

L?, 3 < i < q+1,is at distancel from x. This is because this line does not contain poizrjtsor x?
forj =1,...,¢— 1, and is not parallel to lineg.{] and[L3]. In Figure 6,L denotes the lined # L7,
i=1,...,q+1, L € [L¥]JU[L%]. Symbolx denotes the points not equaltpr! andz?, fori = 1,...,q—1.
SymbolL* denotes the lines?,3 < i < ¢+ 1. The cost difference betweesy and the original strategy
ofzinGis—(q—1a+2(g—1)2+3(g—1) = (¢ —1)(2¢ + 1 — a) > 0 and hence is worse.

T

Figure 6: Strategy changs.

Next consider a strategy that builds edges to vertices not equalth 3 < ¢ < ¢+ 1. These edges can
be of four different typesz builds an edge to (a) a poin; or 2%, for somel < j < ¢ — 1; (b) alineL;
or L?, forsomel < j < ¢—1;(c)alinel’ with L' # L¥ for3 <i < ¢+ 1,andL’ ¢ [L{] U [L3]; (d) a
point 2’ with 2’ # z} anda’ # 22, for 1 < i < ¢ — 1. The different cases are depicted in Figure 7. We
investigate how many additional vertices at distad@®int 2z can reach compared . We remark that in
x's original strategy each link to aline?, 3 <i < g + 1, gives2(¢q — 1) such vertices.

Figure 7: The effect of edges of types (a — d).
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Case (a) We analyze an edge no} This point is connected to exactly one line frdi, . . . , f]_l, for
any3 < i < ¢+ 1. Thus at bes§ — 1 additional vertices at distan@eare reached by.

Case (b) We consider an edge ﬁbjl This line is connected to exactly one point fraf . . . ,xé_l, for
any3 < i < ¢+ 1. Thus at bes§ — 1 additional vertices at distan@ecan be reached.

Case (c) Suppose that’ € [L7], with3 < j < ¢+ 1. ThenL' is connected to lines ifL%] and to
exactly one point fromxy, ..., z;_;, forany3 <i < ¢+ 1 with s # j. This gives a total of at mogy — 3
extra vertices at distance

Case (d) Suppose that’ belongs tol.%, 3 < j < ¢ + 1. Thusz' is connected.7 and to exactly one
line from Lt ... ,Lf]_l, forany3 <i < ¢+ 1 with i # j. The number of new vertices is— 1.

We conclude that it builds k edges of types (a—d), then, comparedioless thar2(q — 1)k additional
edges at distanczcan be reached hy. Now, if S builds a total of, [ < ¢ — 1 edges, then there must be at
least(q¢ — 1 — 1)2(¢ — 1) edges at distancefrom z. The cost difference relative to the original strategy of
zinGis—(qg—1—-10a+(¢—1—1)(2¢ —2) > 0 and hence is worse. IfS builds! = ¢ — 1 edges, then
S has a cost as low ass original strategy and only if all edges are builtk$, 3 < i < ¢+ 1. O

Appendix B

Proof of Theorem 3. Consider an arbitrary Nash equilibriufii = S and IetG(§) = (V,E) be the

corresponding equilibrium graph. We assume thdt= n > 1 since otherwise, ifi = 1, the edge set is
empty and the price of anarchy is 1. Given a shortest pathtfe¢ and a vertex, let /(v) be the index of
the layerv belongs to infl’(«). We need the following lemma.

Lemma 6 For anyT'(u) and anyv, w € V, the shortest path betweenand w in G consists of at least
|¢(v) — £(w)| edges.

