Dynamic TCP Acknowledgement: Penalizing Long Delays

Susanne Albers*

Abstract

We study the problem of acknowledging a sequence of data
packets that are sent across a TCP connection. Previous
work on the problem has focused mostly on the objective
function that minimizes the sum of the number of acknowl-
edgements sent and the delays incurred for all of the pack-
ets. Dooly, Goldman and Scott presented a deterministic
2-competitive online algorithm and showed that this is the
best competitiveness of a deterministic strategy. Recently
Karlin, Kenyon and Randall developed a randomized on-
line algorithm that achieves an optimal competitive ratio of
e/(e —1) =~ 1.58.

In this paper we investigate a new objective function
that minimizes the sum of the number of acknowledgements
sent and the mazimum delay incurred for any of the packets.
This function is especially interesting if a TCP connection
is used for interactive data transfer between network nodes.
The TCP acknowledgement problem with this new objective
function is different in structure than the problem with the
function considered previously. We develop a deterministic
online algorithm that achieves a competitive ratio of 72/6 ~
1.644 and prove that no deterministic algorithm can have
a smaller competitiveness. We also study a generalized
objective function where delays are taken to the p-th power,
for some positive integer p. Again we give tight upper
and lower bounds on the best possible competitive ratio
of deterministic online algorithms. The competitiveness is
1 plus an alternating sum of Riemann’s zeta function and
tends to 1.5 as p — oco. Finally we consider randomized
online algorithms and show that, for our first objective
function, no randomized strategy can achieve a competitive
ratio smaller than 3/(3 — 2/e) ~ 1.324. For the generalized
objective function we show a lower bound of 2/(2 — 1/e) =
1.225.

1 Introduction

Dooly et al. [2, 3] recently initiated the algorithmic
study of the dynamic TCP acknowledgement problem.
In large networks such as the Internet data transmission
is performed using the Transmission Control Protocol
(TCP). Consider an open TCP connection between two
network nodes that wish to exchange data. The data is
partitioned into segments or packets that are sent across
the connection. A node receiving data must acknowl-
edge the arrival of each incoming packet so that the
sending node is notified that the transmission was suc-
cessful; lost packets must be retransmitted. However,

*Institut fiir Informatik, Albert-Ludwigs-Universitét

Freiburg, Georges-Kohler-Allee 79, 79110 Freiburg, Germany.
salbers@informatik.uni-freiburg.de Work supported in part
by the EU, projects APPOL and APPOL II.

Lehrstuhl Informatik II, Universitit Dortmund, 44221 Dort-
mund, Germany.

Helge Bals'

data packets do not have to be acknowledged individu-
ally. Instead, most TCP implementations employ some
delay mechanism that allows the TCP to acknowledge
multiple incoming packets with a single acknowledge-
ment and, possibly, to piggyback the acknowledgement
on an outgoing data segment. Reducing the number
of acknowledgements has several advantages, e.g. the
overhead incurred at the network nodes for sending and
receiving acknowledgements is reduced and, more im-
portantly, the network congestion is reduced. On the
other hand, by reducing the number of acknowledge-
ments, one adds latency to a TCP connection, which is
not desirable. The goal is to balance the reduction in
the number of acknowledgements with the increase in
latency. The decision when to send acknowledgements
must usually be made online, i.e. without knowledge of
the future packet arrival times.

Motivated by the fact that TCP supports dynamic
acknowledgement mechanisms, Dooly et al. [2, 3] formu-
lated the following problem. A network node receives
a sequence of n data packets. Let a; denote the arrival
time of packet i, 1 < i < n. At time a;, the arrival
times aj, 7 > 4, are not known. We have to partition
the sequence ¢ = (a1,...,an) of packet arrival times
into m subsequences o1,...,0,,, for some m > 1, such
that each subsequence ends with an acknowledgement.
We use o0; to denote the set of arrivals in the parti-
tion. Let ¢; be the time when the acknowledgement
for o; is sent. We require ¢; > aj, for all a; € ;. If
data packets are not acknowledged immediately, there
are acknowledgement delays. Note that any reasonable
objective function must take into account both the num-
ber of acknowledgements sent and the incurred acknowl-
edgement delays. Ignoring the number of acknowledge-
ments and considering only delays, it would be optimal
to acknowledge each packet immediately, which leads
to a large number of acknowledgements sent. On the
other hand, ignoring delays and considering only ac-
knowledgements, it would be best to send a single ac-
knowledgement at the end of the packet sequence, which
leads to unacceptable delays.

