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1.1 Introduction

Many scheduling problems that arise in practice are inherently online in
nature. In these settings, scheduling decisions must be made without complete
information about the entire problem instance. This lack of information may
stem from various sources: (1) Jobs arrive one by one as a list or even as an
input stream over time. Scheduling decisions must always be made without
knowledge of any future jobs. (2) The processing times of jobs are unknown
initially and during run time. They become known only when jobs actually
finish. (3) Machine breakdown and maintenance intervals are unknown.

Despite the handicap of not knowing the entire input we seek algorithms
that compute good schedules. Obviously, computing optimal solutions is, in
general, impossible and we have to resort to approximations. Today, the stan-
dard means to evaluate algorithms working online is competitive analysis [47].
Here an online algorithm A is compared to an optimal offline algorithm OPT
that knows the entire input in advance. Consider a given scheduling problem
and suppose we wish to minimize an objective function. For any input I,
let A(I) be the objective function value achieved by A on I and let OPT (I)
be the value of an optional solution for I. Online algorithm A is called c-
competitive if there exists a constant b such that, for all problem inputs I,
inequality A(I) ≤ c·OPT (I)+b holds. The constant b must be independent of
the input. An analogous definition can be set up for maximization problems.
Note that competitive analysis is a strong worst-case performance measure;
no probabilistic assumptions are made about the input.

Online scheduling algorithms were already investigated in the 1960s but an
extensive in-depth study has only started 10 to 15 years ago, after the concept
of competitive analysis had formally been introduced. By now there exists
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a rich body of literature on online scheduling. The investigated problem
settings, as in standard scheduling, address various machine models (iden-
tical, related or unrelated machines), different processing formats (preemp-
tive or non-preemptive scheduling) and various objective functions (such as
makespan, (weighted) sum of completion times, (weighted) sum of flow times
etc.).

In this book chapter, due to space constraints, we can only present a selec-
tion of the known results. In the first part of the chapter we focus on some
classical scheduling problems and summarize the state of the art. The second
part of the chapter is devoted to energy-efficient scheduling, a topic that has
received quite some research interest recently and promises to be an active
theme for investigation in the future. Wherever possible results and theorems
are accompanied by proofs. However, for many results, the corresponding
analyses are quite involved and detailed proofs are beyond the scope of the
chapter.

1.2 Classical Scheduling Problems

In the first part of this section we study online algorithms for makespan
minimization, which represents one of the most basic problems in scheduling
theory. The second part addresses flow time based objectives. Finally we
consider load balancing problems where jobs have a temporary duration. Such
jobs arise e.g. in the context of telephone calls or network routing requests.

1.2.1 Makespan Minimization

Consider a basic scenario where we are given m identical machines working
in parallel. As input we receive a sequence of jobs I = J1, J2, . . . , Jn with
individual processing times, i.e. Ji has a processing time of pi time units.
The jobs arrive incrementally, one by one. Whenever a new job arrives, its
processing time is known. The jobs has to be assigned immediately and
irrevocably to one of the machines without knowledge of any future jobs.
Preemption of jobs is not allowed. The goal is to minimize the makespan, i.e.
the completion time of the last jobs that finishes in the schedule.

This fundamental scenario was investigated by Graham [27] in 1966 who
devised the famous List scheduling algorithm. At any given time let the load
of a machine be the sum of the processing times of the jobs currently assigned
to it.

Algorithm List: Schedule any new job on the least loaded machine.
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FIGURE 1.1: The schedule generated by List .

THEOREM 1.1 [27]
List is (2 − 1

m )-competitive.

PROOF For an arbitrary job sequence I = J1, . . . , Jn, consider the sched-
ule constructed by List and let List(I) be the resulting makespan. Without
loss of generality we number the machines in order of non-decreasing final
loads in List ’s schedule. Then the load on machine m defines the makespan.
Consider a time interval of length List(I) on any of the m machines, cf. Fig-
ure 1.1. The last machine m processes jobs continuously without interruption.
The first m − 1 machines each process a subset of the jobs and then experi-
ence a (possibly empty) idle period. During their active periods the machines
finish a total processing volume of

∑n
i=1 pi. Consider the assignment of the

last job on machine m. By the List scheduling rule, this machine had the
smallest load at the time of the assignment. Hence, any idle period on the
first m−1 machines cannot be longer than the processing time of the last job
placed on machine m and hence cannot exceed the maximum processing time
max1≤i≤n pi. We conclude

mList(I) ≤
n

∑

i=1

pi + (m − 1) max
1≤i≤n

pi,

which is equivalent to

List(I) ≤ 1

m

n
∑

i=1

pi + (1 − 1

m
) max

1≤i≤n
pi.

Note that 1
m

∑n
i=1 pi is a lower bound on OPT (I) because the optimum

makespan cannot be smaller than the average load on all the machines. Fur-
thermore, OPT (I) ≥ max1≤i≤n pi because the largest job must be processed

on some machine. We conclude List(I) ≤ (2 − 1
m )OPT (I).

Graham also showed a matching lower bound on the performance of List .
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FIGURE 1.2: Schedules generated by List and OPT.

THEOREM 1.2

List does not achieve a competitive ratio smaller than 2 − 1
m .

PROOF Consider a job sequence I consisting of (a) m(m− 1) jobs, each
having a processing time of 1, followed by (b) one job having a processing
time of m time units. The resulting schedules generated by List and OPT
are depicted in Figure 1.2. The List algorithm assigns the first m(m−1) jobs
in a Round-Robin fashion to machines so that a load of m − 1 is generated.
The final job of processing time m then causes a makespan of 2m − 1. On
the other hand OPT schedules the initial small jobs on m− 1 machines only,
reserving the last machine for the final job. This gives a makespan of m, and
the desired performance ratio follows.

