
Dynami
 TCP A
knowledgement: Penalizing Long DelaysSusanne Albers� Helge BalsyAbstra
tWe study the problem of a
knowledging a sequen
e of datapa
kets that are sent a
ross a TCP 
onne
tion. Previouswork on the problem has fo
used mostly on the obje
tivefun
tion that minimizes the sum of the number of a
knowl-edgements sent and the delays in
urred for all of the pa
k-ets. Dooly, Goldman and S
ott presented a deterministi
2-
ompetitive online algorithm and showed that this is thebest 
ompetitiveness of a deterministi
 strategy. Re
entlyKarlin, Kenyon and Randall developed a randomized on-line algorithm that a
hieves an optimal 
ompetitive ratio ofe=(e� 1) � 1:58.In this paper we investigate a new obje
tive fun
tionthat minimizes the sum of the number of a
knowledgementssent and the maximum delay in
urred for any of the pa
kets.This fun
tion is espe
ially interesting if a TCP 
onne
tionis used for intera
tive data transfer between network nodes.The TCP a
knowledgement problem with this new obje
tivefun
tion is di�erent in stru
ture than the problem with thefun
tion 
onsidered previously. We develop a deterministi
online algorithm that a
hieves a 
ompetitive ratio of �2=6 �1:644 and prove that no deterministi
 algorithm 
an havea smaller 
ompetitiveness. We also study a generalizedobje
tive fun
tion where delays are taken to the p-th power,for some positive integer p. Again we give tight upperand lower bounds on the best possible 
ompetitive ratioof deterministi
 online algorithms. The 
ompetitiveness is1 plus an alternating sum of Riemann's zeta fun
tion andtends to 1.5 as p ! 1. Finally we 
onsider randomizedonline algorithms and show that, for our �rst obje
tivefun
tion, no randomized strategy 
an a
hieve a 
ompetitiveratio smaller than 3=(3 � 2=e) � 1:324. For the generalizedobje
tive fun
tion we show a lower bound of 2=(2 � 1=e) �1:225.1 Introdu
tionDooly et al. [2, 3℄ re
ently initiated the algorithmi
study of the dynami
 TCP a
knowledgement problem.In large networks su
h as the Internet data transmissionis performed using the Transmission Control Proto
ol(TCP). Consider an open TCP 
onne
tion between twonetwork nodes that wish to ex
hange data. The data ispartitioned into segments or pa
kets that are sent a
rossthe 
onne
tion. A node re
eiving data must a
knowl-edge the arrival of ea
h in
oming pa
ket so that thesending node is noti�ed that the transmission was su
-
essful; lost pa
kets must be retransmitted. However,�Institut f�ur Informatik, Albert-Ludwigs-Universit�atFreiburg, Georges-K�ohler-Allee 79, 79110 Freiburg, Germany.salbers�informatik.uni-freiburg.de Work supported in partby the EU, proje
ts APPOL and APPOL II.yLehrstuhl Informatik II, Universit�at Dortmund, 44221 Dort-mund, Germany.

data pa
kets do not have to be a
knowledged individu-ally. Instead, most TCP implementations employ somedelay me
hanism that allows the TCP to a
knowledgemultiple in
oming pa
kets with a single a
knowledge-ment and, possibly, to piggyba
k the a
knowledgementon an outgoing data segment. Redu
ing the numberof a
knowledgements has several advantages, e.g. theoverhead in
urred at the network nodes for sending andre
eiving a
knowledgements is redu
ed and, more im-portantly, the network 
ongestion is redu
ed. On theother hand, by redu
ing the number of a
knowledge-ments, one adds laten
y to a TCP 
onne
tion, whi
h isnot desirable. The goal is to balan
e the redu
tion inthe number of a
knowledgements with the in
rease inlaten
y. The de
ision when to send a
knowledgementsmust usually be made online, i.e. without knowledge ofthe future pa
ket arrival times.Motivated by the fa
t that TCP supports dynami
a
knowledgement me
hanisms, Dooly et al. [2, 3℄ formu-lated the following problem. A network node re
eivesa sequen
e of n data pa
kets. Let ai denote the arrivaltime of pa
ket i, 1 � i � n. At time ai, the arrivaltimes aj , j > i; are not known. We have to partitionthe sequen
e � = (a1; : : : ; an) of pa
ket arrival timesinto m subsequen
es �1; : : : ; �m, for some m � 1, su
hthat ea
h subsequen
e ends with an a
knowledgement.We use �i to denote the set of arrivals in the parti-tion. Let ti be the time when the a
knowledgementfor �i is sent. We require ti � aj , for all aj 2 �i. Ifdata pa
kets are not a
knowledged immediately, thereare a
knowledgement delays . Note that any reasonableobje
tive fun
tion must take into a

ount both the num-ber of a
knowledgements sent and the in
urred a
knowl-edgement delays. Ignoring the number of a
knowledge-ments and 
onsidering only delays, it would be optimalto a
knowledge ea
h pa
ket immediately, whi
h leadsto a large number of a
knowledgements sent. On theother hand, ignoring delays and 
onsidering only a
-knowledgements, it would be best to send a single a
-knowledgement at the end of the pa
ket sequen
e, whi
hleads to una

eptable delays.Previous results: Previous work on the dynami
TCP a
knowledgement problem [2, 3, 4, 5, 6, 7℄ hasfo
used mostly on the obje
tive fun
tion that minimizesthe number of a
knowledgements and the sum of the