Previous results: Previous work on the dynamic
TCP acknowledgement problem [2, 3, 4, 5, 6, 7] has
focused mostly on the objective function that minimizes
the number of acknowledgements and the sum of the

delays incurred for all of the packets, i.e. we wish to
minimize h = m + 3370, 3, o, (ti — a;). Given a
solution generated by an acknowledgement algorithm A
on input o, the resulting objective function value is also
referred to as the cost C4(0) of A on 0. Following [8], an
online algorithm A is called c-competitive if there exists
a constant b such that C4(o) < c- Copr(o) + b, for
all inputs o. Here Copr(o) is the cost incurred by an
optimal offline algorithm that knows the entire input o
in advance and can serve it with minimum cost.

Dooly et al. [2, 3] presented a deterministic 2-
competitive online algorithm and showed that no deter-
ministic online strategy can achieve a smaller competi-
tive ratio. This performance guarantee also holds if an
online algorithm has some bounded lookahead. Most
implementations of TCP have a mazimum delay con-
straint, i.e. the acknowledgement of a packet may be
delayed for at most ¢ time units, e.g. § could be 500 ms.
Dooly et al. showed that their algorithm can be modified
and remains 2-competitive in the presence of such a con-
straint. Karlin et al. [4] studied randomized online al-
gorithms against oblivious adversaries. They developed
a randomized online strategy that achieves a competi-
tiveness of e/(e—1) ~ 1.58. Noga [5] and independently
Seiden [7] showed that no randomized algorithm can do
better.

Dooly et al. also studied the minimization of a
second objective function A’ = m+ Y~ | max,;cq, (t; —
a;) where one considers the sum of the maximum delays
incurred in subsequences ¢; in addition to the number
of acknowledgements sent. They showed that the best
competitive ratio of a deterministic online algorithm
without lookahead is equal to 2.

In general, Dooly et al. and Karlin et al. pointed out
that the TCP acknowledgement problem with objective
functions h and h' are ski rental type problems.

Our contribution: In this paper we investigate a
new family of objective functions that penalize long ac-
knowledgement delays of individual data packets more
heavily. TCP is used for both interactive and bulk data
transfer. In the first case, consider a TCP connection
that is used for communication with a remote interac-
tive program. Here long delays are not acceptable as
they are noticeable to the user. In the case of bulk
data transfer long delays also have a negative effect and
hence, as already mentioned before, most systems work
with a maximum delay constraint. Therefore it is desir-
able to design algorithms that aim at keeping the max-
imum delay short.

We study the objective function that minimizes
the number of acknowledgements and the maximum
delay incurred for any of the data packets. Given
an input o, consider a partitioning oy,...,0,,. Let

d; = max,cq, (t; — a;) be the maximum delay of any
packet in 0;, 1 < i < m. We wish to minimize the
function

(1.1) f=m+ max d;.

1<i<m
It turns out that the dynamic TCP acknowledgement
problem with objective function f is different in struc-
ture than the problem with functions A or A'. In par-
ticular our problem is not a ski rental problem. In Sec-
tion 2 we present a family of deterministic online algo-
rithms and prove that the best strategy in that family
achieves a competitive ratio of 72/6 ~ 1.644. Note that
726 = 3.2, 1/i>. We also show that this is the best
possible competitive ratio. No deterministic online algo-
rithm can achieve a competitiveness smaller than 72 /6.
Additionally, we investigate a generalization of the ob-
jective function f where delays are taken to the p-th
power and hence are penalized even more heavily. For
any integer p > 1, we wish to minimize

(1.2) fp=m+ max d.

1<i<m
For the formulation of the competitive ratio, let ((p) =
Sy iip, for any p > 2. The function ((p) is known as
the Riemann zeta function. We define (1) := 1. Let

p+1
=1+ 3 (~)PHag(g).

g=1
In Section 3 we give a deterministic online algorithm
that is c,-competitive and prove that no deterministic
strategy can achieve a competitiveness smaller than c,,.
For p = 1, this expression is equal to 72/6. In general
cp is decreasing in p and tends to 1.5 as p = oo.

In Section 4 we consider randomized online algo-
rithms against oblivious adversaries and present lower
bounds. We first prove that, given function f, no ran-
domized online algorithm achieves a competitive ratio
smaller than 3/(3—2/e) &~ 1.324. We then show a lower
bound of 2/(2 — 1/e) = 1.225 for function fp, p > 2.

We remark that similar to [2, 3], we could consider
in f and f, a linear combination of the number of
number of acknowledgements sent and the maximum
delay (taken to the p-th power). This does not change
the competitive ratios and the upper and lower bound
proofs can be modified easily. For simplicity, in this
extended abstract we study the functions as defined
in (1.1) and (1.2). Moreover we remark that all of our
results carry over to the case that there is a maximum
delay constraint.

2 Minimizing the maximum delay

2.1 An optimal deterministic online algorithm
We define a general class of algorithms. Let z be a
positive real number.

Algorithm Linear-Delay(z): Initially, set d = z and
send the first acknowledgement at time a; + d. In
general, suppose that the i-th acknowledgement has just
been sent and that j packets have been processed so far.
Set d = (i+1)z and send the (i+1)-st acknowledgement
at time a;y1 + d.

