
New On-Line Algorithms for the Page Replication Problem�Susanne Albersy Hisashi KogazAbstractWe present improved competitive on-line algorithms for the page replication problem andconcentrate on important network topologies for which algorithms with a constant compet-itive ratio can be given. We develop an optimal randomized on-line replication algorithmfor trees and uniform networks; its competitive ratio is approximately 1.58. This perfor-mance holds against oblivious adversaries. We also give a randomized memoryless replica-tion algorithm for trees and uniform networks that is 2-competitive against adaptive on-lineadversaries. Furthermore we consider on-line replication algorithms for rings and presentgeneral techniques that transform c-competitive algorithms for trees into 2c-competitive al-gorithms for rings. As a result we obtain a randomized on-line algorithm for rings that is3.16-competitive. We also derive two 4-competitive on-line algorithms for rings which areeither deterministic or randomized and memoryless. Again, the randomized results holdagainst oblivious adversaries. Apart from these techniques, we �nally give a randomizedmemoryless replication algorithm for rings that is 4-competitive against adaptive on-lineadversaries.1 IntroductionThis paper deals with problems that arise in the memory management of large multiprocessorsystems. Such multiprocessing environments typically consist of a network of processors, eachof which has its local memory. A global shared memory is modeled by distributing the physicalpages among the local memories. Accesses to the global memory are accomplished by accessingthe local memories. Suppose a processor p wants to read a memory address from page B. If Bis stored in p's local memory, then this read operation can be accomplished locally. Otherwise,p determines a processor q holding the page and sends a request to q. The desired informationis then transmitted from q to p, and the communication cost incurred thereby is proportional tothe distance from q to p. If p has to access page B frequently, it may be worthwhile to move or�This paper combines and extends results of two conference papers. First paper: H. Koga. Randomized on-linealgorithms for the page replication problem. In Proc. 4th International Annual Symposium on Algorithms andComputation (ISAAC93). Second paper: S. Albers and H. Koga. New on-line algorithms for the page replicationproblem. In Proc. 4th Scandinavian Workshop on Algorithm Theory (SWAT94).yMax-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. Work was supported inpart by the ESPRIT Basic Research Actions of the EU under contract No. 7141 (project ALCOM II). E-mail:albers@mpi-sb.mpg.dezFujitsu Laboratories Limited., 211-88 Kawasaki, Japan. This work was done while the second author was astudent in the Department of Information Science, University of Tokyo. E-mail: koga@
ab.fujitsu.co.jp1

copy B from q to p because subsequent accesses will become cheaper. However, transmitting anentire page incurs a high communication cost proportional to the page size times the distancefrom q to p.If a page is writable, it is reasonable to store only one copy of the page in the entire system.This avoids the problem of keeping multiple copies of the page consistent. Themigration problemis to decide in which local memory the single copy of the writable page should be stored so thata sequence of memory accesses can be processed at low cost. On the other hand, if a page isread-only, it is possible to keep several copies of the page in the system, i.e., a page may becopied from one local memory to another. In the replication problem we have to determinewhich local memories should contain copies of the read-only page. Finding e�cient migrationand replication strategies is an important problem that has been studied from a practical andtheoretical point of view [2, 4, 6, 7, 8, 11, 13]. In this paper we study on-line algorithms for thepage replication problem. We analyze the performance of on-line algorithms using competitiveanalysis [12], the worst case ratio of the cost incurred by an on-line algorithm and the costincurred by an optimal o�-line algorithm.Awerbuch et al. [2] presented a deterministic on-line replication strategy for general graphsthat achieves an optimal competitive ratio of �(logn), where n is the number of processors. How-ever, for many important topologies, this bound is not very expressive. Black and Sleator [6],who initiated the theoretical study of the replication problem, proposed a 2-competitive deter-ministic