delays in
urred for all of the pa
kets, i.e. we wish tominimize h = m + Pmi=1Paj2�i(ti � aj). Given asolution generated by an a
knowledgement algorithm Aon input �, the resulting obje
tive fun
tion value is alsoreferred to as the 
ost CA(�) of A on �. Following [8℄, anonline algorithm A is 
alled 
-
ompetitive if there existsa 
onstant b su
h that CA(�) � 
 � COPT (�) + b, forall inputs �. Here COPT (�) is the 
ost in
urred by anoptimal o�ine algorithm that knows the entire input �in advan
e and 
an serve it with minimum 
ost.Dooly et al. [2, 3℄ presented a deterministi
 2-
ompetitive online algorithm and showed that no deter-ministi
 online strategy 
an a
hieve a smaller 
ompeti-tive ratio. This performan
e guarantee also holds if anonline algorithm has some bounded lookahead. Mostimplementations of TCP have a maximum delay 
on-straint , i.e. the a
knowledgement of a pa
ket may bedelayed for at most Æ time units, e.g. Æ 
ould be 500 ms.Dooly et al. showed that their algorithm 
an be modi�edand remains 2-
ompetitive in the presen
e of su
h a 
on-straint. Karlin et al. [4℄ studied randomized online al-gorithms against oblivious adversaries. They developeda randomized online strategy that a
hieves a 
ompeti-tiveness of e=(e�1) � 1:58. Noga [5℄ and independentlySeiden [7℄ showed that no randomized algorithm 
an dobetter.Dooly et al. also studied the minimization of ase
ond obje
tive fun
tion h0 = m+Pmi=1maxaj2�i(ti�aj) where one 
onsiders the sum of the maximum delaysin
urred in subsequen
es �i in addition to the numberof a
knowledgements sent. They showed that the best
ompetitive ratio of a deterministi
 online algorithmwithout lookahead is equal to 2.In general, Dooly et al. and Karlin et al. pointed outthat the TCP a
knowledgement problem with obje
tivefun
tions h and h0 are ski rental type problems.Our 
ontribution: In this paper we investigate anew family of obje
tive fun
tions that penalize long a
-knowledgement delays of individual data pa
kets moreheavily. TCP is used for both intera
tive and bulk datatransfer. In the �rst 
ase, 
onsider a TCP 
onne
tionthat is used for 
ommuni
ation with a remote intera
-tive program. Here long delays are not a

eptable asthey are noti
eable to the user. In the 
ase of bulkdata transfer long delays also have a negative e�e
t andhen
e, as already mentioned before, most systems workwith a maximum delay 
onstraint. Therefore it is desir-able to design algorithms that aim at keeping the max-imum delay short.We study the obje
tive fun
tion that minimizesthe number of a
knowledgements and the maximumdelay in
urred for any of the data pa
kets. Givenan input �, 
onsider a partitioning �1; : : : ; �m. Let

di = maxaj2�i(ti � aj) be the maximum delay of anypa
ket in �i, 1 � i � m. We wish to minimize thefun
tion f = m+ max1�i�m di:(1.1)It turns out that the dynami
 TCP a
knowledgementproblem with obje
tive fun
tion f is di�erent in stru
-ture than the problem with fun
tions h or h0. In par-ti
ular our problem is not a ski rental problem. In Se
-tion 2 we present a family of deterministi
 online algo-rithms and prove that the best strategy in that familya
hieves a 
ompetitive ratio of �2=6 � 1:644. Note that�2=6 = P1i=1 1=i2. We also show that this is the bestpossible 
ompetitive ratio. No deterministi
 online algo-rithm 
an a
hieve a 
ompetitiveness smaller than �2=6.Additionally, we investigate a generalization of the ob-je
tive fun
tion f where delays are taken to the p-thpower and hen
e are penalized even more heavily. Forany integer p � 1, we wish to minimizefp = m+ max1�i�m dpi :(1.2)For the formulation of the 
ompetitive ratio, let �(p) =P1i=1 1ip , for any p � 2. The fun
tion �(p) is known asthe Riemann zeta fun
tion. We de�ne �(1) := 1. Let
p = 1 + p+1Pq=1(�1)p+1�q�(q):In Se
tion 3 we give a deterministi
 online algorithmthat is 
p-
ompetitive and prove that no deterministi
strategy 
an a
hieve a 
ompetitiveness smaller than 
p.For p = 1, this expression is equal to �2=6. In general
p is de
reasing in p and tends to 1.5 as p!1.In Se
tion 4 we 
onsider randomized online algo-rithms against oblivious adversaries and present lowerbounds. We �rst prove that, given fun
tion f , no ran-domized online algorithm a
hieves a 
ompetitive ratiosmaller than 3=(3�2=e) � 1:324. We then show a lowerbound of 2=(2� 1=e) � 1:225 for fun
tion fp, p � 2.We remark that similar to [2, 3℄, we 
ould 
onsiderin f and fp a linear 
ombination of the number ofnumber of a
knowledgements sent and the maximumdelay (taken to the p-th power). This does not 
hangethe 
ompetitive ratios and the upper and lower boundproofs 
an be modi�ed easily. For simpli
ity, in thisextended abstra
t we study the fun
tions as de�nedin (1.1) and (1.2). Moreover we remark that all of ourresults 
arry over to the 
ase that there is a maximumdelay 
onstraint.2 Minimizing the maximum delay2.1 An optimal deterministi
 online algorithmWe de�ne a general 
lass of algorithms. Let z be apositive real number.