We analyze the algorithm for values z with z > 1/2,
which give the best performance.

THEOREM 2.1. For any z with z > 1/2, Linear-
Delay(z) is c-competitive, where ¢ = max{l + z, (1 +

2)/ (24 z —n%/6)}.

COROLLARY 2.1. Setting z = n%/6—1, Linear-Delay(z)
achieves a competitive ratio of w2 /6.

We now prove Theorem 2.1.

Proof. In the following we call the online algorithm

D(z) for short. Suppose that LD(z) serves the input
sequence using m acknowledgements. The longest
acknowledgement delay is mz and hence the online cost
is Crp(x)(0) = m(1+2).

We have to lower bound the cost incurred by an
optimal offline algorithm OPT. In the sequence of n
packets we identify a subsequence of m main packets,
numbered from 0 to m — 1. Main packet 0 is the
first packet in the input sequence. Main packet 7,
1 < i < m —1, is the first packet that arrives after
the i-th acknowledgement sent by LD(z), i.e. it is the
first packet that arrives after time ¢;. The definition
of LD(z) implies that the time difference between the
(z —1)-st and the i-th main packets is larger than iz, for
i=1,....,m—1.

Suppose that the optimum offline algorithm serves
the request sequence using ! acknowledgements and
that the maximum acknowledgement delay is C', C' >
0. Then Copr(c) = | + C. Associated with each
acknowledgement a sent by OPT is an acknowledgement
interval that starts when the first packet acknowledged
by a arrives and ends when « is sent. The length of
each interval is bounded by C. In the following ¢ always
denotes a positive integer.

LEMMA 2.1. Any acknowledgement interval starting at
or after the arrival of main packet L%J can contain at
most © main packets.

Proof. Main packet k with k& > L%J + 1 has a distance
of more than z(| <] + 1) to the previous main packet.
If the acknowledgement interval contained at least ¢ + 1
main packets, then the length of the interval would be
at least zz(LgJ +1)> zz(%) = C, which is impossible.
0

Define ip = L\s/gj — 1. In the rest of this proof

we assume 79 > 2. If 39 < 1, then C < 27z and OPT
must acknowledge each of the last m — 27z main packets
with separate acknowledgements. In this case LD(z) is
clearly (1 + z)-competitive.

LEMMA 2.2. Let 1 < ¢ < i9. The acknowledgement
interval containing main packet k, for k > L J, must

have started after the arrival of main packet |_ l+1 |

Proof. We show that the time window starting at main
packet L G +1 | and ending with main packet |£] i
larger than C which proves the lemma. The number of
main packets in this time window is <] — |—(z+1)zJ +1>
ﬁ > 1+ 2. The last inequality is equivalent to
C/z > i(t + 1)(i + 2) and holds for all i < i5. Thus
there are at least 7 + 2 main packets in this time
window. Each of the last ¢ + 1 of these is more than
z(LﬁJ + 1) time units away from the previous main
packet and thus the length of the window is greater than
i+ Da(lgpz) + 1) >+ Da(gyz) =C. O

We now estimate the number of acknowledgements
sent by OPT and use the following charging scheme.
An acknowledgement costs 1. We charge this cost to
the main packets contained in the associated acknowl-
edgement interval and split the cost evenly among these
main packets. More specifically, if an acknowledgement
interval contains ¢ > 1 main packets, then each of these
packets is assigned a cost of 1/i. If an acknowledgement
interval does not contain a main packet, then we ignore
it in the analysis of OPT’s cost. We develop a lower
bound on the cost charged to each main packet. Sum-
ming over all main packets, we derive a lower bound
on the optimum cost incurred for sending acknowledge-
ments.

We assume that C' < m. If C > m, then LD(z)
is clearly (1 + z)-competitive because LD(2)’s cost is
(14 z)m and the optimum offline cost is at least m. In
the following we will first analyze the case C' < zm and
then C' > zm.

Suppose that ¢ < zm. FEach main packet is
contained in some acknowledgement interval. Let ¢ be
an integer with 1 <14 <i9. We analyze the cost charged
to main packet k with & > [<] and k < |_ = 1)ZJ If

= 1, then & < m. If the acknowledgement interval
containing main packet k started at or after the arrival
of main packet L%J, then by Lemma 2.1 at most ¢ main
packets are contained in the interval and main packet &
is assigned a cost of at least 1/7. If the acknowledgement
interval started earlier, then by Lemma 2.2 it must
have started after the arrival of main packet [ﬁj
Applying Lemma 2.1 for i+1, we obtain that the interval

contains at most ¢ + 1 main packets and the packet is
assigned a cost of at least 1/(¢ + 1). There is only one
acknowledgement interval that starts before and ends
after the arrival of main packet L%J Thus for at most
1 + 1 main packets considered above, the cost is lower
bounded by 1/(i + 1) instead of 1/i. We obtain that for
1 = 1, the total cost assigned to all the main packets &
with & > [£] is