Proof. We first observe that any non-tree edge connects verticdseafame layer or of adjacent layers:
If there was an edge linking a vertexof layeri to a vertexz’ of layer j, with 5 > i + 2, thenz’ would
rather belong to layer + 1. Clearly, tree edges link vertices of adjacent layers. Nmwasider a shortest
pathv = vg,v1,...,v, = win G. Forany: with 0 < i < k — 1, we havel{(v;) — £(v;+1)| < 1. Thus, in
traversing the shortest path, each edge can reduce thediffgeence between andw by atmost1. O

Let Cost(N) be the cost ofV and Cost(OPT) be the cost of a social optimum. For the analysis of
Cost(N), let Cost(v) be the cost paid by playere V' in N. We haveCost(N) = oy Cost(v). The
cost incurred by consists of the cost for building edges abidst(v), the sum of the shortest path distances
from v to all the other vertices in the equilibrium graph. Fix aniaaoy vy € V. We prove

Cost(N) < 2a(n — 1) + nDist(vg) + (n — 1)2. 1)

Consider the shortest path trégv,). For any vertexo € V, let E, be the number of tree edges built by
vin T (vg). Vertexv, built only tree edges while the other vertices may have Ixgk as well as non-tree
edges. To prove (1), we show fore V', v # vy,

Cost(v) < a(Ey, + 1) + Dist(vg) +n — 1. 2

To verify this inequality, we modify’s strategy as follows. Vertex discards the non-tree edges it built
formerly; it only builds the tree edges it laid out before aadditionally, builds an edge t@). The new
cost for building edges ia(E, + 1). Since only non-tree edges were deletBdst(vy) is not affected by
v's new strategy. The new edge betweeandv, ensures that the shortest path distance betwesmd
any other vertexv is by at most 1 larger than the shortest path distance betwgeandw. This gives
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Dist(v) < Dist(vg) +n — 1 and (2) is established. Summing (2) overal vy and addingCost(vy) we
obtain (1). This is becausg built only tree edges and the total number of tree edgé¥ig) isn — 1.

It remains to analyzéist(vg). If a < 1, then there is a direct link between any pair of vertices and
henceDist(vg) < n — 1. We obtainCost(N) < 2a(n — 1) + 2n(n — 1) and the price of anarchy is
bounded by2 becauseCost(OPT) > a(n — 1) + n(n — 1). If a > n?, then we use the trivial bound
Dist(vg) < (n—1)?2 and Cost(N) < 2a(n — 1) + 2n(n — 1)? and the price of anarchy is bounded by 4
becauseCost(OPT) > a(n — 1) > n?(n — 1).

In the remainder of this proof we assurhe a < n?. In this case a social optimum is given by the star
graph, which incurs a cost @fost(OPT) = a(n — 1) + 2(n — 1)2 > a(n — 1) 4+ n?, for n > 2 players.
Letd be the depth of (vy), i.e.d is the maximum layer numbetiax,cy ¢(v). If d < 9, we are easily done.
We haveDist(vg) < 9n and Cost(N) < 2a(n — 1)+ 10n? and the desired price of anarchy holds because
Cost(OPT) > a(n — 1) + n?. Thus, in the following we restrict ourselves to the cdse 10.

Determinec, 1/3 < ¢ < 1, such thaty = n3~1. Let V' = {v € V | £(v) < |2d] in T(vo)} be the set
of vertices of depth at mos€d] in T'(vg). We distinguish two cases dependlng on whethgf > 2n° or
V'| < Zne.

If |V’| > 2n°, then consider a vertex, at depthd in T'(v), i.e. in¢(wo) = d in T(vy). By Lemma 6,
the shortest path distance betweenand any vertex € V' is at least| %d}. If there was an edge between
wq andwvg, then the distance betwean andv would be at mos[%dj + 1. Sincewy did not build an edge

to vy we have . ) ) . 0 1
N12d| = |2d| —1)>Zn(=d—1) > Zn°—
oo (2] - [24] =) > 2 (2a- 1) 5 2L
15a
- )
n