Algorithm Linear-Delay(z): Initially, set d = z andsend the �rst a
knowledgement at time a1 + d. Ingeneral, suppose that the i-th a
knowledgement has justbeen sent and that j pa
kets have been pro
essed so far.Set d = (i+1)z and send the (i+1)-st a
knowledgementat time aj+1 + d.We analyze the algorithm for values z with z � 1=2,whi
h give the best performan
e.Theorem 2.1. For any z with z � 1=2, Linear-Delay(z) is 
-
ompetitive, where 
 = maxf1 + z; (1 +z)=(2 + z � �2=6)g.Corollary 2.1. Setting z = �2=6�1, Linear-Delay(z)a
hieves a 
ompetitive ratio of �2=6.We now prove Theorem 2.1.Proof. In the following we 
all the online algorithmLD(z) for short. Suppose that LD(z) serves the inputsequen
e using m a
knowledgements. The longesta
knowledgement delay is mz and hen
e the online 
ostis CLD(z)(�) = m(1 + z).We have to lower bound the 
ost in
urred by anoptimal o�ine algorithm OPT. In the sequen
e of npa
kets we identify a subsequen
e of m main pa
kets ,numbered from 0 to m � 1. Main pa
ket 0 is the�rst pa
ket in the input sequen
e. Main pa
ket i,1 � i � m � 1, is the �rst pa
ket that arrives afterthe i-th a
knowledgement sent by LD(z), i.e. it is the�rst pa
ket that arrives after time ti. The de�nitionof LD(z) implies that the time di�eren
e between the(i�1)-st and the i-th main pa
kets is larger than iz, fori = 1; : : : ;m� 1.Suppose that the optimum o�ine algorithm servesthe request sequen
e using l a
knowledgements andthat the maximum a
knowledgement delay is C, C �0. Then COPT (�) = l + C. Asso
iated with ea
ha
knowledgement� sent by OPT is an a
knowledgementinterval that starts when the �rst pa
ket a
knowledgedby � arrives and ends when � is sent. The length ofea
h interval is bounded by C. In the following i alwaysdenotes a positive integer.Lemma 2.1. Any a
knowledgement interval starting ator after the arrival of main pa
ket bCiz 
 
an 
ontain atmost i main pa
kets.Proof. Main pa
ket k with k � bCiz 
+ 1 has a distan
eof more than z(bCiz 
 + 1) to the previous main pa
ket.If the a
knowledgement interval 
ontained at least i+1main pa
kets, then the length of the interval would beat least iz(bCiz 
+ 1) > iz(Ciz ) = C, whi
h is impossible.2

De�ne i0 = b 3qCz 
 � 1. In the rest of this proofwe assume i0 � 2. If i0 � 1, then C � 27z and OPTmust a
knowledge ea
h of the lastm�27z main pa
ketswith separate a
knowledgements. In this 
ase LD(z) is
learly (1 + z)-
ompetitive.Lemma 2.2. Let 1 � i � i0. The a
knowledgementinterval 
ontaining main pa
ket k, for k � bCiz 
, musthave started after the arrival of main pa
ket b C(i+1)z 
.Proof. We show that the time window starting at mainpa
ket b C(i+1)z 
 and ending with main pa
ket bCiz 
 islarger than C, whi
h proves the lemma. The number ofmain pa
kets in this time window is bCiz 
�b C(i+1)z 
+1 >Ci(i+1)z � i + 2. The last inequality is equivalent toC=z � i(i + 1)(i + 2) and holds for all i � i0. Thusthere are at least i + 2 main pa
kets in this timewindow. Ea
h of the last i + 1 of these is more thanz(b C(i+1)z 
+1) time units away from the previous mainpa
ket and thus the length of the window is greater than(i+ 1)z(b C(i+1)z 
+ 1) > (i+ 1)z( C(i+1)z ) = C. 2We now estimate the number of a
knowledgementssent by OPT and use the following 
harging s
heme.An a
knowledgement 
osts 1. We 
harge this 
ost tothe main pa
kets 
ontained in the asso
iated a
knowl-edgement interval and split the 
ost evenly among thesemain pa
kets. More spe
i�
ally, if an a
knowledgementinterval 
ontains i � 1 main pa
kets, then ea
h of thesepa
kets is assigned a 
ost of 1=i. If an a
knowledgementinterval does not 
ontain a main pa
ket, then we ignoreit in the analysis of OPT's 
ost. We develop a lowerbound on the 
ost 
harged to ea
h main pa
ket. Sum-ming over all main pa
kets, we derive a lower boundon the optimum 
ost in
urred for sending a
knowledge-ments.We assume that C < m. If C � m, then LD(z)is 
learly (1 + z)-
ompetitive be
ause LD(z)'s 
ost is(1 + z)m and the optimum o�ine 
ost is at least m. Inthe following we will �rst analyze the 
ase C � zm andthen C > zm.Suppose that C � zm. Ea
h main pa
ket is
ontained in some a
knowledgement interval. Let i bean integer with 1 � i � i0. We analyze the 
ost 
hargedto main pa
ket k with k � bCiz 
 and k < b C(i�1)z 
. Ifi = 1, then k < m. If the a
knowledgement interval
ontaining main pa
ket k started at or after the arrivalof main pa
ket bCiz 
, then by Lemma 2.1 at most i mainpa
kets are 
ontained in the interval and main pa
ket kis assigned a 
ost of at least 1=i. If the a
knowledgementinterval started earlier, then by Lemma 2.2 it musthave started after the arrival of main pa
ket b C(i+1)z 
.Applying Lemma 2.1 for i+1, we obtain that the interval