(m-1$)-20-3)=m-[$)-1

19, the total cost assigned to main packet

< Lﬁj is at least

(5] - 12D =G+ Dt -)
= (&) - gD -+

Summing over all i, we obtain that the number of
acknowledgements sent by OPT is at least

m-1g]-1+ %

Lz % ((lwse) - 18) 1Y)
= =S) - [-

oo
C 1 1 C -
Lz m_7i_l(i_2_i(i+1))_ig_z_7’0
C 2
2 m—z(%—l)—m—lo
> m—§(§—1)—1030

v
3
|
x|
/N
o,
|
_
SN——
|
_
=)
w
r

The second to last inequality follows because 79 > 2 and
hence i3 > £(£)?/3. The last inequality follows because

C < m and hence ¢/ % < §/*. The total cost incurred
by OPT is at least

2

OOPT(U):I+CZ’ITL+C—%(%_

(2.3)
We now distinguish two cases. If z > %2 — 1, then the
right hand side of (2.3) is increasing in C'. Choosing C' =
0 we obtain that Copr (o) > m — O(/m) and LD(z) is
(1+2)-competitive because the online cost is (14 z)m. If
z < %2 —1, then the right hand side of (2.3) is decreasing
in C. Choosing the largest possible value C' = zm, we
obtain Copr (o) > (2+ 2z — =)m — O(¢/m) and LD(z)
achieves a competitive ratio of (1+2)/(2+ 2z — %2)
We next analyze the case C' > zm. The only
difference in analyzing this case is that there are no

1)—0(\3/5).

main packets k with & > |<] and k < m because C is
large. However, there are main packets k with k& > L%J
and k < m because C' < m < 2zm since z > 1/2. Thus
the number of acknowledgements sent by OPT is

L> (m-l])5-3

£ (=] - 12) -)

ip—1
1 c (1 1 c
z am- X E(;‘m)—%—z—(fho—l)
1=
1 c (=®
> Im-C (% - 1.5) — 10/
Thus the optimum cost is at least

Copr(0) > 3m+C — €(Z —1.5) = O(¢/m). The
right hand side of the last inequality is increasing in
C because z > 1/2 > (’%—2 — 1.5). Since C > zm, we

obtain Copr(a) > (2+ 2z — Z)m — O(¢/m) and LD(z)

achieves a competitive ratio of (14 2)/(2+ 2z — %2) ad

2.2 Lower bound

THEOREM 2.2. Let A be a deterministic online algo-
2
rithm. If A is c-competitive, then ¢ > 7.

Proof. We construct a family of request sequences oy,
for any [> 8. For a fixed [in this range, let ig = | /1] —2
and !’ = Lz‘ol+1 |. For convenience we number the packets
is o7 starting with [’. Packet [’ is sent at time 0. For
any i with I’ < i <, packet i is sent exactly (%2 — 1)
time units after packet i — 1. For any ¢ with i > [,
packet 7 is sent exactly (%2 — 1)l time units after packet
i1—1. The adversary stops sending packets as soon as the
online algorithm decides to acknowledge an incoming
packet together with the preceding packet. If the online
algorithm never acknowledges a packet together with a
preceding packet, the adversary can force a competitive
ratio arbitrarily close to 2 by acknowledging always two
packets together. Thus, let m be the number of the
last packet sent by the adversary. Note that m is a
function of | but, for simplicity, this dependency will
not be shown in the notation.

In the following we will first analyze the competitive
ratio of the online algorithm for m < [, then we will
consider the case m > [. If m < [, then the adversary
can acknowledge each packet immediately and its cost
is Capv(o;) = m—1'+1 because the packet numbering
in the sequence starts with I’. The online algorithm
A serves the first m — I’ — 1 packets with separate
acknowledgements and the last two packets with a joint
acknowledgement. The acknowledgement of packet

m—1 is delayed by (%2 —1)m time units. Thus the total

online cost is at least Cy(0;) = m —1' + (%2 —1)m =

=1

s = (m—51') > = (m—1'+1) = CADV(al)
The last inequality holds because I' > 7T?/(e — 1)
To verify this relation we observe that, for [= 8§,
'=8> %2/(%2 —1) and [’ is increasing in [.

It remains to analyze the case m > [. The adversary
chooses acknowledgement intervals of length (%2 — 1)1,
i.e. it sends out an acknowledgement whenever there is
an unacknowledged packet waiting for exactly (%2 —1)I
time units. To analyze the number of acknowledgements
incurred by the adversary we need the following lemma.