on-line algorithm for trees and uniform networks. A uniform network is a completegraph in which all edges have the same length. Black and Sleator also proved that no determin-istic on-line replication algorithm can be better than 2-competitive. Bartal et al. [4] presenteda randomized 2(2 +p3)-competitive replication algorithm against adaptive on-line adversariesfor the case that the network topology forms a ring. We note that 2(2 +p3) � 7:5. Using the2(2 +p3)-competitive algorithm by Bartal et al., one can construct a deterministic replicationalgorithm for the ring that achieves a competitive ratio of 22(2+p3)2 � 55:7, see [5]. However,that algorithm is very complicated and not useful in practical applications.In this paper we develop a number of new deterministic and randomized on-line replicationalgorithms. We concentrate on network topologies that are important in practice and for whichon-line algorithms with a constant competitive ratio can be developed. In Section 4.1 we presenta randomized on-line replication algorithm for trees and uniform networks, called GEOMETRIC,which is (�r�r�1)-competitive against oblivious adversaries. Here � = r+1r and r is the pagesize factor. For large values of r, which occur in practice, GEOMETRIC's competitiveness isapproximately ee�1 � 1:58. We also show that GEOMETRIC is optimal. Speci�cally we provethat no randomized on-line replication algorithm can be better than (�r�r�1)-competitive againstoblivious adversaries. Interestingly, our algorithm GEOMETRIC uses only one random numberduring an initialization phase and runs completely deterministically thereafter. Lund et al. [9]have independently developed the same results for trees and uniform networks using a di�erentapproach. Moreover, we give a randomized memoryless on-line replication algorithm for treesand uniform networks that is 2-competitive against adaptive on-line adversaries. This is thebest competitiveness that can be achieved against adaptive on-line adversaries.In Section 5 we consider replication algorithms for rings. We present a deterministic tech-nique that transforms c-competitive algorithms for trees into 2c-competitive algorithms for rings.2

Combining this technique with the algorithm GEOMETRIC, we obtain a randomized algorithmfor rings that achieves a competitive ratio of (2�r�r�1) � 3:16. We also derive two 4-competitivealgorithms for rings which are either deterministic or randomized and memoryless. The ran-domized performances hold against oblivious adversaries. Our 4-competitive deterministic al-gorithm is very simple and greatly improves the competitive ratio of 55.7 mentioned above.We also present a randomized version of our deterministic technique for constructing ring algo-rithms; this variant achieves the same performance. Finally, using an approach di�erent fromthe above technique, we develop a randomized memoryless replication algorithm for rings thatis 4-competitive against adaptive on-line adversaries.2 Problem statement and competitive analysisFormally, the page replication problem can be described as follows. We are given an undirectedgraph G. Each node in G corresponds to a processor and the edges represent the interconnec-tion network. Associated with each edge is a length that is equal to the distance between theconnected processors. We assume that the edge lengths satisfy the triangle inequality. In thepage replication problem we generally concentrate on one particular page. We say that a nodev has the page if the page is contained in v's local memory. A request at a node v occurs if vwants to read an address from the page. The request can be satis�ed at zero cost if v has thepage. Otherwise the request is served by accessing a node w holding the page and the incurredcost equals the distance from v to w. After the request is satis�ed, the page may be replicatedfrom node w to any other node v0 that does not hold the page (node v0 may coincide with nodev). The cost incurred by this replication is r times the distance from w to v0. Here r denotesthe page size factor. In practical applications, r is a large value, usually several hundred orthousand. (The page may only be replicated after a request because it is impossible to delaythe service of the memory access while the entire page is copied.) We study the page replicationproblem under the assumption that a node having the page never drops it. A page replicationalgorithm is usually presented with an entire sequence of requests that must be served with lowtotal cost. A page replication algorithm is