Faigle, Kern and Turan [22] showed that no deterministic online algorithm
can have a competitive ratio smaller than 2 − 1

m for m = 2 and m = 3.
Thus, for these values of m, List is optimal. In the 1990s research focused
on finding improved online algorithms for a general number m of machines.
Galambos and Woeginger [24] presented an algorithm that is (2 − 1

m − ǫm)-
competitive, where ǫm > 0, but ǫm tends to 0 as m goes to infinity. The
first online algorithm that achieved a competitive ratio asymptotically smaller
than 2 was given by Bartal, Fiat, Karloff and Vohra [16]. Their algorithm
is 1.986-competitive. The strategy was generalized by Karger, Phillips and
Torng [33] who proved an upper bound of 1.945. Later, Albers presented a
new algorithms that is 1.923-competitive [1]. The strategy was modified by
Fleischer and Wahl who showed a bound of 1.9201, the best performance ratio
known to date. We briefly describe the algorithm.

The goal of all improved algorithms, beating the bound of 2 − 1
m , is to

maintain an imbalanced schedule in which some machines are lightly loaded
and some are heavily loaded. In case a large job arrives, it can be assigned to
a lightly loaded machine so that a makespan of 2− 1

m times the optimum value

is prevented. Formally, let c = 1 +
√

(1 + ln 2)/2 and, using this definition,

k = ⌊2(c − 1)2 − 1

c
m⌋ + 1 and α =

2c − 3

2(c − 1)
.
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FIGURE 1.3: Schedules maintained by Imbal . Left part: A sample profile.
Right part: The scheduling step.

We note that k ≈ ⌊0.36m⌋+ 1 and α ≈ 0.46. The algorithm by Fleischer and
Wahl, called Imbal , tries to maintain a schedule in which k machines are lightly
loaded and m−k are heavily loaded. At any time we number the machines in
order of non-decreasing current load, where the load of a machine is again the
total processing time of jobs presently assigned to that machine. Let li denote
the load on the i-th smallest machine, 1 ≤ i ≤ m. The left part of Figure 1.3
shows a sample schedule. Moreover, let λ = 1

k

∑k
i=1 li be the average load on

the k smallest machines. This average load is always compared to the load
on machine 2k + 1. The goal is to maintain an imbalanced schedule in which
λ ≤ αl2k+1.

Each new job Jt is scheduled either on the machine with the smallest load or
on the machine with the (k +1)-st smallest load. The decision which machine
to choose depends on the current schedule. If the schedule is imbalaced,
job Jt is placed on the machine with the smallest load. On the other hand,
if the desired invariant λ ≤ αl2k+1 does not hold, the algorithm considers
scheduling Jt on the machine with the (k + 1)-st smallest load, cf. the right
part of Figure 1.3. The algorithm computes the resulting load lk+1 + pt on
that machine and compares it to the average load L = 1

m

∑t
j=1 pj on the

machines after Jt is assigned. Note that L is a lower bound on the optimum
makespan. If lk+1 + pt ≤ cL, then Jt is placed on machine k + 1. Otherwise
this assignment is risky and Jt is processed on the machine with the smallest
load.

Algorithm Imbal: Schedule a new job Jt on the machine with the (k +1)st
smallest load if λ > αl2k+1 and lk+1 + pt ≤ cL. Otherwise schedule Jt on the
machine having the smallest load.

THEOREM 1.3 [23]

Imbal achieves a competitive ratio of 1 +
√

(1 + ln 2)/2 < 1.9201.
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FIGURE 1.4: An ideal schedule produced by Rand-2.

We next turn to lower bounds for deterministic online algorithms. Recall
that a result by Faigle, Kern and Turan [22] states that no deterministic
strategy can be better than (2− 1

m )-competitive, for m = 2 and m = 3. Lower
bounds for a general number m of machines were developed, for instance,
in [1, 16, 22]. The best lower bound currently known is due to Rudin [44].

THEOREM 1.4 [44]
No deterministic online algorithm can achieve a competitive ratio smaller

than 1.88.

An interesting open problem is to determine the exact competitiveness
achievable by deterministic online strategies.

Since the publication of the paper by Bartal et al. [16], there has also been
research interest in developing randomized online algorithms for makespan
minimization. Bartal et al. gave a randomized algorithm for two machines that
achieves an optimal competitive ratio of 4/3. This algorithm, called Rand-2
operates as follows. For a given 2-machine schedule let the discrepancy be the
load difference on the two machines. The algorithm tries to always maintain
a schedule in which the expected discrepancy is 1

3L, where L =
∑t

j=1 pj is
the total processing time of jobs that have arrived so far. Figure 1.4 shows a
sample schedule.

Algorithm Rand-2: Maintain a set of all schedules generated so far together
with their probabilities. When a new job Jt arrives, compute the overall
expected discrepancy E1 that results if Jt were placed on the least loaded
machine in each schedule. Similarly, compute the expected discrepancy E2

if Jt were assigned to the most loaded machine in each schedule. Determine
a p, 0 ≤ p ≤ 1, such that pE1 + (1 − p)E2 ≤ 1

3L. If such a p exists, with
probability p schedule Jt on the least loaded machine and with probability
1 − p assign it to the most loaded machine in each schedule. If such p does
not exist, assign Jt to the least loaded machine.

THEOREM 1.5 [16]
Rand-2 achieves a competitive ratio of 4/3. This is optimal.

Chen et al. [21] and Sgall [46] proved that no randomized online algorithm
can have a competitiveness smaller than 1/(1− (1− 1/m)m). This expression
tends to e/(e − 1) ≈ 1.58 as m → ∞. Seiden [45] presented a randomized
algorithm whose competitive ratio is smaller than the best known determin-
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istic ratio for m ∈ {3, . . . , 7}. The competitiveness is also smaller than the
deterministic lower bound for m = 3, 4, 5.