Next assumel’| < Znc. Foranyi with [1d] +1 <i < [2d]letV/ = {v € V' | £(v) =i in T(vo)}
be the vertices at depitin 7'(vo). There must exist aiy with [V} | < 2n¢/| +d| since otherwise

and hence

d<

12d]
2 .1 2 .
vz 3 IV’|>L df - on®/[zd] = on
i=[1d]+1 3 g 3

contradicting the assumption that’| < 2n°. There are at least — 2n° > In vertices inV \ V'. Each
such vertex is decendent of one vertex/}p Thus, there is one verte»go € V,, having at least

31 FJ 1, (1 ) d
Snte|zd| > el (Cd—1) > Spte
Zne/12d) — 2" LB " =20"

decendents. If there was an edge fragmo v;,, then the shortest path distance frogto these decendents
would be reduced by at Iea%%dj dpl-c > 1%0 1=¢_Sincevy did not build such an edge; > £-n!"¢,
which gives

d< 15— (4)

The bounds or shown in (3) and (4) are identical becadgé = 15y/a/n1=¢is equivalent tax = n3¢~!
and this holds by the choice of
We finally determine the price of anarchy. We havest(vg) < (n — 1)15a/n¢ < 15an'~—¢. Using (1)
we obtainCost(N) < 2a(n — 1) + 15an?~¢ + n2. The price of anarchy is bounded by
2a(n — 1) + 15an?~¢ + n? 15an?~¢

<3+ ——.
a(n—1)+n? - +a(n—1)+n2
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Figure 8: A(6, 8) clique of stars graph, an equilibrium graph which is not a.tre

If a < n, then the price of anarchy is bounded by 15a/n¢ < 15(1 + a/n¢) = 15(1 + n?*7!) =
15(1 + (a?/n)'/3) because the definition efimplies thatn® = (an)'/3. If o > n, then we use the fact
thata(n — 1) + n? > an. This hold because < n?. The price of anarchy is bounded By 15n'—¢ <
15(1 +n'=¢) = 15(1 + (n%/a)'/3), using again the fact that® = (an)'/3. m

Proof of Theorem 4. Consider the graptf = (V, E) associated witv. Again, forv € V, let Cost(v) be

the costincurred by and letDist(v) be the sum of the shortest path distances fedmall the other vertices

in V. Choose a vertex, with minimum Dist-value among all vertices, i.&ist(vy) = minyey Dist(v)

and consider the shortest path t#gy). For anyv € V, let £, be the number of tree edges and ##tbe

the number of non-tree edges built byn T'(vy). The total cost incurred by the players in building edges is
ZUEV(EU + E{))

Suppose that player’s strategy,v # v, is modified as follows. Agent deletes itsE! non-tree
edges. It only builds thé’, tree edges it laid out before and, additionally, build anestiguy. With this
additional edge, the shortest path distance frotm any vertexw is by at most one larger then the shortest
path distance fromy, to w. Sincev does not follow this strategy'ost(v) = a(E, + E.) + Dist(v) <
akE, + a+ Dist(vg) + n — 1, which by the minimality ofDist(vy) implies

E, <1+ [(n—1)/al. (5)

There is a total of: — 1 tree edges ifi'(vg) andE;,, = 0. Thus the total cost paid by the players in building
edges is bounded by(n — 1) + a(n — 1) + (n — 1)? and this is at most twice the coétost(OPT) of a
social optimum becaus€ost(OPT) > a(n — 1) + n(n — 1). O

Appendix C

Proof of Theorem 5. We start by describing our non-tree chordal equilibriumpbraA (&, ¢) clique of
starsis a clique withk vertices, where each vertex of the clique is a root of a stHr éwertices. A(6, 8)
clique of stars is depicted in Figure 8.

We next prove that &, ¢) clique of stars is a Nash equilibrium when= ¢ and the edges of each star
are bought only by its root, and clique edges are boughtrarlhjt by one of their vertices.
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Lemma 7 LetG(S) be a(k, ¢) clique of stars. If the cost ofqan edge equalg &md all the edges are bought
by the clique vertices (and no edge is bought twice), tHéfi) is an equilibrium graph.