on-line if it serves every request without knowledgeof any future requests.We analyze the performance of on-line page replication algorithms using competitive analysis[12]. In a competitive analysis, the cost incurred by an on-line algorithm is compared to thecost incurred by an optimal o�-line algorithm. An optimal o�-line algorithm knows the entirerequest sequence in advance and can serve it with minimum cost. Let CA(�) and COPT (�) bethe cost of the on-line algorithm A and the optimal o�-line algorithm OPT on a request sequence�. Usually an on-line algorithm is called c-competitive if there exists a constant a such thatCA(�) � c �COPT (�)+a holds for every request sequence. Note, however, that if the constant adepends on r and the number of processors in the network, then an on-line replication algorithmcan be 0-competitive by replicating the page initially to all processors and assigning the totalcost of initial replications to a. On the other hand, if a does not depend on r, an additiveconstant cannot reduce the competitiveness of an on-line replication algorithm because r can belarge relative to the cost of serving a number of accesses. Therefore, we use a stronger de�nition.3

We call an on-line replication algorithm c-competitive ifCA(�) � c � COPT (�)for all request sequences �. If A is a randomized algorithm, then CA(�) must be replaced by theexpected cost incurred by A, where the expectation is taken over the random choices made byA. In this paper we evaluate randomized on-line algorithms only against oblivious and adaptiveon-line adversaries, see [5] for details. An oblivious adversary has to generate a request sequencein advance and is not allowed to see the random choices made by the on-line algorithm. Anadaptive on-line adversary may see the random choices made by the on-line algorithm, i.e., whengenerating a new request the adversary can see all the on-line algorithm's random choices onpast requests. However, an adaptive on-line adversary also has to serve the request sequenceon-line.3 Basic de�nitions and techniquesBefore describing our new algorithms in the following sections, we introduce some basic de�ni-tions for trees. These will be useful throughout the paper, since, even when considering uniformnetworks or rings, we will often reduce the algorithms and their analyses to the case that theunderlying topology forms a tree.The root of the given tree is generally denoted by s. We assume that initially, only s has thepage. Consider an undirected edge e = fv; wg in the tree. The node in fv; wg that is fartheraway from the root is called the child node of e. The length of e is denoted by l(e). Given twonodes u and v in the tree, let l(u; v) denote the length of the (unique) path from u to v.In the following we will always assume that if an algorithm (on-line or o�-line) replicatesthe page from a node w to a node v, then the page is also replicated to all nodes on the pathfrom w to v. This does not incur extra cost. Thus, the nodes with the page always form aconnected component of the given tree. Note that if a node v does not have the page, then theclosest node w with the page lies on the path from v to the root, and all paths from v to anode with the page pass through w. Therefore, we may assume without loss of generality thata replication algorithm always serves requests at a node not holding the page by accessing theclosest node with the page. This cannot increase the total cost incurred in serving the wholerequest sequence.We present a technique that we will frequently use to analyze on-line replication algorithmsfor trees. Let T be a tree and � be a request sequence for T . We usually analyze an on-linereplication algorithm A by partitioning the costs that are incurred by A and by OPT into partsthat are incurred by each edge of the tree. Suppose an algorithm serves a request at a nodev. Then an edge e incurs a cost equal to the length of e if e belongs to the path from v to theclosest node with the page. If e does not belong to that path, then e incurs a cost of zero. Anedge also incurs the cost of a replication across it. Let CA(�; e) denote the cost that is incurredby edge e when A serves �. Analogously, let COPT (�; e) be the cost that is incurred by e whenOPT serves �. (If A is a randomized algorithm, then CA(�; e) is the expected cost incurred bye.) The performance of an on-line algorithm A is generally evaluated by comparing CA(�; e) to4