Recently, Albers [2] developed a randomized online algorithm that is 1.916-
competitive, for all m, and hence gave the first algorithm that performs better
than known deterministic algorithms for general m. She also showed that a
performance guarantee of 1.916 cannot be proven for a deterministic online
algorithm based on analysis techniques that have been used in the literature
so far. An interesting feature of the new randomized algorithm, called Rand ,
is that at most two schedules have to be maintained at any time. In contrast,
the algorithms by Bartal et al. [16] and by Seiden [45] have to maintain t
schedules when t jobs have arrived. The Rand algorithm is a combination of
two deterministic algorithms A1 and A2. Initially, when starting the schedul-
ing process, Rand chooses Ai, i ∈ {1, 2}, with probability 1

2 and then serves
the entire job sequence using the chosen algorithm. Algorithm A1 is a con-
servative strategy that tries to maintain schedules with a low makespan. On
the other hand, A2 is an aggressive strategy that aims at generating schedules
with a high makespan. A challenging open problem is to design randomized
online algorithms that beat the deterministic lower bound, for all m.

1.2.2 Flow Time Objectives

Minimizing the flow time of jobs is another classical objective in scheduling.
In an online setting we receive a sequence I = J1, . . . , Jn of jobs, where each
job Ji is specified by an arrival time ri and a processing time pi. Clearly
the arrival times satisfy ri ≤ ri+1, for 1 ≤ i ≤ n − 1. Preemption of jobs is
allowed, i.e. the processing of a job may be stopped and resumed later. We
are interested in minimizing the flow time of jobs. The flow time of a job is
the length of the time period between arrival time and completion of the job.
Formally, suppose that a job released at time ri is completed at time ci. Then
the flow time is fi = ci − ri.

Two scenarios are of interest. In clairvoyant scheduling, when Ji arrives,
its processing time pi is known. This assumption is realistic in classical man-
ufacturing or, w.r.t. to new application areas, in the context of a web server
delivering static web pages. In non-clairvoyant scheduling, when Ji arrives, pi

is unknown and becomes known only when the job finishes. This assumption
is realistic in operating systems.

We first study clairvoyant scheduling and focus on the objective of minimiz-
ing the sum of flow times

∑n
i=1 fi. The most classical scheduling algorithm is

Shortest Remaining Processing Time.

Algorithm Shortest Remaining Processing Time (SRPT): At any time
execute the job with the least remaining work.

It is well known and easy to verify that SRPT constructs optimal schedules
on one machine, see e.g. [12].
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THEOREM 1.6

For one machine, SRPT is 1-competitive.

For m machines, SRPT also achieves the best possible performance ratio,
but the analysis is considerably more involved. A first, very sophisticated
analysis was given by Leonardi and Raz [36]. A simplified proof was later
presented by Leonardi [35]. In the following let pmin = min1≤i≤n pi and
pmax = max1≤i≤n pi be the smallest and largest processing times, respectively.
Moreover, P = pmax/pmin.

THEOREM 1.7 [37]

For m machines, SRPT has a competitive ratio of O(min{log P, log(n/m)}).

The above competitiveness is best possible.

THEOREM 1.8 [37]

For m machines, any randomized online algorithms has a competitive ratio
of Ω(log(n/m)) and Ω(log P ).

While SRPT is a classical algorithm and achieves an optimal performance
ratio, it uses migration, i.e. a job when being preempted may be moved to
another machine. In many practical settings, this is undesirable as the in-
curred overhead is large. Awerbuch et al. [7] gave a refined algorithm that
does not use migration and is O(min{log P, log n})-competitive. Chekuri et
al. [20] gave a non-preemptive algorithm achieving an optimal performance of
O(min{logP, log(n/m)}).

The algorithms mentioned above have optimal competitive ratios; however
the performance guarantees are not constant. Interestingly, it is possible to
improve the bounds using resource augmentation, i.e. an algorithm is given
processors of higher speed. Here it is assumed that an optimal offline algo-
rithms operates with machines of speed 1, while an online strategy may use
machines running at speed s ≥ 1. In this context, the best result is due to
McCullough and Torng [39] who showed that, using speed s ≥ 2−1/m, SRPT
is (1/s)-competitive.

An interesting, relatively new performance measure is the stretch of a job,
which is defined as the flow time divided by the processing time, i.e. sti =
fi/pi. The motivation for this metric is that a user is willing to wait longer
for the completion of long jobs; a quick response is expected for short jobs.
Consider the objective of minimizing the total stretch

∑n
i=1 fi/pi of jobs.

Muthukrishan et al. [41] showed that SRPT performs very well.

THEOREM 1.9 [41]

On one machine SRPT is 2-competitive.
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Muthukrishan et al. [41] established an almost matching lower bound on
the performance of SRPT and proved that no online algorithm can be better
than 1.036-competitive. We next turn to parallel machines.

THEOREM 1.10 [41]

For m machines, SRPT is 14-competitive.

Chekuri et al. [20] developed an improved 9.82-competitive algorithm and
presented a 17.32-competitive strategy not using any migration.

We next address non-clairvoyant scheduling where the processing time of
an incoming job is not known in advance. We focus again on the objective
of minimizing the total flow time

∑n
i=1 fi of jobs and concentrate on one

machine. In this setting a natural algorithm is Round Robin, which always
assigns an equal amoung of processing resources to all the jobs. Kalyana-
sundaram and Pruhs [31] showed that the algorithms does not perform well
relative to the optimum. The competitiveness is at least Ω(n/ log n). In fact
any deterministic algorithm does not perform very well.

THEOREM 1.11 [40]

Any deterministic online algorithm has a competitive ratio of Ω(n1/3).

Again, resource augmentation proves to be a very powerful tool in this
context. Kalyanasundaram and Pruhs [31] analyzed the following algorithm.