LEMMA 2.3. Let 1 < i < i9. An acknowledgement
interval that ends after the arrival of packet L%J must
have started after the arrival of packet LH_%J

Proof. Suppose that an acknowledgement interval end-
ing after the arrival of packet || started at or before
the arrival of packet | frlj This time interval contains

1L - Lz+1J packets that are at least (— - 1)(L,+1J +

1) > (— - 1)— time units away from the preceding
packet. Thus the time interval has a total length of

(5~ Ve (L8] = L)) > (5 = Dtz —1 =) =
(%Z—I)H_Ll(m 1). We have z(z+1) —1 > i+1 because
the this inequality is equivalent to [> i(i + 1)(7 + 2),
which holds for all 1 < i < 4. Thus the time interval
has a total length of greater than (— —1)!, contradicting
the fact the adversary chooses acknowledgement inter-

vals of length (’%—2 —1l. O

To estimate the total number of acknowledgements
incurred by the adversary we use a charging scheme
similar to that employed in the upper bound. If an
acknowledgement interval contains i packets, then the
cost of 1 is distributed evenly among the packets, i.e.
each packet is assigned a cost of % An acknowledgement
interval that ends no later than the arrival of packet
L%J,l < ¢ < 1ig, contains at least ¢ + 1 packets
because each of the packets is a distance of at most
L%J(%ﬁ — 1) away from the preceding packet. Hence
packets k with LH%J < k < |%] are charged a cost of
at most ; +1 However this is not completely correct
because a packet k in the latter range may be contained
in an acknowledgement interval that ends after the
arrival of packet [L|. By the above lemma, such an
acknowledgement interval cannot end after the arrival
of packet |- llj, if 4 > 2. Thus the packet k is
assigned a cost of 1 7 instead of ﬁ At most ¢ + 1
packets can have this slightly higher cost because each
packet k with |_f_1J < k < L%J has a distance of
at least (% - 1)(|—z+1J +1) > (— - 1)z+1 to its
preceding packet. For any 1 < i < iy, the total cost

charged to all the packets k& with | +1J <k <|tis
(L%J‘Lm])m"‘(l"‘l)(;—m) = (L%J—L#A)m+—
Any packet k with [< k < m is charged a cost of
because these packets are a distance of exactly (’%—2 - l)l
apart. In the worst case, the last packet m is charged a
cost of 1. Moreover packet [’ is assigned a cost of —— +1
In summary, the total cost charged to all of the packets,
which is equal to the total number of acknowledgements
sent by the adversary, is upper bounded by

[T

(m—1-1)3% +1+Z((H—[@%J)i%+

i=1
+
< B4+ %"‘Z(%_ﬁ‘“)m"‘[{’oﬂ
= %_%+§ l(z+1) z:(z+1)2+2H’°+1
_ %+%—l(%—1)+0(10gl),

where H}, is the k-th Harmonic number.

Since the maximum acknowledgement delay in-
curred by the adversary is (’%—2 — 1), its total cost is
1(m +1) + O(log!). On the other hand the total cost

incurred by the online algorithm A is m — ' + (— -1
because the input consists of m —1I’+1 data packets, the
last two of which are acknowledged together. We con-
clude that the ratio of the online cost to the adversary’s
cost is
L
I+ 3(m—1)+O0(logl)

Since I' = o(l) and O(logl) = o(l), this ratio approaches
a value of at least %2 as | — 0o, no matter how the online
algorithm chooses m,m > 1. O

3 Minimizing the maximum delay taken to the
p-th power

We first show that c, is decreasing in p and tends to 1.5

as p — oo0. For p > 1, letg(p)zzl?'ilm. Then,
for p > 2,
D D S D

zl’z+1 P zl’lz-l-l

1 i=1 i=1

-) —sp- 1)

Applying this recurrence repeatedly we obtain g(p) =

gzl(—l)p*q((q). Note that g(1) = 1 = ¢(1). Thus
¢p = 1+g(p+1). We have g(p+1) = 3+3°.2, mrrirry-
The last sum is always positive and tends to 0 as p — oo.
Table 1 shows the value of ¢, for small p.

Cp
1.6449
1.5571
1.5252
1.5117
1.5056
1.5027
1.5013
1.5007
1.5003
1.5002

S5© 000 otswN S

Table 1: Some values of c,

3.1 An optimal deterministic online algorithm
We generalize the algorithm given in Section 2. Let z
be a positive real number.

Algorithm Delay(z,p): Set the initial delay to d =
¢z and send out the first acknowledgement at time
a1 + d. In general, assume that i acknowledgements
have been sent and that j packets have been processed
so far. Set d = {/(i+ 1)z and send the (i + 1)-st
acknowledgement at time a;, + d.

THEOREM 3.1. Setting z, = ¢, —
Delay(zp, p) is cp-competitive.