ontains at most i + 1 main pa
kets and the pa
ket isassigned a 
ost of at least 1=(i+ 1). There is only onea
knowledgement interval that starts before and endsafter the arrival of main pa
ket bCiz 
. Thus for at mosti + 1 main pa
kets 
onsidered above, the 
ost is lowerbounded by 1=(i+1) instead of 1=i. We obtain that fori = 1, the total 
ost assigned to all the main pa
kets kwith k � bCz 
 is(m� bCz 
)� 2(1� 12 ) = (m� bCz 
)� 1:For 2 � i � i0, the total 
ost assigned to main pa
ketk, bCiz 
 � k < b C(i�1)z 
 is at least(b C(i�1)z 
 � bCiz 
) 1i � (i+ 1)( 1i � 1i+1 )= (b C(i�1)z 
 � bCiz 
) 1i � 1i :Summing over all i, we obtain that the number ofa
knowledgements sent by OPT is at leastl � m� �Cz �� 1 + i0Pi=2��j C(i�1)zk� �Ciz �� 1i � 1i�= m� i0�1Pi=1 �Ciz � �1i � 1i+1�� j Ci0zk 1i0 �Hi0 :Here Hi0 denotes the i0-th Harmoni
 number. Thusl � m� Cz 1Pi=1� 1i2 � 1i(i+1)�� Ci20z � i0� m� Cz ��26 � 1�� Ci20z � i0� m� Cz ��26 � 1�� 10 3qCz� m� Cz ��26 � 1�� 10 3pmz :The se
ond to last inequality follows be
ause i0 � 2 andhen
e i20 � 19 (Cz )2=3. The last inequality follows be
auseC � m and hen
e 3qCz � 3pmz . The total 
ost in
urredby OPT is at leastCOPT (�) = l + C � m+ C � Cz ��26 � 1��O ( 3pm) :(2.3)We now distinguish two 
ases. If z > �26 � 1, then theright hand side of (2.3) is in
reasing in C. Choosing C =0 we obtain that COPT (�) � m�O( 3pm) and LD(z) is(1+z)-
ompetitive be
ause the online 
ost is (1+z)m. Ifz � �26 �1, then the right hand side of (2.3) is de
reasingin C. Choosing the largest possible value C = zm, weobtain COPT (�) � (2 + z � �26 )m�O( 3pm) and LD(z)a
hieves a 
ompetitive ratio of (1 + z)=(2 + z � �26 ).We next analyze the 
ase C > zm. The onlydi�eren
e in analyzing this 
ase is that there are no

main pa
kets k with k � bCz 
 and k < m be
ause C islarge. However, there are main pa
kets k with k � b C2z 
and k < m be
ause C < m � 2zm sin
e z � 1=2. Thusthe number of a
knowledgements sent by OPT isl � �m� � C2z �� 12 � 12+ i0Pi=3��j C(i�1)zk� �Ciz �� 1i � 1i �� 12m� i0�1Pi=2 Ciz � 1i � 1i+1�� Ci20z � (Hi0 � 1)� 12m� Cz ��26 � 1:5�� 10 3pmz :Thus the optimum 
ost is at leastCOPT (�) � 12m+ C � Cz (�26 � 1:5)�O( 3pm): Theright hand side of the last inequality is in
reasing inC be
ause z � 1=2 > (�26 � 1:5). Sin
e C > zm, weobtain COPT (�) � (2 + z � �26 )m�O( 3pm) and LD(z)a
hieves a 
ompetitive ratio of (1 + z)=(2 + z � �26 ). 22.2 Lower boundTheorem 2.2. Let A be a deterministi
 online algo-rithm. If A is 
-
ompetitive, then 
 � �26 .Proof. We 
onstru
t a family of request sequen
es �l,for any l � 8. For a �xed l in this range, let i0 = b 3pl
�2and l0 = b li0+1
. For 
onvenien
e we number the pa
ketsis �l starting with l0. Pa
ket l0 is sent at time 0. Forany i with l0 < i � l, pa
ket i is sent exa
tly (�26 � 1)itime units after pa
ket i � 1. For any i with i > l,pa
ket i is sent exa
tly (�26 �1)l time units after pa
keti�1. The adversary stops sending pa
kets as soon as theonline algorithm de
ides to a
knowledge an in
omingpa
ket together with the pre
eding pa
ket. If the onlinealgorithm never a
knowledges a pa
ket together with apre
eding pa
ket, the adversary 
an for
e a 
ompetitiveratio arbitrarily 
lose to 2 by a
knowledging always twopa
kets together. Thus, let m be the number of thelast pa
ket sent by the adversary. Note that m is afun
tion of l but, for simpli
ity, this dependen
y willnot be shown in the notation.In the following we will �rst analyze the 
ompetitiveratio of the online algorithm for m � l, then we will
onsider the 
ase m > l. If m � l, then the adversary
an a
knowledge ea
h pa
ket immediately and its 
ostis CADV (�l) = m� l0+1 be
ause the pa
ket numberingin the sequen
e starts with l0. The online algorithmA serves the �rst m � l0 � 1 pa
kets with separatea
knowledgements and the last two pa
kets with a jointa
knowledgement. The a
knowledgement of pa
ketm�1 is delayed by (�26 �1)m time units. Thus the totalonline 
ost is at least CA(�l) = m � l0 + (�26 � 1)m =