Algorithm Shortest Elapsed Time First (SETF): At any time execute
the job that has been processed the least.

THEOREM 1.12 [31]
For any ǫ > 0, using a speed of 1 + ǫ, SETF achieves a competitive ratio of

1 + 1/ǫ.

Finally, using randomization it is possible to get down to a logarithmic
bound of Θ(log n) without resource augmentation, see [17] and [32].

1.2.3 Load Balancing

In this section we study load balancing problems that arise in new appli-
cations. Consider, for instance, a set of satellite links on which phone calls
have to be scheduled or, alternatively, a set of network links on which data
transmission requests have to served. In these scenarios the requests have an
unknown duration and incur a certain load or congestion on the chosen link.
The goal is to minimize the total load that ever occurs on any of the links.
These problem settings can be formalized as follows.
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FIGURE 1.5: A load profile with m machines.

We are given a set of m machines (representing the available links). A
sequence of jobs I = J1, J2, . . . , Jn arrives online. Let ri denote the arrival
time of Ji. Job Ji has an unknown duration and incurs a load of li when
assigned to a machine. For any time t, let Lj(t) denote the load of machine
j, 1 ≤ i ≤ m, which is the sum of the loads of the jobs present on machine j
at time t. The goal is to minimize the maximum load that occurs during the
processing of I. Figure 1.5 depicts a sample schedule with m machines. The
rectangles represent jobs, where the height of a rectangle corresponds to the
load of the job.

We concentrate on settings with m identical machines. A natural online
strategy is Greedy which assigns an incoming job to a machine currently hav-
ing the smallest load. Azar and Epstein [9] observed that Greedy is (2 − 1

m )-
competitive. They also proved that this is the best competitiveness achievable
by a deterministic strategy. In the following we will study the scenario with
identical machines and restricted assignment , i.e. each job Ji can only be as-
signed to a subset Mi of admissible machines. Azar et al. [8] showed that
Greedy is Θ(m2/3)-competitive. They also proved that no online algorithm
can achieve a competitiveness smaller than Ω(

√
m). Azar et al. [11] gave a

matching upper bound. The corresponding algorithm is called Robin Hood .
Since both the algorithm and its analysis are simple and elegant, we give the
details.

At any time Robin Hood maintains a lower bound B on the optimum load
OPT (I) incurred on the given job sequence I. Initially, let B(0) = 0. At any
time t, this bound is updated as follows. If no new job arrives at thime t,
then B(t) = B(t − 1). If a new job Ji arrives at time t = ri, then the update
is as follows. Again, let Lj(t − 1) denote the load on machine j at the end of
time step t − 1.

B(t) := max{B(t − 1), li,
1

m
(li +

m
∑

j=1

Lj(t − 1))}.

Clearly, B(t) ≤ OPT (I) always as we are interested in the maximum load
that ever occurs on the machines. At any time t a machine is called rich if its
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current load is at least
√

mB(t); otherwise the machine is called poor.

Algorithm Robin Hood: When a new job Ji arrives, if possible assign it
to a poor machine. Otherwise assign it to the rich machine that became rich
most recently.

THEOREM 1.13 [11]

Robin Hood is O(
√

m)-competitive.

PROOF We start with a simple lemma estimating the number of rich
machines.

LEMMA 1.1

There always exist at most
√

m machines that are rich.

PROOF The number of rich machines can only increase when new jobs
are assigned to machines. So consider any time t = ri. If more than

√
m

machines were rich after the assignment of Ji, then the aggregate load on
the m machines would be greater than

√
m
√

mB(t) = mB(t). However, by
the definition of B(t), B(t) ≥ 1

m(li +
∑m

j=1 Lj(t − 1)), i.e. mB(t) is an upper

bound on the aggregate load.

In order to establish the theorem we prove that whenever Robin Hood as-
signs a job Ji to a machine j, the resulting load on the machine is upper
bounded by (2

√
m + 1)OPT (I).

First suppose that j is poor. Then the new load on the machine is Lj(ri −
1) + li <

√
mB(ri) + B(ri) ≤ (

√
m + 1)OPT (I).

Next suppose that machine j is rich when Ji is assigned. Let rt(i) be the
most recent point in time when machine j became rich. Furthermore, let S
be the set of jobs that are assigned to machine j in the interval (rt(i), ri].
Any job Jk ∈ S could only be assigned to machines that were rich at time
rt(i) because Robin Hood places a job on the machine that became rich most
recently if no poor machines are available. Let

h = |
⋃

Jk∈S

Mk|.

Then, by the Lemma 1.1 h ≤ √
m. Since only

√
m machines are available for

jobs in S we have OPT (I) ≥ 1√
m

∑

Jk∈S lk and hence

∑

Jk∈S

lk ≤
√

mOPT (I).
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Hence the resulting load on machine j after the assignment of Ji is at most

Lj(rt(i) − 1) + lt(i) +
∑

Jk∈S

lk <
√

mB(rt(i)) + lt(i) +
√

mOPT (I)

≤ (2
√

m + 1)OPT (I).

This concludes the proof.

Further work on online load balancing can be found, e.g., in [5, 10].

1.3 Energy-Efficient Scheduling

In many computational environments energy has become a scare and/or
expensive resource. Consider, for instance, battery-operated devices such as
laptops or mobile phones. Here the amount of available energy is severely lim-
ited. By performing tasks with low total energy, one can considerably extend
the lifetime of a given device. Generally speaking, the energy consumption in
computer systems has grown exponentially over the past years. This increase
is strongly related to Moore’s law which states that the number of transistors
that can be placed on an integrated circuit doubles approximately every two
years. Since transistors consume energy, increased transistor density leads
to increased energy consumption. Moreover, electricity costs impose a sub-
stantial strain on the budget of data and computing centers, where servers
and, in particular, CPUs account for 50–60% of the energy consumption.
In fact, Google engineers, maintaining thousands of servers, recently warned
that if power consumption continues to grow, power costs can easily overtake
hardware costs by a large margin [15]. Finally, a high energy consumption
is critical because most of the consumed energy is eventually converted into
heat which can harm the electronic components of a system.