1, the algorithm

Proof. We denote the algorithm by D(z,,p) for short.
Suppose that the online algorithm serves the input
sequence using m acknowledgements. Then its total
cost is Cp(z, p)(0) = m+(¢/m zp)? = (1+2,)m = cym.
Let C be the maximum acknowledgement delay incurred
by the optimum offline algorithm OPT. If C' > ¢/m,
then the optimum offline cost is at least m and D(z,, p)
is clearly cp-competitive. Therefore we assume C' <
Jm.

In analyzing the optimum offline cost we use the
terms main packet and acknowledgement interval as
introduced in the proof of Theorem 2.1. Again we
number the m main packets in the input from 0 to
m — 1. Let ig = | *»%/CP/z,| — 1. In the following
we assume i > 4. If 59 < 3, then >**/CP/z, < 5,
which is equivalent to C' < {/52P*1z,. Thus C is upper
bounded by a constant and all but a constant number of
the m main packets require a separate acknowledgement
by OPT. Thus D(z,,p) is c,-competitive.

In the following we first concentrate on the case C' <
¢/Zpm, then we consider C' > y/zym. To estimate the
number of acknowledgements sent by OPT, we apply
the usual charging scheme. If an acknowledgement
interval contains 7 main packets we charge a cost of % to
each of these. Using ideas similar to that in the proof of

Theorem 2.1 we can show that if an acknowledgement
interval starting at or after the arrival of main packet
sz;pj can contain at most ¢ main packets. Secondly,
an acknowledgement interval containing main packet

lf:pj must have started after packet

Lﬁj These two statements imply that the total
P
cost assigned to main packets k with & > LS—pJ is at least
p
- |_C—pJ —1 and the cost assigned to main packets k

w1thL J<k<L and 2 <17 < ip is at least

iP 2y z]_)Pz J

CP

({WJ B Lg‘;J) i

Hence the number [of acknowledgements sent by OPT
is at least

I > m—[c—pJ—l

& (o] - L2 -1

io—1
= — cr 1_1_|Cc”|1_ g
= m 21 L”ZPJ (z i+1) [igsz i~ Hi

1=

&=

= m-S(¢ (zﬂ-l)—g(p))—l.g+—f’zp—Hl-0
= m—f—pzp—igf_fzp_]{io_
The last equation holds because ((p + 1) — g(p) =

gp+1)=cp, —1=2,.

LEMMA 3.1. The term pf—lz

P

is o(m).

Proof. By definition the term equals

4 4
(3.4) ¢ < c :

p+1 — p+1
(R R CEa

where the inequality holds because the denominator is
non-negative by the choice of iy > 4. Moreover, the

assumption ip > 4 implies 2 < iy/2 < 2?&/%/2 and
P

hence the last expression in (3.4) can be upper bounded
by

cr
p+1
Cr Cr
(zwrl/Z — 241 —/2) Zp

p(pt1)

p(p+1)
ot = qertEa

+
= (CP 2pH1 z;“’l

for some constant d. As C < ¢/m and the exponent

p(p+1)
P~ S

consideration is o(m). O

is strictly smaller than p, the term under

Using the above lemma we obtain that the number
of acknowledgements sent by OPT is at least m — C? —
o(m) and the total cost is Copr(c) > m — o(m). This
implies that D(z,, p) is cp,-competitive.

We finally analyze the case ' > g/z,m. Since C'
is large, there are not necessarily main packets k& with
E > LS—:J and C < m. However there are packets
k> L%J and k < m because C?/(2Pz,) < m is
equivalent to ¢ < {/m2Pz, and this holds because
C<¢mandz,=gp+1)=5+X2, srn > 3
Thus the number of acknowledgements [sent by OPT

is at least

bz (melE5)) 8-

o
m _ C*? 1o _ 1 y__¢* _ g
2 2 2p Z (iP+1 ip(i+1)) P+I, HZO
=2 o P
- m_C? _1y_
= B (- 1) —o(m).

We conclude that the optimum offline cost is at least
Copr(o) > F + % — o(m) > m — o(m) because
P

C > y/Zpm and D(zp,p) is c,-competitive. O

3.2 Lower bound

THEOREM 3.2. Let A be a deterministic online algo-
rithm. If A is c-competitive, then ¢ > c,.

Proof. We construct a family of input sequences o, for
any integer [> 1. For a fixed [, let i = | V1| — 1
and I' = | ;7] Note that I' = O~ =) = o(l).
We number the packets in o; starting with [’. Packet
' is sent at time 0. Packet k, for I’ < k < [, is sent
{/zpk time units after packet k — 1. For k > [, packets
k and k — 1 are separated by exactly ¢/z,! time units.
The adversary stops sending packets when the online
algorithm decides to acknowledge two packets with the
same acknowledgement. Let m be the number of the
last packet sent.