�26 m�l0 = �26 (m� 6�2 l0) � �26 (m�l0+1) = �26 CADV (�l).The last inequality holds be
ause l0 � �26 =(�26 � 1).To verify this relation we observe that, for l = 8,l0 = 8 � �26 =(�26 � 1) and l0 is in
reasing in l.It remains to analyze the 
asem > l. The adversary
hooses a
knowledgement intervals of length (�26 � 1)l,i.e. it sends out an a
knowledgement whenever there isan una
knowledged pa
ket waiting for exa
tly (�26 � 1)ltime units. To analyze the number of a
knowledgementsin
urred by the adversary we need the following lemma.Lemma 2.3. Let 1 � i � i0. An a
knowledgementinterval that ends after the arrival of pa
ket b li
 musthave started after the arrival of pa
ket b li+1
.Proof. Suppose that an a
knowledgement interval end-ing after the arrival of pa
ket b li
 started at or beforethe arrival of pa
ket b li+1
. This time interval 
ontainsb li
 � b li+1
 pa
kets that are at least (�26 � 1)(b li+1
 +1) � (�26 � 1) li+1 time units away from the pre
edingpa
ket. Thus the time interval has a total length of(�26 � 1) li+1 (b li
 � b li+1
) � (�26 � 1) li+1 ( li � 1� li+1 ) =(�26 �1) li+1 ( li(i+1)�1). We have li(i+1)�1 > i+1 be
ausethe this inequality is equivalent to l > i(i + 1)(i + 2),whi
h holds for all 1 � i � i0. Thus the time intervalhas a total length of greater than (�26 �1)l, 
ontradi
tingthe fa
t the adversary 
hooses a
knowledgement inter-vals of length (�26 � 1)l. 2To estimate the total number of a
knowledgementsin
urred by the adversary we use a 
harging s
hemesimilar to that employed in the upper bound. If ana
knowledgement interval 
ontains i pa
kets, then the
ost of 1 is distributed evenly among the pa
kets, i.e.ea
h pa
ket is assigned a 
ost of 1i . An a
knowledgementinterval that ends no later than the arrival of pa
ketb li
; 1 � i � i0, 
ontains at least i + 1 pa
ketsbe
ause ea
h of the pa
kets is a distan
e of at mostb li
(�66 � 1) away from the pre
eding pa
ket. Hen
epa
kets k with b li+1
 < k � b li
 are 
harged a 
ost ofat most 1i+1 . However this is not 
ompletely 
orre
tbe
ause a pa
ket k in the latter range may be 
ontainedin an a
knowledgement interval that ends after thearrival of pa
ket b li
. By the above lemma, su
h ana
knowledgement interval 
annot end after the arrivalof pa
ket b li�1
, if i � 2. Thus the pa
ket k isassigned a 
ost of 1i instead of 1i+1 . At most i + 1pa
kets 
an have this slightly higher 
ost be
ause ea
hpa
ket k with b li+1
 < k � b li
 has a distan
e ofat least (�26 � 1)(b li+1
 + 1) > (�26 � 1) li+1 to itspre
eding pa
ket. For any 1 � i � i0, the total 
ost


harged to all the pa
kets k with b li+1
 < k � b li
 is(b li
�b li+1
) 1i+1+(i+1)( 1i� 1i+1 ) = (b li
�b li+1
) 1i+1+ 1i .Any pa
ket k with l < k � m is 
harged a 
ost of 12be
ause these pa
kets are a distan
e of exa
tly (�26 �1)lapart. In the worst 
ase, the last pa
ket m is 
harged a
ost of 1. Moreover pa
ket l0 is assigned a 
ost of 1i0+1 .In summary, the total 
ost 
harged to all of the pa
kets,whi
h is equal to the total number of a
knowledgementssent by the adversary, is upper bounded by(m� l � 1) 12 + 1 + i0Pi=1��� li�� j li+1k� 1i+1 + 1i �+ 1i0+1� m2 � l2 + 12 + i0Pi=1� li � li+1 + 1� 1i+1 +Hi0+1� m2 � l2 + 1Pi=1 li(i+1) � 1Pi=1 l(i+1)2 + 2Hi0+1= m2 + l2 � l ��26 � 1�+O(log l);where Hk is the k-th Harmoni
 number.Sin
e the maximum a
knowledgement delay in-
urred by the adversary is (�26 � 1)l, its total 
ost is12 (m + l) + O(log l). On the other hand the total 
ostin
urred by the online algorithm A is m� l0+ (�26 � 1)lbe
ause the input 
onsists of m�l0+1 data pa
kets, thelast two of whi
h are a
knowledged together. We 
on-
lude that the ratio of the online 
ost to the adversary's
ost is �26 l +m� l� l0l + 12 (m� l) +O(log l) :Sin
e l0 = o(l) and O(log l) = o(l), this ratio approa
hesa value of at least �26 as l!1, no matter how the onlinealgorithm 
hooses m;m > l. 23 Minimizing the maximum delay taken to thep-th powerWe �rst show that 
p is de
reasing in p and tends to 1.5as p ! 1. For p � 1, let g(p) = P1i=1 1ip(i+1) . Then,for p � 2,g(p) = 1Xi=1 1ip(i+ 1) = 1Xi=1 1ip � 1Xi=1 1ip�1(i+ 1)= �(p)� g(p� 1):Applying this re
urren
e repeatedly we obtain g(p) =Ppq=1(�1)p�q�(q): Note that g(1) = 1 = �(1). Thus
p = 1+g(p+1). We have g(p+1) = 12+P1i=2 1ip+1(i+1) .The last sum is always positive and tends to 0 as p!1.Table 1 shows the value of 
p, for small p.