COPT (�; e) for all edges e of the tree. In order to analyze CA(�; e), we introduce some notation.Let � = �(1); �(2); : : : ; �(m) be a request sequence of length m and let �(t), 1 � t � m, be therequest at time t. Suppose �(t) is a request at node v. We seta�(e; t) = 1if e belongs to the path from v to the root. Otherwise we seta�(e; t) = 0:If a�(e; t) = 1, we say that �(t) causes an access at edge e. Leta�(e) = mXt=1 a�(e; t);i.e., a�(e) is the number of requests that cause an access at edge e. The following simple lemmais crucial in our analyses.Lemma 1 Let A be an on-line replication algorithm that, given an arbitrary tree T and a requestsequence � for T , satis�es CA(�; e) � c �minfa�(e); rg � l(e) (1)for all edges e. Then the algorithm A is c-competitive. (If A is a randomized algorithm, thenCA(�; e) is the expected cost incurred by e and the competitive ratio of c holds against anyoblivious adversary.)Proof: We prove that for any edge e, COPT (�; e) = minfa�(e); rg � l(e). By Eq. (1), this impliesCA(�; e) � c � COPT (�; e) for all edges e, and hence A is c-competitive. If a�(e) < r, thenOPT does not replicate the page across e and e incurs a cost of a�(e)l(e). Hence COPT (�; e) =a�(e) � l(e) = minfa�(e); rgl(e): On the other hand, if a�(e) � r, then OPT replicates thepage across e immediately, before serving any requests, and e incurs a cost of rl(e). ThusCOPT (�; e) = r � l(e) = minfa�(e); rgl(e): 24 Algorithms for trees and uniform networksFirst, in Section 4.1, we describe and analyze two randomized on-line algorithms for trees. The�rst of these algorithms achieves an optimal competitive ratio against any oblivious adversary.We also give an algorithm that is competitive against any adaptive on-line adversary. In Sec-tion 4.2 we demonstrate that both our algorithms can be easily applied to uniform networks,while maintaining their competitive performance. Throughout this section let � = r+1r .4.1 TreesAlgorithm GEOMETRIC (for trees): The algorithm �rst chooses a random number fromthe set f1; 2; : : : ; rg. Speci�cally, the number i is chosen with probability pi = � � �i�1, where� = ��1�r�1 . While processing the request sequence, the algorithm maintains a count on each5

edge of the tree. Initially, all counts are set to 0. If there is a request at a node v that doesnot have the page, then all counts along the path from v to the closest node with the page areincremented by 1. When a count reaches the value of the randomly chosen number, the page isreplicated to the child node of the corresponding edge.Before we analyze the performance of GEOMETRIC, we mention a few observations andremarks. The algorithm is called GEOMETRIC because pi+1=pi = � is constant for all i =1; 2; : : : ; r � 1. It is easy to verify that Pri=1 pi = 1. Suppose that GEOMETRIC processes arequest sequence �. We can easily prove by induction on the number of requests processed so farthat the counts on a path from the root to a node v are always monotonically non-increasing.Furthermore, after each request, a node (except for the root s) has the page if and only if it isthe child node of an edge whose count is equal to the value of the randomly chosen number.Theorem 1 For any tree, the algorithm GEOMETRIC is (�r�r�1)-competitive against any obliv-ious adversary.Note that �r�r�1 goes to ee�1 � 1:58 as r tends to in�nity. Furthermore, GEOMETRIC usesonly one random number during an initialization phase and runs completely deterministicallythereafter.Proof: Consider an arbitrary tree T and a request sequence � for T . Let e be an edge of thetree and let E[CG(�; e)] denote the expected cost incurred by edge e when GEOMETRIC serves�. We will show that E[CG(�; e)] � (�r�r � 1) �minfa�(e); rg � l(e) (2)for any edge e of T . Lemma 1 implies the theorem.Let k = a�(e) and �(t1); �(t2); : : : ; �(tk) be the requests in � that cause an access at theedge e. Note that the algorithm GEOMETRIC increases the count of e exactly at the requests�(t1); �(t2); : : : ; �(tk), provided that the page has not been replicated across e so far.First, assume that k > r. Since Pri=1 pi = 1, GEOMETRIC has replicated the page acrosse before the request �(tr+1). Thus the edge e incurs the same cost as if we had k = r. For thisreason it su�ces to consider the case that k satis�es 1 � k � r and show E[CG(�; e)] � c �k � l(e),where c = �r�r�1 . This proves (2).So suppose we have 1 � k � r. The algorithm GEOMETRIC �rst chooses a random numberi from the set f1; 2; : : : ; rg. If i satis�es i � k, the edge e incurs a cost of r + i. Otherwise eincurs a cost of k. ThusE[CG(�; e)] = l(e)(kXi=1(r + i)pi + rXi=k+1 kpi)= l(e)(kXi=1 r��i�1 + kXi=1 i��i�1 + rXi=k+1 k��i�1)= �l(e)(r(�k � 1)�� 1 + k�k+1 � (k + 1)�k + 1(�� 1)2 + k(�r � �k)�� 1):6