If m <, the cost incurred by the online algorithm
Ais at least m —I' + (z,m)» = c,m —I'. The adversary
can acknowledge each packet immediately, incurring no
delays so that its cost is at most m — I’ + 1. The ratio
of the cost incurred by A to the cost incurred by the
adversary is at least

!
cpm — 1

_. zpl' — ¢p
m-—-10+1 b

m-—1"+1
and this expression is at least ¢, if { > 2?P*1. In this

case I' > 4 and zpl' — ¢, > 0 because z, > 1/2 and
cp < 2.

We concentrate on the case m > [. The adversary
chooses an acknowledgement interval of ¢/Zz,m time
units. Using the familiar charging scheme we can
show that, in order to upper bound the number of
acknowledgements incurred by the adversary, the total
cost charged to packets k with |L| < &k < Lﬁj
and 1 < i < ip is at most (| 5] — LWJ)H_% + L
The total cost charged to packets & with k& > [is
at most (m — 1)1 + . Hence the total number of
acknowledgements sent by the adversary is at most

-0 +3+ 3 (14 - [t]) e+ 2)

1
+io+1
1,1]
< (m—l)§+§—2m+21{io+1
1=

= (m—1)3+1— 2yl +O(logl).

The total cost paid by the adversary is at most (m —
1) 4+ 1+ O(log!) and the ratio of the cost incurred by
A to the cost incurred by the adversary is at least

epl+m—1-=1
I+ 3(m—1)+O0(logl)

This ratio approaches a value of at least ¢, as [— oo
because I' = o(l). O

4 Randomization

THEOREM 4.1. For the dynamic TCP acknowledge-
ment problem with objective function f, no randomized
online algorithm can achieve a competitive ratio smaller
than c > 3/(3 — 2) against any oblivious adversary.

Proof. We apply Yao’s principle [1, 9] and construct a
probability distribution on input sequences o;, for any
integer [> 1, such that for any deterministic online
algorithm D,

E[CD(Ul)] > 3
—3-2/e

lim
[—o0 E[CApv(O'l)]
and
lim E[CADV(O'l)] = 0.
[—o00

Here E[Capv(c;)] and E[Cp(o;)] denote the costs
incurred by the adversary and the deterministic online
algorithm, respectively. An input o; consists of triples.
A triple is a set of three data packets that are separated
by [time units each. More precisely, the second packet
is sent exactly [time units after this first packet of the
triple; the third packet is sent [time units after the
second packet. Thus a triple has a total length of 2I.
The adversary sends triples, where the distance between

triples is chosen so large that it does not make sense to
acknowledge packets in two different triples with one
acknowledgement. With probability p; = q(1 — ¢)*~ 1,
where ¢ = 1/I, the adversary sends exactly i triples, for
any i > 1. Note that > .-, g(1—¢)*"* = 1. Triple i and
i + 1 are separated by 3[/p;11 time units.

If a deterministic online algorithm on this input
acknowledges packets of different triples together and
if this happens for the first time for packets from triples
i and 7 + 1, then the expected cost of the algorithm
is at least p;y1(3l/pi+1) = 3l. In the following we
concentrate on the case that a deterministic online
algorithm on this input never acknowledges packets
from different triples together. We characterize an
algorithm by two non-negative integers [y, [, with I; <
Iy such that [; + 1 is the first triple where the algorithm
acknowledges at least two packets together and I5 + 1 is
the index of the first triple where all the three packets
are acknowledged together. We refer to this strategy as
D(l1,l2), Iy < lao. Algorithm D(l;,00), I3 > 0, never
acknowledges all the packets of one triple together and
D(00,00) never acknowledges any packets together. To
analyze the expected cost, we need the following lemma.

LEMMA 4.1. a) Ifl1 <ls, then
E[Cp, 15)(01)] = E[CD(1,41,1,) (01)]-

b) [fll S 12, then
ElCp, i)(o)] = E

¢) For anyl; >0,
E[Cpy,00)(01)] = E

Proof. We prove part a). The other parts can be proved
similarly. We have

E[OD(l17lz) (01)]

= E 3ip; +

[CD(h Ja+1) (Ul)] .