p 
p1 1.64492 1.55713 1.52524 1.51175 1.50566 1.50277 1.50138 1.50079 1.500310 1.5002Table 1: Some values of 
p3.1 An optimal deterministi
 online algorithmWe generalize the algorithm given in Se
tion 2. Let zbe a positive real number.Algorithm Delay(z; p): Set the initial delay to d =ppz and send out the �rst a
knowledgement at timea1 + d. In general, assume that i a
knowledgementshave been sent and that j pa
kets have been pro
essedso far. Set d = pp(i+ 1)z and send the (i + 1)-sta
knowledgement at time aj+1 + d.Theorem 3.1. Setting zp = 
p � 1, the algorithmDelay(zp; p) is 
p-
ompetitive.Proof. We denote the algorithm by D(zp; p) for short.Suppose that the online algorithm serves the inputsequen
e using m a
knowledgements. Then its total
ost is CD(zp;p)(�) = m+( ppm zp)p = (1+zp)m = 
pm.Let C be the maximuma
knowledgement delay in
urredby the optimum o�ine algorithm OPT . If C > ppm,then the optimum o�ine 
ost is at least m and D(zp; p)is 
learly 
p-
ompetitive. Therefore we assume C �ppm.In analyzing the optimum o�ine 
ost we use theterms main pa
ket and a
knowledgement interval asintrodu
ed in the proof of Theorem 2.1. Again wenumber the m main pa
kets in the input from 0 tom � 1. Let i0 = b 2p+1pCp=zp
 � 1. In the followingwe assume i0 � 4: If i0 � 3, then 2p+1pCp=zp � 5,whi
h is equivalent to C � pp52p+1zp. Thus C is upperbounded by a 
onstant and all but a 
onstant number ofthemmain pa
kets require a separate a
knowledgementby OPT. Thus D(zp; p) is 
p-
ompetitive.In the following we �rst 
on
entrate on the 
ase C <ppzpm, then we 
onsider C � ppzpm. To estimate thenumber of a
knowledgements sent by OPT , we applythe usual 
harging s
heme. If an a
knowledgementinterval 
ontains i main pa
kets we 
harge a 
ost of 1i toea
h of these. Using ideas similar to that in the proof of

Theorem 2.1 we 
an show that if an a
knowledgementinterval starting at or after the arrival of main pa
ketb Cpipzp 
 
an 
ontain at most i main pa
kets. Se
ondly,an a
knowledgement interval 
ontaining main pa
ketk, with k � b Cpipzp 
 must have started after pa
ketb Cp(i+1)pzp 
. These two statements imply that the total
ost assigned to main pa
kets k with k � bCpzp 
 is at leastm� bCpzp 
 � 1 and the 
ost assigned to main pa
kets kwith b Cpipzp 
 � k < b Cp(i�1)pzp 
 and 2 � i � i0 is at least�j Cp(i�1)pzp k� j Cpipzp k� 1i � 1i :Hen
e the number l of a
knowledgements sent by OPTis at leastl � m� jCpzp k� 1+ i0Pi=2��j Cp(i�1)pzpk� j Cpipzpk� 1i � 1i �= m� i0�1Pi=1 j Cpipzpk� 1i � 1i+1�� j Cpip0zpk 1i �Hi0� m� Cpzp 1Pi=1 � 1ip+1 � 1ip(i+1)�� Cpip+10 zp �Hi0= m� Cpzp (�(p+ 1)� g(p))� Cpip+10 zp �Hi0= m� Cpzp zp � Cpip+10 zp �Hi0 :The last equation holds be
ause �(p + 1) � g(p) =g(p+ 1) = 
p � 1 = zp.Lemma 3.1. The term Cpip+10 zp is o(m).Proof. By de�nition the term equalsCp�j 2p+1qCpzp k� 1�p+1 zp � Cp� 2p+1qCpzp � 2�p+1 zp ;(3.4)where the inequality holds be
ause the denominator isnon-negative by the 
hoi
e of i0 � 4. Moreover, theassumption i0 � 4 implies 2 � i0=2 � 2p+1qCpzp =2 andhen
e the last expression in (3.4) 
an be upper boundedby Cp� 2p+1qCpzp � 2p+1qCpzp =2�p+1 zp= Cp� p(p+1)2p+1 z p+12p+1�1p 2p+1 = dCp� p(p+1)2p+1 ;for some 
onstant d. As C � ppm and the exponentp � p(p+1)2p+1 is stri
tly smaller than p, the term under
onsideration is o(m). 2