Proof. We prove that gk, ¢) clique of stars is an equilibrium in this setting by showihgttno player has
an incentive to deviate form her strategy. We denote with . ., ;. the vertices of the clique and with
yh ... ,yf‘l the vertices of the star rooted at

We start by showing that the star vertices have no incentivietiate form their strategy of not buying
any edge. We look on an arbitrary star verigx The edge connecting it to the graph is boughtrhyThe
benefit from buying the edg(e;;g, xp) forp #iis’, sinceyg is getting closer by one only to the vertices of
the star rooted at,,. The cost of an edge is alé¢dherefore the pIayeyf is indifferent and will not deviate.
The benefit from buying the edg{g{,yf,/) is only one and thug{ will have no incentive to buy it. Since
buying a set of edges is at most as beneficial as the sum ofttbiegfits in a connected gragﬂ, will not
deviate.

We now turn our attention to the clique vertices. We take dtrary vertexz;. Its star vertices are
connected with an edge of the forfm;, v/ ). If z; does not buy one of these edges the graph get disconnected
and the cost af; becomes infinity. Thus, these edges are necessary. Suppbsesedgéz;, ;) is bought
by z;, thenz; is indifference of buying or not buying the edge, since withthe edge the distance to the
star rooted at; is at leas® while it is 1 with the edge. The benefit from buying the edgé vghich is also
the cost of an edge. Clearly; can not benefit from buying an edge to a leaf of another st;aryﬁ,asince
a > 1 and the benefit is exactly. Thus,z; has no incentive to change its strategy and we conclude that

=,

G(S) is an equilibrium graph. O

For everyn we have a family of k, ¢) clique of stars withk - ¢ = n anda = ¢. This implies that we
can build a non-tree equilibrium fer = n/3,n/4, ..., 1. By a slightly more complicated construction it is
possible to extend thg, ¢) clique of stars construction and to derive the desired #maoDetails are given
in the full version of the paper. O

Proof of Theorem 6. Consider an arbitrary cycle of length three(i On this cycle, considering directed
edges, either (a) each of the three cycle vertices has gawtl incoming and one outgoing cycle edge or
(b) there exists one vertex that has two outgoing edges. da @ we name the vertices on the cygle

v1 andwe, starting at an arbitrary vertex and then following the eyatientation. In case (b), let be the
vertex with two outgoing cycle edges and name the remainwg/ertices such that there are oriented edges
(vo, v1) and(vy,v2). This leads to the configuration shown in Figure 9. The edg@dsny, andv, can be
oriented in two ways.

v2

Figure 9: The cycle of vertices), v; andv,.

Let V15 be the set of vertices, v # vy, that are directly linked to both; andwv,, i.e. Vi = {v € V|
v # v and{v,v;} € E fori = 1,2)}. Furthermore, letV be the set of vertices € V such that a shortest
path fromwv; to w uses edgéwv, v2) and any other path from; to w that does not usévy, v9) is strictly
longer than a shortest path. Obviously;, v2) is the first edge on the shortest paths fronto verticesw.
FurthermoreJl/ andV; are disjoint. Set’’ must contain at least vertices since otherwisg could delete
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edge(v1,v2) and instead use the edges betweganduv, and between, andv, to reachvs on the path to
w € W. The would lower's cost for building edges by while its shortest paths cost would increase by
less than.

Let V; be the set of vertices € V, v ¢ Vi U {vg,v2}, that are directly linked ta;. Formally,
Vi={veV|v¢ VipgU{v,va} and edge{v,v;} € E}. We next prove that, for any € V; and
w € W, a shortest path from to w is by at least 1 longer than a shortest path franto w. Assume that
this were not the case. Lete V; be a vertex such that the desired statement is violated foe s@rtices
in W. Among those candidates, let € W be the one having the smallest distance fram Let P, be
a shortest path from to w and P,, be a shortest path fromy to w. PathP, does not usév,v,) since
otherwiseP, would be one edge longer thdn,. PathP,, does usdwv;,vs) by the definition ofl¥. Path
P, cannot be shorter theR,, ; otherwise the path consisting of the edge betwsgeandwv, followed by P,
would be a shortest path from to w, contradicting the fact that € W. HenceP,, and P, have the same
length. All the vertices of,,, except forv;, belong toll/. ThereforeP,, and P, are edge disjoint. If they
was a common suffi¥, then the first vertex of would be a vertex i} closer touv, violating the desired
statement. PathB,, and P, each have a length of at least two, since otherwise v, and hence» € V5.