In this section we study algorithmic techniques to save energy. It turns out
that these techniques are actually scheduling strategies. There exist basically
two approaches.

• Power-down mechanisms: When a system is idle, move it into lower
power stand-by or sleep modes. We are interested in scheduling algo-
rithms that perform the transitions at the “right” points in time.

• Dynamic speed scaling: Modern microprocessors, such as Intel XSc-
cale, Intel Speed Step or AMD Power Now, can run at variable speed.
The higher the speed, the higher the power consumption. We seek al-
gorithms that use the speed spectrum in an optimal way.

Obviously, the goal of both the above techniques is to minimize the consumed
energy. However, this has to be done subject to certain constraints, i.e. we
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have to design feasible schedules or must provide a certain quality of service
to a user.

Over the last years there has been considerable research interest in schedul-
ing strategies saving energy. In the following we first address power-down
mechanisms and then study dynamic speed scaling.

1.3.1 Power-Down Mechanisms

We start by analyzing a simple 2-state system. Consider a processor or
machine that can reside in one of two possible states. Firstly, there is an
active state that consumes one energy unit per time unit. Secondly, there
exists a sleep state consuming zero energy units per time unit. Transitioning
the machine from the active to the sleep state and, at some later point, back
to the active state requires D energy units, where D ≥ 1. As input we receive
an alternating sequence of active and idle time periods. During each active
period the machine has to be in the active mode. During any idle period
the machine has the option of powering down to the sleep state. The goal
is to find a schedule, specifying the (possible) power-down time for each idle
interval, that minimizes the total energy consumption.

Since the energy consumption is fixed in the active periods, optimization
strategies focus on the idle periods. In the offline scenario, the length of any
idle period is known in advance. In the online setting the length of an idle
period is not known in advance and becomes known only when the period ends.
We remark that we ignore the latency incurred by a power-up operation to
the active mode; we focus on the mere energy consumption. In the following
we present online algorithms A that, for any idle time period I, incur an
energy consumption that is at most c times the optimum consumption in
I, for some c ≥ 1. Obviously, such an algorithm A is c-competitive, for any
alternating sequence of active and idle time periods. We note that the problem
of minimizing energy consumption in any idle period I is equivalent to the
famous ski rental problem [29].

In the following we focus on one particular idle time period I. An optimal
offline algorithm is easy to state. If the length of I is larger D time units,
power down immediately at the beginning of I. Otherwise reside in the active
mode throughout I. Next we present an optimal online algorithm.

Algorithm Alg-2: Power down to the sleep mode after D time units if the
idle period I has not ended yet.

THEOREM 1.14

Alg-2 is 2-competitive.

PROOF Let T denote the length of I. If T < D, then Alg-2 does not
power down in I and incurs an energy consumption of T , which is equal to the
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consumption of an optimal offline algorithm OPT . On the other hand, if T ≥
D, Alg-2 powers down after D time units and the total energy consumption is
D+D = 2D. In this case OPT pays a cost of D, and the desired performance
ratio follows.

THEOREM 1.15
No deterministic online algorithm A can achieve a competitive ratio smaller
than 2.

PROOF An adversary observes the behavior of A during an idle time pe-
riod I. As soon as A powers down to the sleep state, the adversary terminates
I. The energy consumption of A is T + D, where T = |I| is the length of the
idle period. The theorem now follows because an optimal offline algorithm
pays min{T, D}.

Using randomization one can improve the competitive ratio.

Algorithm RAlg-2: In an idle period power down to the sleep mode after
t time units according to the probability density function pt, where

pt =

{

1
(e−1)D et/D 0 ≤ t ≤ D

0 otherwise

THEOREM 1.16 [34]
RAlg-2 achieves a competitive ratio of e/(e − 1) ≈ 1.58.

The above performance guarantee is best possible.

THEOREM 1.17 [34]
No randomized online algorithm achieves a competitive ratio smaller than

e/(e − 1) ≈ 1.58.

In practice, rather than in worst-case analysis, one might be interested in
a probabilistic setting where the length of idle time periods is governed by
a probabiliy distribution. Let Q = (qT )0≤T<∞ be a probability distribution
on the length of idle periods. Let At be the deterministic algorithm that
powers down after t time units. The expected energy consumption of At on
idle periods whose length is generated according to Q is

E[At(IQ)] =

∫ t

0

TqT dT + (t + D)

∫ ∞

t

qT dT.

Let A∗
Q be the algorithm At that minimizes the above expression. This algo-

rithm performs well relative to the expected optimum cost E[OPT (IQ)].
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THEOREM 1.18 [34]

For any probability distribution Q, the best corresponding algorithm A∗
Q sat-

isfies

E[A∗
Q(IQ)] ≤ e

(e − 1)
E[OPT (IQ)].

Irani et al. [28] and Augustine et al. [6] extended many of the above re-
sults to systems/machines that can reside in several states. A specification of
such systems is given, for instance, in the Advanced Configuration and Power
Management Interface (ACPI), which establishes industry-standard interfaces
enabling power management and thermal management of mobile, desktop and
server platforms.

In general, consider a system/machine consisting of l + 1 states s0, . . . , sl,
where s0 is the active mode. Let ri denote the energy consumption per time
unit in state si, 0 ≤ i ≤ l. These rates satisfy ri > ri+1, for 0 ≤ i ≤ l − 1.
Furthermore, let dij denote the cost of transitioning from state si to sj . We
assume that the triangle inequality dij ≤ dik + dkj holds for any i, j and k.