Using the above lemma we obtain that the numberof a
knowledgements sent by OPT is at least m�Cp �o(m) and the total 
ost is COPT (�) � m � o(m). Thisimplies that D(zp; p) is 
p-
ompetitive.We �nally analyze the 
ase C � ppzpm. Sin
e Cis large, there are not ne
essarily main pa
kets k withk � bCpzp 
 and C < m. However there are pa
ketsk � b Cp2pzp 
 and k < m be
ause Cp=(2pzp) < m isequivalent to C < ppm2pzp and this holds be
auseC � ppm and zp = g(p+ 1) = 12 +P1i=2 1ip+1(i+1) > 12 .Thus the number of a
knowledgements l sent by OPTis at leastl � �m� j Cp2pzpk� 12 � 12+ i0Pi=3��j Cp(i�1)pzp k� j Cpipzp k� 1i � 1i�� m2 � Cpzp 1Pi=2� 1ip+1 � 1ip(i+1)�� Cpip+10 zp �Hi0= m2 � Cpzp (zp � 12 )� o(m):We 
on
lude that the optimum o�ine 
ost is at leastCOPT (�) � m2 + Cp2zp � o(m) � m � o(m) be
auseC � ppzpm and D(zp; p) is 
p-
ompetitive. 23.2 Lower boundTheorem 3.2. Let A be a deterministi
 online algo-rithm. If A is 
-
ompetitive, then 
 � 
p.Proof. We 
onstru
t a family of input sequen
es �l, forany integer l � 1. For a �xed l, let i0 = b 2p+1pl
 � 1and l0 = b l(i0+1)p 
. Note that l0 = �(l1� p2p+1 ) = o(l).We number the pa
kets in �l starting with l0. Pa
ketl0 is sent at time 0. Pa
ket k, for l0 < k � l, is sentppzpk time units after pa
ket k � 1. For k > l, pa
ketsk and k � 1 are separated by exa
tly ppzpl time units.The adversary stops sending pa
kets when the onlinealgorithm de
ides to a
knowledge two pa
kets with thesame a
knowledgement. Let m be the number of thelast pa
ket sent.If m � l, the 
ost in
urred by the online algorithmA is at least m� l0+(zpm) pp = 
pm� l0. The adversary
an a
knowledge ea
h pa
ket immediately, in
urring nodelays so that its 
ost is at most m � l0 + 1. The ratioof the 
ost in
urred by A to the 
ost in
urred by theadversary is at least
pm� l0m� l0 + 1 = 
p + zpl0 � 
pm� l0 + 1and this expression is at least 
p if l � 22p+1. In this
ase l0 � 4 and zpl0 � 
p � 0 be
ause zp > 1=2 and
p < 2.

We 
on
entrate on the 
ase m > l. The adversary
hooses an a
knowledgement interval of ppzpm timeunits. Using the familiar 
harging s
heme we 
anshow that, in order to upper bound the number ofa
knowledgements in
urred by the adversary, the total
ost 
harged to pa
kets k with b lip 
 < k � b l(i+1)p 
and 1 � i � i0 is at most (b lip 
 � b l(i+1)p 
) 1i+1 + 1i .The total 
ost 
harged to pa
kets k with k > l isat most (m � l) 12 + 12 . Hen
e the total number ofa
knowledgements sent by the adversary is at most(m� l) 12 + 12 + i0Pi=1��� lip �� j l(i+1)p k� 1i+1 + 1i�+ 1i0+1� (m� l) 12 + l2 � 1Pi=2 lip+1(i+1) + 2Hi0+1= (m� l) 12 + l � zpl +O(log l):The total 
ost paid by the adversary is at most (m �l) 12 + l + O(log l) and the ratio of the 
ost in
urred byA to the 
ost in
urred by the adversary is at least
pl +m� l � l0l + 12 (m� l) +O(log l) :This ratio approa
hes a value of at least 
p as l ! 1be
ause l0 = o(l). 24 RandomizationTheorem 4.1. For the dynami
 TCP a
knowledge-ment problem with obje
tive fun
tion f , no randomizedonline algorithm 
an a
hieve a 
ompetitive ratio smallerthan 
 � 3=(3� 2e ) against any oblivious adversary.Proof. We apply Yao's prin
iple [1, 9℄ and 
onstru
t aprobability distribution on input sequen
es �l, for anyinteger l � 1, su
h that for any deterministi
 onlinealgorithm D, liml!1 E[CD(�l)℄E[CADV (�l)℄ � 33� 2=eand liml!1E[CADV (�l)℄ =1:Here E[CADV (�l)℄ and E[CD(�l)℄ denote the 
ostsin
urred by the adversary and the deterministi
 onlinealgorithm, respe
tively. An input �l 
onsists of triples .A triple is a set of three data pa
kets that are separatedby l time units ea
h. More pre
isely, the se
ond pa
ketis sent exa
tly l time units after this �rst pa
ket of thetriple; the third pa
ket is sent l time units after these
ond pa
ket. Thus a triple has a total length of 2l.The adversary sends triples, where the distan
e between