[CD(1y+1,00) (01)]-

i=l1+1

+ Z (21+ll +lz+i)pi
i=ls+1

I1+1 .
= > 3ipi —3(l1 + V)pr, 41

=1

I2
+ > (U +h+1+2i)p;
1142

+(+ 04 +2(L 4 1)pry 41 — Z Di

+ > Q@+L+1+1+0)p; —
i=ls+1

= ElCpa,41,1.)(@)] + (= Dpiy 1 —

> pi
i=la+1
E bi
i=l1+2
= E[CD(Z1+1,12)(01)]'D

Parts a) and b) of the above lemma imply that
E[Cp0,0)(01)] = E[Cp, 1,)(01)] for any 0 < I < Io.
Hence it suffices to compute E[Cp(o,0)(01)] = > 1o (20+
i)pi = 20+ 1/q = 3l. Part c¢) of the Lemma 4.1
implies E[Cp(0,00) (01)] = E[Cp(1,,00)(01)], for any I >
0. We have E[Cp(o,00)(01)] = ioq(l + 2i)p; = 3L
Finally E[Cp(cc,00)(01)] = Y joq 3ip; = 3l. Thus, in
any case the expected online cost is at least 3. It
remains to analyze the expected cost incurred by the
adversary. If the input consists of at most [triples,
the adversary acknowledges the packets individually;
otherwise it incurs a delay of 2/ and acknowledges the
packets of each triple together. Thus

E[CADV(Ul)]

= Z3lpz+ Z pi(i +21)
= i=l+1

= l+222pz+2 Z il
i=1 i=Il+1

1—(!+1>(1—Z; HO-0' 4 911 — g)!
— 41— 1/0) + 21(1 — 1/1)}

E[Capv(01)]/l = 3—2/e and the theorem

= [+2
= 3

Thus lim;_,
follows. O

THEOREM 4.2. For the dynamic TCP acknowledge-
ment problem with objective function f,, no randomized
online algorithm can achieve a competitive ratio smaller
than ¢ > 2/(2— 1) against any oblivious adversary.

Proof. An input oy, for any integer [> 1, consists of
pairs. A pair are two packets that are ¢// time units
apart. With probability p; = ¢(1 — ¢)' %, ¢ = 1/I,
the input consists of i pairs, for any ¢ > 1. Pairs i
and ¢ + 1 are separated by {/2[/p;y; time units. If
a deterministic online algorithm acknowledges packets
of different intervals together and if this happens for
the first time for packets from pairs ¢ and ¢ + 1, then
the expected cost is at least p;1(/2l/pit1)? = 2L
In the following we consider algorithms that never
acknowledge packets from different pairs together and
denote by D(I"), " > 1, the algorithm that acknowledges
packets in the first [’ pairs separately and the packets
in the (I’ + 1)-st pair together. D(o0o) is the algorithm
that never acknowledges packets together. We have
E[Cp(s)(01)] = 32521 2ips = 2q/q® = 2. For any [> 0,

Zsz,+ Z (I"+i+1)p

i=l'"+1
= E[CD(1'+1)(01)] —2(" + Vprra

Zp@

=l'+2

E[Cpay(o1)] =

(21’ + 1+ l pl’+1

= E[Cp@ 41)(01)]

and hence E[Cp)(o1)] = [Cpary(o1)], for any I' > 0.
We have E[Cp(o)(01)] = Y. (I+i)p; = 21 and conclude
that the expected online cost is at least 2[.

The adversary acknowledges the packets of pairs

separately if at most [intervals are sent; otherwise
it always acknowledges the packets of pairs together.

Hence
I 0o
E[Capv(o))] = 2ip; + > pi(i +1)
i=1 i=l+1
l o]
= I+ > i+ > pil
i=1 i=l+1

— l+ ql_(l+1)(1_gll+l(1_’1)l+1 + lql

= 2 —2(1 -1/ +1(1—=1/1)

adn lim;_, o E[Capv(01)]/l = 2 — 1/e. The theorem
follows. O

References

[1]

[2]

3]

[4]

[5]
[6]

A. Borodin and R. El-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press,
1998.

D.R. Dooly, S.A. Goldman, and S.D. Scott. TCP
dynamic acknowledgement delay: Theory and practice.
Proc. 30th Annual ACM Symposium on Theory of
Computing, 389-398, 1998.

D.R. Dooly, S.A. Goldman, and S.D. Scott. On-line
analyis of the TCP acknowledgment delay problem.
Journal of the ACM, 48:243-273, 2001.

A R. Karlin, C. Kenyon and D. Randall. Dynamic TCP
acknowledgement and other stories about e/(e — 1).
Proc. 31st ACM Symposium on Theory of Computing,
502-509, 2001.

J. Noga. Private communication.

J. Noga, S.S. Seiden, G.J. Woeginger. A faster off-
line algorithm for the TCP acknowledgement problem.
Information Processing Letters, 81:71-73, 2002.

S.S. Seiden. A guessing game and randomized online
algorithms. Proc. 32nd ACM Symposium on Theory of
Computing, 592—-601, 2000.

D.D. Sleator and R.E. Tarjan. Amortized efficiency of
list update and paging rules. Communications of the
ACM, 28:202-208, 1985.

A.C.-C. Yao. Probabilistic computations: Towards
a unified measure of complexity. Proc. 18th Annual
Symposium on Foundations of Computer Science, 222—
227, 1977.