Augustine et al. [6] first argue that if the machine powers up, then it powers
up to the active mode. Furthermore, we can assume without loss of generality
that the power-up cost to the active state is zero, i.e. di0 = 0, for any 1 ≤ i ≤ l.
If di0 > 0, for some i, then we can define a new system with d′ij = dij+dj0−di0

for i < j and dij = 0, for j < i. The total transition cost in the new system
is exactly equal to the cost in the original one.

Let D(i) = d0i be the power-down cost into state i. Then the energy
consumption of an optimal offline algorithm OPT in an idle period of length
t is

OPT (t) = min
0≤i≤l

{D(i) + rit}.

Interestingly, the optimal cost has a simple graphical representation, cf. Fig-
ure 1.6. If we consider all linear functions fi(t) = D(i)+rit, then the optimum
energy consumption is given by the lower envelope of the arrangement of lines.
We can use this lower envelope to guide an online algorithm which state to
use at any time. Let S(t) denote the state used by OPT in an idle period
of length t, i.e. S(t) is the state arg min0≤i≤l{D(i) + rit}. The following
algorithm traverses the state sequence as suggested by the optimum offline
algorithm.

Algorithm Lower Envelope (LE): In an idle period, at any time t, use
state S(t).

Irani et al. [28] analyzed the above algorithm in additive systems , where for
any states i < k < j we have dij = dik + dkj .

THEOREM 1.19 [28]

Algorithm LE is 2-competitive.
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FIGURE 1.6: The optimum solution in a multi-state system.

Algorithm LE can be extended to work in non-additive systems where, in
general, the triangle inequality dij ≤ dik + dkj holds for any i < k < j. Let
S = {s0, . . . , sl} be the original set of states. We first construct a state set
S′ ⊆ S such that for any states si, sj ∈ S′, with i < j, relation γD(i) ≤ D(j)
is satisfied, where γ = 1 + 1/

√
2. Such a set is easy to construct. Initially, let

S′ = {sl}. We then traverse the original states in order of decreasing index.
Let sj be the last state added to S′. We now determine the largest i, where
i < j, such that γD(i) ≤ D(j). This state si is next added to S′. At the end
of the construction we have s0 ∈ S′ because D(0) = 0. Let OPT ′ denote the
optimum offline algorithm using state set S′ and let S′(t) be the state used
by OPT ′ in an idle period of length t.

Algorithm LE’: In an idle period, at any time t, use state S′(t).

THEOREM 1.20 [6]

Algorithm LE’ achieves a competitive ratio of 3 + 2
√

2 ≈ 5.8.

The above theorem ensures a competitiveness of 3+2
√

2 in any multi-state
system. Better performance ratios are possible for specific systems. Augustine
et al. [6] developed an algorithm that achieves a competitive ratio of c∗ + ǫ,
for any ǫ > 0, where c∗ is the best competitive ratio achievable for a given
system. The main idea of the solution is to construct an efficient strategy A
that decides, for a given c, if a c-competitive algorithm exists for the given
architecture. The best value of c can then be determined using binary search
in the interval [1, 3 + 2

√
2].

THEOREM 1.21 [6]

A (c∗+ǫ)-competitive online algorithm can be constructed in O(l2 log l log(1/ǫ))
time.



Online Scheduling 27

Irani et al. [28] and Augustine et al. [6] also present various results for
scenarios where the length of idle periods is governed by probability distribu-
tions. Furthermore, the first paper [28] contains an interesting experimental
study on an IBM Hard Drive with four states.

1.3.2 Dynamic Speed Scaling

In this section we study the problem of dynamically adjusting the speed of
a variable-speed processor/machine so as to minimize the total energy con-
sumption. Consider a machine that can run at variable speed s. The higher
the speed, the higher the energy consumption is. More formally, at speed s,
the energy consumption is E(s) = sα per time unit, where α > 1 is a constant.
In practical applications, α is typically in the range [2, 3].

Over the past years, dynamic speed scaling has received considerable re-
search interest and several scheduling problems have been investigated. How-
ever, most of the previous work focuses on deadline-based scheduling, a sce-
nario considered in a seminal paper by Yao et al. [48]. In this setting we are
given a sequence I = J1, . . . , Jn of jobs. Job Ji is released at time ri and must
be finished by a deadline di. We assume ri ≤ ri+1, for 1 ≤ i < n. To finish Ji

a processing volume of pi must be completed. This processing volume, intu-
itively, can be viewed as the number of CPU cycles necessary to complete the
job. The time it takes to finish the job depends on the processor speed. Using,
for instance, a constant speed s, the execution time is pi/s. Of course, over
time, a variable speed may be used. Preemption of jobs is allowed. The goal
is to construct a feasible schedule, observing the release times and deadlines,
that minimizes the total energy consumption.

The paper by Yao et al. [48] assumes that (a) the machine can run at a con-
tinuous spectrum of speeds and (b) there is no upper bound on the maximum
speed. Condition (b) ensures that there is always a feasible schedule. Later,
we will discuss how to remove these constraints. For the above deadline-based
scheduling problem, again, two scenarios are of interest. In the offline setting,
all jobs of I along with their characteristics are completely known in advance.
In the online variant of the problem, the jobs arrive over time. At any time
future jobs are unknown. It turns out that the offline problem is interesting
in itself and can be used to design good online strategies. For this reason, we
first address the offline problem and present an algorithm proposed by Yao,
Demers and Shenker [48].

The strategy is known as the YDS algorithm, referring to the initials of the
inventors, and computes the density of time intervals. Given a time interval
I = [t, t′], the density is defined as

∆I =
1

|I|
∑

[ri,di]⊆I

pi.

Intuitively, ∆I is the minimum average speed necessary to complete all jobs
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that must be scheduled in I. Let SI be the set of jobs Ji hat must be processed
in I, i.e. that satisfy [ri, di] ⊆ I. Algorithm YDS repeatedly determines the
interval I of maximum density. In I it schedules the jobs of SI at speed ∆I

using the Earliest Deadline First policy. Then set SI as well as time interval
I are removed from the problem instance.