triples is 
hosen so large that it does not make sense toa
knowledge pa
kets in two di�erent triples with onea
knowledgement. With probability pi = q(1 � q)i�1,where q = 1=l, the adversary sends exa
tly i triples, forany i � 1. Note thatP1i=1 q(1�q)i�1 = 1. Triple i andi+ 1 are separated by 3l=pi+1 time units.If a deterministi
 online algorithm on this inputa
knowledges pa
kets of di�erent triples together andif this happens for the �rst time for pa
kets from triplesi and i + 1, then the expe
ted 
ost of the algorithmis at least pi+1(3l=pi+1) = 3l. In the following we
on
entrate on the 
ase that a deterministi
 onlinealgorithm on this input never a
knowledges pa
ketsfrom di�erent triples together. We 
hara
terize analgorithm by two non-negative integers l1; l2, with l1 <l2 su
h that l1+1 is the �rst triple where the algorithma
knowledges at least two pa
kets together and l2+1 isthe index of the �rst triple where all the three pa
ketsare a
knowledged together. We refer to this strategy asD(l1; l2), l1 � l2. Algorithm D(l1;1), l1 � 0, nevera
knowledges all the pa
kets of one triple together andD(1;1) never a
knowledges any pa
kets together. Toanalyze the expe
ted 
ost, we need the following lemma.Lemma 4.1. a) If l1 < l2, thenE[CD(l1;l2)(�l)℄ = E[CD(l1+1;l2)(�l)℄.b) If l1 � l2, thenE[CD(l1;l2)(�l)℄ = E[CD(l1;l2+1)(�l)℄.
) For any l1 � 0,E[CD(l1;1)(�l)℄ = E[CD(l1+1;1)(�l)℄.Proof. We prove part a). The other parts 
an be provedsimilarly. We haveE[CD(l1;l2)(�l)℄= l1Pi=1 3ipi + l2Pi=l1+1(l + l1 + 2i)pi+ 1Pi=l2+1(2l + l1 + l2 + i)pi= l1+1Pi=1 3ipi � 3(l1 + 1)pl1+1+ l2Pl1+2(l + l1 + 1 + 2i)pi+(l + l1 + 2(l1 + 1))pl1+1 � l2Pi=l1+2 pi+ 1Pi=l2+1(2l + l1 + 1 + l2 + i)pi � 1Pi=l2+1 pi= E[CD(l1+1;l2)(�l)℄ + (l � 1)pl1+1 � 1Pi=l1+2 pi= E[CD(l1+1;l2)(�l)℄:2

Parts a) and b) of the above lemma imply thatE[CD(0;0)(�l)℄ = E[CD(l1;l2)(�l)℄ for any 0 � l1 � l2.Hen
e it suÆ
es to 
ompute E[CD(0;0)(�l)℄ =P1i=1(2l+i)pi = 2l + 1=q = 3l. Part 
) of the Lemma 4.1implies E[CD(0;1)(�l)℄ = E[CD(l1;1)(�l)℄, for any l1 �0. We have E[CD(0;1)(�l)℄ = P1i=1(l + 2i)pi = 3l.Finally E[CD(1;1)(�l)℄ = P1i=1 3ipi = 3l. Thus, inany 
ase the expe
ted online 
ost is at least 3l. Itremains to analyze the expe
ted 
ost in
urred by theadversary. If the input 
onsists of at most l triples,the adversary a
knowledges the pa
kets individually;otherwise it in
urs a delay of 2l and a
knowledges thepa
kets of ea
h triple together. ThusE[CADV (�l)℄= lPi=1 3ipi + 1Pi=l+1 pi(i+ 2l)= l + 2 lPi=1 ipi + 2 1Pi=l+1 pil= l + 2q 1�(l+1)(1�q)l+l(1�q)l+1q2 + 2l(1� q)l= 3l � 4l(1� 1=l)l + 2l(1� 1=l)lThus liml!1 E[CADV (�l)℄=l = 3�2=e and the theoremfollows. 2Theorem 4.2. For the dynami
 TCP a
knowledge-ment problem with obje
tive fun
tion fp, no randomizedonline algorithm 
an a
hieve a 
ompetitive ratio smallerthan 
 � 2=(2� 1e ) against any oblivious adversary.Proof. An input �l, for any integer l � 1, 
onsists ofpairs . A pair are two pa
kets that are ppl time unitsapart. With probability pi = q(1 � q)i�1, q = 1=l,the input 
onsists of i pairs, for any i � 1. Pairs iand i + 1 are separated by pp2l=pi+1 time units. Ifa deterministi
 online algorithm a
knowledges pa
ketsof di�erent intervals together and if this happens forthe �rst time for pa
kets from pairs i and i + 1, thenthe expe
ted 
ost is at least pi+1( pp2l=pi+1)p = 2l.In the following we 
onsider algorithms that nevera
knowledge pa
kets from di�erent pairs together anddenote byD(l0), l0 � 1, the algorithm that a
knowledgespa
kets in the �rst l0 pairs separately and the pa
ketsin the (l0 + 1)-st pair together. D(1) is the algorithmthat never a
knowledges pa
kets together. We haveE[CD(1)(�l)℄ =P1i=1 2ipi = 2q=q2 = 2l. For any l � 0,E[CD(l0)(�l)℄ = l0Xi=1 2ipi + 1Xi=l0+1(l0 + i+ l)pi= E[CD(l0+1)(�l)℄� 2(l0 + 1)pl0+1+(2l0 + 1 + l)pl0+1 � 1Xi=l0+2 pi



= E[CD(l0+1)(�l)℄and hen
e E[CD(0)(�l)℄ = [CD(l0)(�l)℄, for any l0 � 0.We haveE[CD(0)(�l)℄ =P1i=1(l+i)pi = 2l and 
on
ludethat the expe
ted online 
ost is at least 2l.The adversary a
knowledges the pa
kets of pairsseparately if at most l intervals are sent; otherwiseit always a
knowledges the pa
kets of pairs together.Hen
eE[CADV (�l)℄ = lPi=1 2ipi + 1Pi=l+1 pi(i+ l)= l + lPi=1 ipi + 1Pi=l+1 pil= l + q 1�(l+1)(1�q)l+l(1�q)l+1q2 + lql= 2l� 2l(1� 1=l)l + l(1� 1=l)ladn liml!1 E[CADV (�l)℄=l = 2 � 1=e. The theoremfollows. 2Referen
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