Consider the following cycl€' that has a length of the least five. Startingatwve follow the edge to
v, then traverse the path, to w and finally traverse the edges Bf, to reachv;. We argue that neithen
nor v has a chord to any other vertex 6h A chord between; and another vertex o6 would imply a
shortest path between andw that does not usév;, v2), contradicting the definition oft’. If there was
a chord betweem andw,, thenv € Vi5. If there was a chord betweenand any other vertex oy, this
would imply the existence of a path formto w that is shorter thei®,. Using this property ot andv, we
are able to identify a cycl€”’ of length at least four that that has no chord. We start aéxeit, follow the
edge tov and traverse the first edge 8f. Letw; be the vertex reached. ¢Fram we traverse the chord
that skips the largest number of edges on the ar€ betweenw; andw,. If there is no chord at;, we
traverse the next edge 6f leavingw,. Letws be the vertex reached. We proceed in the same way as in
vertexw; . In general, when at vertex; we follow the chord that skips the largest number of edgeden t
cycle arc betweem; andv,. If there is no such chord, we traverse the next cycle edgenttally we reach
vy and can complet€” by traversing the edge betweenandwv,. The existence of” is a contradiction to
the fact that the undirected graph underlying our Nash guiiin is chordal.

We conclude that, indeed, for amye V; andw € W a shortest path from to w is at least one edge
longer than a shortest path from to w. Using this property we can show that is transient. If vertex
v € V builds an edge te,, its cost can only decrease because the shortest pathagistbatween and
w € W decrease by at leagl’| > « while the cost for building edges increasescyThe fact that did
not build this edge inV implies that|/I/| = o and NV is transient because can alter his strategy without
changing his cost. An edge, v,) does not change the shortest path distances from othecemrtic V7,

v’ # vq, to verticesw € W If v' uses(v, v2) on a shortest path, it needs at least two edges to reaghd
this was also the number of edges to reagin V.

The single player changes are now as follows. Agents V; one after the other introduce an edge
(v,v2). The changer’s cost does not change. At this point we haweheelaa non-equilibrium statd’:
Agentuy can delete edgey, v1), saving a cost oft. We finally show that only the shortest path distance to
v1 increases by one. In the original equilibriuly, consider a shortest path from to some vertexw # vy
that uses edgévg, v1). After vy, the shortest path visits a vertex € Vi, U V;. The subpath(vg, v1)
followed by the edge between andv’ in N can be replaced by the edges betwegandv, and between
vg andv’ in N'. If v/ € V4, the last edge was newly introduced. O

Proof of Theorem 7. Suppose for the sake of contradiction that there is an équifn graph which is a
tree but not a star. It is well known that any tree has a cahirertex whose removal leaves the tree with
components of size smaller thar2. Letv be such a centroid vertex and ebe a leaf at depth > 2. Itis
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easy to see that since the removabdéaves the tree with components of size at mg&, there must be at
leastn /2 vertices whose shortest pathit@asses through. Buying the edgéu, v) would saven(d — 1) /2
to « and thus we get that > n(d — 1)/2 > n/2, a contradiction. O

Appendix D

Proof of Theorem 8. Let N be any Nash equilibrium. We extend the proof of Theorem 3 astidevelop
a modified bound oost(N'). Consider the equilibrium grapil = (V, E') given by N and fix an arbitrary
playervy € V. We use the shortest path trf€év,) rooted aty, which is defined in the same way as in the
unweighted case. We simply ignore traffic weights and jussitter the edges B to identify the structure
of T'(vg). Again, letE, be the number of edges built by playee V and letd be the depth of'(vy). We
have