Algorithm YDS: Initially, let J = {J1, . . . , Jn}. While J is not empty,
execute the following two steps. (1) Determine the time interval I = [t, t′] of
maximum density ∆I along with the job set SI . In I process the jobs of SI

at speed ∆I according to the Earliest Deadline First policy. (2) Reduce the
problem instance by I. More specifically, set J := J \ SI . For any Ji ∈ J
with ri ∈ I, set ri := t′. For any Ji ∈ J with di ∈ I, set di := t. Remove I
from the time horizon.

Obviously, when identifying intervals of maximum density, it suffices to
consider I = [t, t′] for which the interval boundaries are equal to the release
times ri and deadlines di of the jobs.

THEOREM 1.22 [48]

Algorithm YDS constructs a feasible schedule that minimizes the total energy
consumption.

Feasibility of the constructed schedule follows from the fact that, for each
interval I of maximum density identified in the various iterations of YDS ,
the algorithm constructs a feasible schedule in I. Optimality follows from
the convexity of the energy consumption function E(s) = sα: Suppose that
the machine runs at speed s1 for ǫ time units and at speed s2 for another ǫ
time units. Assume s1 < s2. Then a schedule with a strictly smaller energy
consumption can be achieved by using speed (s1 + s2)/2 in both periods
of length ǫ. This holds because ǫsα

1 + ǫsα
2 > 2ǫ( s1+s2

2 )α is equivalent to
1
2 (sα

1 + sα
2 ) > ( s1+s2

2 )α, and the latter inequality can easily be verified using
Figure 1.7. This convexity argument implies that it is not reasonable to vary
the speed in an interval I of maximum density. Moreover, it is not reasonable
to increase the speed in I while reducing the speed outside I. Optimality of
the resulting schedule then follows.

A straightforward implementation of YDS runs in time O(n3). Gaujal et
al. [26] and Gaujal and Navet [25] gave algorithms achieving improved running
times for some specific classes of input instances.

Algorithm YDS assumes a continuous spectrum of speeds. In practice only
a finite set of speed levels s1 < s2 < . . . < sd is available. YDS can be
adapted easily for feasible job instances, i.e. a feasible schedule exists for the
available set of speeds. Obviously, feasibility can be checked easily by always
using the maximum speed sd and scheduling the available jobs according to
the Earliest Deadline First policy. Given a feasible job instance, we first
construct the schedule according to YDS . For each identified interval I of
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FIGURE 1.7: The convexity of the energy consumption function.

maximum density we approximate the desired speed ∆I by the two adjacent
speed levels sk+1 > ∆I > sk. Speed sk+1 is used for the first δ time units
and sk is used for the last |I| − δ in I time units, where δ is chosen such that
δsk+1+(|I|−δ)sk = |I|∆I . Here |I| denotes the length of I. An algorithm with
an improved running time of O(dn log n) was presented by Li and Yao [38].

We next turn to online algorithms and consider again a continuous un-
bounded spectrum of speeds. We assume that whenever a new job Ji ar-
rives at time ri, its deadline di and processing volume pi are known. Yao et
al. [48] devised two elegant online strategies called Average Rate and Opti-
mal Available. For any incoming job Ji, Average Rate considers the density
δi = pi/(di − ri), which is the minimum average speed necessary to complete
the job in time if no other jobs were present. At any time t the speed s(t) is
set to the accumulated density of unfinished jobs present at time t.

Algorithm Average Rate: At any time t use a speed of s(t) =
∑

Ji:t∈[ri,di]
δi.

Among the available unfinished jobs, process the one whose deadline is earliest
in the future.

THEOREM 1.23 [48]

For any α ≥ 2, the competitive ratio c of Average Rate satisfies αα ≤ c ≤
2α−1αα.

The strategy Optimal Available is computationally more expensive in that
it always computes an optimal schedule for the currently available work load.
This can be done using algorithm YDS .

Algorithm Optimal Available: Whenever a new job arrives, compute an
optimal schedule for the currently available, unfinished jobs.

Bansal et al. [13] gave a comprehensive analysis of the above algorithm. It
shows that Optimal Available is at least as good as Average Rate.
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THEOREM 1.24 [13]
Optimal Available achieves a competitive ratio of exactly αα.

Bansal et al. [13] also presented a new online algorithm that tries to ap-
proximate the optimal speeds of YDS more closely. For times t, t1 and t2, let
w(t, t1, t2) be the total processing volume of jobs that have arrived by time t
have a release time of at least t1 and a deadline of at most t2.

Algorithm BKP: At any time t use a speed of

s(t) = max
t′>t

w(t, et − (e − 1)t′, t′)

t′ − t
.

Always process the available unfinished job whose deadline is earliest in the
future.

THEOREM 1.25 [13]
Algorithm BKP achieves a competitive ratio of 2( α

α−1 )αeα.

The competitiveness of all online algorithms presented so far depends ex-
ponentially on α. Bansal et al. [13] demonstrated that this exponential de-
pendence is inherent to the problem.

THEOREM 1.26 [13]
The competitive ratio of any randomized online algorithm is at least Ω((4

3 )α).

An interesting open problem is to settle the exact competitiveness that can
be achieved by online strategies.

Chan et al. [19] present an online algorithm for the scenario that there exists
a maximum speed smax; below this upper bound the spectrum of speeds is
still continuous. The algorithm has the interesting feature that it can handle
infeasible job instances by discarding jobs if the work load becomes too high.
The proposed strategy achieves a constant factor in terms of throughput and in
terms of energy. The throughput is the total processing volume of successfully
completed jobs. Since we aim at throughput maximization, a strategy A is
c-competitive w.r.t. this performance measure if the throughput A is at least
1/c times the optimum throughput.