Cost(vg) < aFEy, +d Z Wygu

ueV
u#v(Q

becausey, builds only tree edges and the number of edges betwgand any other, € V' is bounded by
d. We next show
Cost(v) < a(E,+1)+ (d+1) Z Wayy-

ueV
uFv

To verify this inequality we simply observe thatii§ decides to build only its tree edges, deleting the non-
tree edges, and additionally builds an edgedoits cost is given by the right-hand side of the inequality.
Summing the costs over all vertices, we obtain

Cost(N) <2a(n—1)+ (d+ 1)W.

It remains to analyzel. Obviously,d < n — 1 and henceCost(N) < 2a(n — 1) + nW. Since
Cost(OPT) > a(n —1)+ W, this establishes the upper bound$@f1 +n) and12+ 3n in parts a) and b)
of the theorem. We can also establish part c) of the theoreause, ifoc > wmaxn?, We haveCost(N) <
20(n — 1) 4+ n3wmax and Cost(OPT) > n?(n — 1)wmax. If @ < wmi, then there is a direct link between
any pair of players and the price of anarchy is bounded by auss” 0st(OPT) > an(n —1)/2 + W.

In the following we assume i, < o < wmaen? and develop a refined bound dn If d < 9, then
the price of anarchy is bounded by 12. Therefore, we assuime 0. To prove part a) of the theorem, we
determinec, 1/3 < ¢ < 1 such thaty = wy,;,n®~! and letV’ = {v € V | £(v) < |2d] in T(vp)}. If
[V'| > 2n°, then a vertexw, at depthT’(vo) could save a cost @by, |V'|([2d] — |2d]| — 1) by building
an edge tay. Sincew does not build such an edgejs at least as large as the latter expression, implying

15«

WininM*©

d<

(6)

If V'] < %nc, then, as in the proof of Theorem 3, there must exist a vertexat depthd, with
|£d] +1 < dy < |2d] having at leastin' /20 decendents. Building an edgeu@ vertexuv;, would save
a cost of at Iea&bmmL%dJ Q%nl—c > wmm%nl—c. This cost saving must be upper boundedisincev;,

does not build such an edge. We obtain

d< 15—, 7)
WinN "~ ¢

By the choice of:, the bounds o®d given in (6) and (7) are identical. Using these bound (6) wevde
15c 15a

WninN® WninN®

Cost(N) < 2a(n —1) + ( + 1) W <2a(n—1)+2W
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We recall thatC'ost(OPT) > a(n — 1) + W. Thus, ifa(n — 1) < W, the price of anarchy is bounded by

5 N\ 1/3
Ve 54 ( - )
WinT¢ W, n

min

2+

becauser® = (an/wmim)"/3. If a(n — 1) > W, the price of anarchy is bounded by

94 30W <oy 60W
Wpinn¢(n — 1) —

(wminn4@)1/3 )
using agaim® = (an/wmyi,)"/3.

To prove part b) of the theorem, we finally study the case dhiatin the rangeum,in < o < Wmaxn?.
Here we use a different estimate énWe have thatl is upper bounded b$,/a /wmin, Since otherwisey
could build an edge to a vertex that/ig’a/wmin | + 1 edges away on a path of lengthThis would reduce

the shortest distance cost by at le@ast,, [ /o/wWmin | (3[v//Wmin | — [v/@/Wmin|) > a. Thus

Cost(N) < 2a(n — 1) 4+ 3y/a/wminW.

If a(n — 1) < W, then the price of anarchy is boundeddy- 3/a/wpin. If a(n — 1) > W, the price of
anarchy is bounded 4+ 3W/(,/awmin(n — 1)). O

Appendix E

Proof of Theorem 9. We first show part a). Using the terminology of the proof of Giem 3, we can show
that for anyv € V, Cost(v) < a(E,+ 1)+ Dist(vg) +n— 1. To see this inequality, we moditys strategy
such that it removes its cost contributions to non-tree gdggentv only maintains its contributions to tree
edges and, additionally, builds an edgevgo the vertex for which we consider the corresponding shbrtes
path tree. The cost under this modified strategy is bounddtidogxpression given above. Summing over
all v we obtainCost(N) < 2a(n — 1) + nDist(vg) + (n — 1)2. We can then boun®ist(vg) in exactly
the same way as in the proof of Theorem 3.

For the proof of part b), using the terminology of the proofTéfeorem 8, we can shoWost(N) <
2a(n — 1) + (d + 1)W. We can extend the arguments presented for the scenariouvitost sharing to
boundd in a similar way. O

Proof of Theorem 10. Consider a cycle of verticesuv, ..., v,. There is an edge betweepanduv;, 1,

1 <i <n -1, and an edge betweer, andv;. We associate a player with each of theertices. Every
player pays a cost @f/2 for each of the two edges adjacent to him, incurring a totat ob« for building
edges. We show that this cycle represents a strong Nashbeigwil for the given range ofi. Since the
strategies of players;, 1 < i < n, are symmetric in, it suffices to prove that there is no strictly better
strategy forvy. We first analyze the cost af;,. There are two vertices at each of the distances 1 up to
| 5] — 1. If nis even, there is one vertex at distarigg; otherwise there are two such vertices. We have

Cost(vy) = a+2 (1 T ED — gJ ((n + 1) mod 2) 8)
= a+ EJ QgJ + 1) - EJ ((n + 1) mod 2). 9)

We investigate the following strategy changes.
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(a) Agenty; maintains its cost contributions to the two adjacent edgdsadditionally, builds new edges
to other vertices.

(b) Agentwv; removes its cost contribution to one of the adjacent edgéslaes not build any new edges.

(c) Agentwu; removes its cost contribution to one of the adjacent edgédaitds does build new edges
to other vertices.

(d) Agentw; removes its cost contributions to the two adjacent edgesiastad, builds new edges to
other vertices.

Case (a) We first assume that; builds one additional edge and then consider the scenatartbre
edges are built. If one extra edge is added, then the betgtris to connect to vertex withi = |5 | + 1.
With this new link,v; has three vertices at distance 1 and four vertices at eatie aistances 2 up tof].
If n mod 4 = 1, then there is one additional vertex at distarhgq + 1. If n mod 4 = 2, there are two
additional vertices at this distance. Three such vertigest & » mod 4 = 3. Thus,v;’s new shortest path
distance cost is

3-1+4(2+...+{%J)—i—(nmodél)({%J +1)

_ igm +1> QEJ +%(nm0d4)) 1

> — 1.

8

The difference iny’s shortest path distance cost is

EJ qu +1) - EJ ((n+1) m0d2)—%2+1

n2 n

< —+—=+1

= 8+2+

- n? +n2+n+1
a———n+——+ =

- 6 8 2

< «

and it does not pay to build an additional edge since the exisafor that edge ia.

Next assume that there was a strategy in whichuilds two or more additional edges, incurring a total
cost bounded by (9). Consider the strategy with the smatlaestber of additional edges and suppose that
there are at least two such links. The removal of any extkatéim vertexv;,, 2 < ig < n, would increase the
shortest path distance cost by more tharin other words, the addition of the link g, leads to a decrease
in the shortest path distance cost by more thaihis implies that ifv; maintained its original strategy and
only added one link ta;,, this would lead to a smaller total cost. This contradicts ¢hlculations of the
last paragraph where we showed that an extra link to an optientexv;, i = |5 | + 1, does not pay off.