Whenever a new job Ji arrives, the algorithm proposed by Chan et al. [19]
checks if the job should be admitted. In this context, a set S of jobs is
called full-speed admissible if all jobs in S can be completed by their deadline
using a maximum speed of smax. Speed values are used according to Optimal
Available.

Algorithm FSA(OAT): At any time maintain a set S of admitted jobs.
Number the jobs Ji1 , . . . , Jik

in S in order of non-decreasing deadlines. A
new job Ji is admitted to S if (a) S ∪ {Ji} is full-speed admissible or if
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(b) pi > 2(pi1 + . . . + pil
) and {Ji, Jil+1

, . . . , Jik
} is full-speed admissible,

where l ∈ [1, k] is the smallest integer satisfying this constraint. In the latter
case {Ji1 , . . . , Jil

} are removed from S. Whenever a job is finished or its
deadline has passed, it is discarded from S. At any time t use the speed that
Optimal Available would use for the workload in S, provided that this speed
is not larger then smax. Otherwise use smax.

THEOREM 1.27 [19]
FSA(OAT) achieves a competitive ratio of 14 in terms of throughput and a

competitive ratio of αα + α24α in terms of energy.

If there is no upper bound on the speed, FSA(OAT) mimicks Optimal Avail-
able. Hence it achieves an optimal throughput and a competitive ratio of αα

in terms of energy consumption.
So far in this section we have studied single-machine architectures. How-

ever, power consumption is also a major concern in multi-processor envi-
ronments. Modern server systems are usually equipped with several CPUs.
Furthermore, many laptops today feature a dual-processor architecture and
the chip manufacturer AMD has even announced a “quad-core design”. In
the following we investigate the problem of minimizing energy consumption
in parallel machine environments. We assume that we are given m identical
variable-speed machines working in parallel. As before, we consider deadline-
based scheduling where a sequence I = J1, . . . , Jn, each specified by a release
time, a deadline and a processing volume must be scheduled. Preemption of
jobs is allowed. However migration of job is disallowed, i.e. whenever a job
is preempted, it may not be move to another machine as such an operation
incurs considerable overhead in practice. The goal is to minimize the total
energy consumed on all the m machines.

Albers et al. [4] present a comprehensive study of the problem. They first
consider the offline scenario and settle the complexity of settings with unit-
size jobs, i.e. pi = 1 for all 1 ≤ i ≤ n. They show that problem instances with
agreeable deadlines are polynomially solvable while instances with arbitrary
deadlines are NP-hard. In practice, problem instances with agreeable dead-
lines form a natural input class where, intuitively, jobs arriving at later times
may be finished later. Formally, deadlines are agreeable if, for any two jobs
Ji and Ji′ , relation ri < ri′ implies di ≤ di′ . We briefly describe the proposed
algorithm as it is an interesting application of the Round Robin strategy.

Algorithm RR: Given a sequence of jobs with agreeable deadlines, execute
the following two steps. (1) Number the jobs in order of non-decreasing
release dates. Jobs having the same release date are numbered in order of
non-decreasing deadlines. Ties may be broken arbitrarily. (2) Given the
sorted list of jobs computed in step (1), assign the jobs to machines using the
Round Robin policy. For each machine, given the jobs assigned to it, compute
an optimal service schedule, using e.g. YDS .
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THEOREM 1.28 [4]

For a set of unit size jobs with agreeable deadlines, algorithm RR computes
an optimal schedule.

Paper [4] also develops various polynomial time approximation algorithms
for both unit-size and arbitrary-size jobs. Again, let δi = pi/(di − ri) be the
density of job Ji. The next algorithm partitions jobs into classes such that,
within each class, job densities differ by a factor of at most 2. Formally, let
∆ = max1≤i≤n δi be the maximum job density. Partition jobs J1, . . . , Jn into
classes Ck, k ≥ 0, such that class C0 contains all jobs of density ∆ and Ck,
k ≥ 1, contains all jobs i with density δi ∈ [∆2−k, ∆2−(k−1)).

Algorithm Classified Round Robin (CRR): Execute the following two
steps. (1) For each class Ck, first sort the jobs in non-decreasing order of
release dates. Jobs having the same release date are sorted in order of non-
decreasing deadline. Then assign the jobs of Ck to processors according to the
Round Robin policy, ignoring job assignments done for other classes. (2) For
each processor, given the jobs assigned to it, compute an optimal service
schedule.

THEOREM 1.29 [4]

CRR achieves an approximation factor of αα24α for problem instances con-
sisting of (a) unit size jobs with arbitrary deadlines or (b) arbitrary size jobs
with agreeable deadlines.

Albers et al. [4] show that improved approximation guarantees can be
achieved for problem settings where all jobs have a common release time
or, symmetrically, have a common deadline. Furthermore, the authors give
various competitive online algorithms.

In this section we have focused on speed scaling algorithms for deadline
based scheduling problems. The literature also contains results on other ob-
jectives. References [3, 14, 43] consider the minimization of flow time objec-
tives while keeping energy consumption low. Bunde additionally investigates
makespan minimization [18].

1.4 Conclusions

In this book chapter we have surveyed important results in the area of on-
line scheduling, addressing both classical results and contributions that were
developed in the past few years. The survey is by no means exhaustive. As
for results on classical scheduling problems, an extensive survey article was
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written by Pruhs et al. [42] and is part of a comprehensive handbook on
scheduling. The most promising and fruitful direction for future research is
the field of energy-efficient scheduling. In this chapter we have presented some
basic results. Another survey summarizing the state of the art was presented
by Irani and Pruhs [30] in 2005. The field of energy-efficient scheduling is ex-
tremely active and new results are being published in the ongoing conferences.
There is a host of open problems that deserves investigation.
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