Case (b) We assume w.l.0.g. that removes its cost contribution to the edge connecting,tsaving
a cost ofa/2. Verticesv;, fori = 2,...,[5], must now be reached by traversing the cycle arc thraugh
The shortest path distance costgfincreases by

(525G

Sincea/2 is smaller than the latter expressien,does not perform the considered strategy change.
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Case (c) Again we assume that; removes its cost contribution to the edge connecting,td/Ve first
study the scenario that builds one new edge and then address the case that more nes/aedouilt. If
one additional edge ist built, then the best strategy is tmeot to vertex; with i = |5 | + 1. Thenv; can
reach two vertices at distance 1 and three vertices at eaitte afistances 2 up to5 |. If n mod 3 = 1,
there is one additional vertex at distar[c% + 1. If n mod 3 = 2, there are two additional vertices at this
distance. Thus the new path distance cost;aé

2.1+3(1+. +ED+(QH )nmodi%)

(3] ) (] Bmesn)
- 3]s
SOt

Hencev,’s saving in the shortest path distance cost is at most

EJ (EJH)—E ((n+1)mod2)_%2§g(g+l>_%2

and this is less than/2, which is the extra cost incurred ly in building edges.

Next assume that there was a strategy in whigcltbuilds more than one additional edge, leading to
a cost bounded by that given in (9). Consider the strategly thi¢ smallest number of additional edges
and suppose that there are at least two such linksig.ey < n, be the largest index such that builds
an additional edge to;,. As in case (a) it follows that the deletion of the linkdg would increase the
shortest path distance cost by more tharEquivalently, the addition of the link to;, leads to a decrease
of the shortest path distance cost by more tharThis implies that the following strategy leads to a cost
smaller than (9): Vertex; maintains its cost contribution to the edges connecting, tandwv,, and builds
an additional edge to;,. This contradicts the fact that, as argued above, strategiyges of type (a) lead to
strictly higher cost.

Case (d) We first study the scenario that builds one new edge and then investigate the case that two
or more new edges are built. If one new edge is built, thés total cost for building edges remains the
same. The best strategy is to build a link to the vertewith i = |3 | 4 1. With respect ta;’s shortest
path distance cost, there is one vertex at distance 1 andextices at each of the distances 2 up%d. If
n IS odd, there is one vertex at distar{cge}. Thus the new shortest path distance cost is

1+2(2+...+ ED + EW (n mod 2).
The cost difference with respecttg’s original strategy is
[g—‘ (nmod 2) — 1+ {gJ ((n+1) mod 2)
and this is strictly positive fon > 6.
Next suppose that two new edges are built. The best strategy ik to connect ta;,, with4; = [ ]+1,

and tov;,, with i; = [22| + 1. Vertexv; has two vertices at distance 1 and four vertices at each of the
distances 2 up t¢7%|. If n is divisible by 4, then there is one additional vertex atafise |7 | + 1. If
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n mod 4 = 1, then there are two additional vertices at distab§¢ + 1. If n mod 4 = 2, then there are
three additional vertices at that distance. Thus the newestgath distance cost is

2-1+4(2+...+ED+(EJ+1) ((n + 1) mod 4)
- 2(EJ +1) (EJ —|—%(n+1) mod4) —9
S

The difference in the shortest path distance cost is uppanded by

(2] o5 (-

1 1 7
< a—énZ—n+§n2+§n+2
< a.

Hence it does not pay to build two additional edges.

Finally assume that there was a strategy in whichbuilds three or more additional edges, leading to
a cost bounded by that given in (9). As usual, consider tlagegty with the smallest number of additional
edges and suppose that there are at least three such linkgy, kg < n, be the second to largest index
such thatv; builds an additional edge ta,. We can now argue as in case (c). Removing the link;o
increases the shortest path distance cost; dfy more thany, i.e. the addition of the link t@;, leads to
a decrease of the shortest path distance cost by morenthdhis implies that the following strategy has
a cost smaller than (9): Vertex maintains its cost contribution to the edges connecting, tandv,, and
builds an additional edge tg,. As before, this contradicts the fact that strategy chaofégpe (a) lead to
strictly higher cost. O
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