We have �� 1 = 1r . ThusE[CG(�; e)] = �l(e)�� 1(r(�k � 1) + k�k � r(�k � 1) + k(�r � �k))= �l(e)�� 1(k�r)= �r�r � 1 � k � l(e): 2We now prove that GEOMETRIC's competitive ratio is optimal for all values of r.Theorem 2 Let A be a randomized on-line replication algorithm. Then A cannot be better than(�r�r�1)-competitive against any oblivious adversary, even on a graph consisting of two nodes.Proof: Let s and t be two nodes connected by an edge of length 1. We assume that initially,only node s has the page. We will construct a request sequence � consisting of requests at nodet such that the expected cost incurred by A is at least �r�r�1 times the optimal o�-line cost.For i = 1; 2; : : :, let qi be the probability that A replicates the page from s to t after exactlyi requests, given a request sequence that consists only of requests at node t. In the following wecompare the algorithm A to the algorithm GEOMETRIC. Let E[CA(�)] and E[CG(�)] denotethe expected cost incurred by A and GEOMETRIC on a request sequence �. Furthermore, fori = 1; 2; : : : ; r, let pi = � � �i�1. We consider two cases.Case 1: There exists an l, where 1 � l � r, such that Pli=1 qi �Pli=1 pi.Let k be the smallest number satisfying the above inequality, i.e., Pki=1 qi � Pki=1 pi andPji=1 qi < Pji=1 pi for all j with 1 � j < k. Let � be the request sequence that consists ofk requests at node t. We show that the inequality E[CA(�)]�E[CG(�)] � 0 holds. This impliesE[CA(�)] � E[CG(�)] = �r�r�1 � k and A cannot be better than (�r�r�1)-competitive because theoptimal o�-line cost on � equals k. Since, with probability 1�Pki=1 qi, A has not replicated thepage to t after the service of the request sequence �, we haveE[CA(�)] = kXi=1(r+ i)qi + k(1� kXi=1 qi):Similarly, we also have E[CG(�)] = kXi=1(r+ i)pi + k(1� kXi=1 pi):Hence E[CA(�)]� E[CG(�)] = kXi=1 i(qi � pi) + (r� k) kXi=1(qi � pi).Since Pki=1 qi �Pki=1 pi and r � k � 0, we obtainE[CA(�)]�E[CG(�)] � kXi=1 i(qi � pi) = kXi=1(kXj=i qj � kXj=i pj):7

For i = 2; 3; : : : ; k we havePi�1j=1 qj <Pi�1j=1 pj and hencePkj=i qj�Pkj=i pj >Pkj=i qj�Pkj=i pj+Pi�1j=1 qj �Pi�1j=1 pj =Pkj=1 qj �Pkj=1 pj : We concludeE[CA(�)]�E[CG(�)] � kXi=1(kXj=i qj � kXj=i pj) � kXi=1(kXj=1 qj � kXj=1 pj) � 0:Case 2: For all k = 1; 2; : : : ; r, the inequality Pki=1 qi <Pki=1 pi is satis�ed.Let � be the request sequence that consists of 2r requests at node t. Let A0 be the on-linealgorithm with q0i = qi, for i = 1; 2; : : : ; r� 1, and q0r = 1�Pr�1i=1 qi. ThenE[CA(�)] = 2rXi=1(r + i)qi + 2r(1� 2rXi=1 qi) � r�1Xi=1(r+ i)qi + 2r(1� r�1Xi=1 qi)= r�1Xi=1(r + i)q0i + 2rq0r = E[CA0(�)]:Since Pri=1 q0i =Pri=1 pi = 1 and Pji=1 q0i <Pji=1 pi for all j with 1 � j < r, Case 1 immediatelyimplies E[CA(�)] � E[CA0(�)] � E[CG(�)] = �r�r�1 � r; and A cannot be better than (�r�r�1)-competitive because the optimal o�-line cost equals r. 2Next we present another on-line replication algorithm for trees. This algorithm has theadvantage of being memoryless, i.e., it does not need any memory (for instance for counts) inorder to determine when a replication should take place. Also, its competitive performanceholds against adaptive on-line adversaries.Algorithm COINFLIP (for trees): If there is a request at a node with the page, then thealgorithm performs no action. If there is a request at a node v without the page, the algorithmserves the request by accessing the closest node u with the page. Then with probability 1r , thealgorithm replicates the page from u to v.Theorem 3 The algorithm COINFLIP is 2-competitive against any adaptive on-line adversary.Proof: We use a potential function � to analyze COINFLIP. For any request sequence �generated by an adaptive on-line adversary ADV, we compare simultaneous runs of COINFLIPand ADV on � by merging the actions of both algorithms into a single sequence of events. Thissequence contains two types of events: (Type I) ADV replicates the page. (Type II) A requestis served by COINFLIP and ADV; this event may be accompanied by COINFLIP replicatingthe page to the requesting node.For any event, let �CCF and �CADV denote the costs incurred by COINFLIP and ADVduring the event, and let �� denote the change in potential. We will show that for any event,E[�CCF] +E[��] � 2�CADV : (3)Summing up this inequality for all events, we obtainE[CCF (�)] +E[�end]�E[�start] � 2CADV (�); (4)8

where �start and �end denote the initial and �nal potential. Since we will choose the potentialfunction such that � is always non-negative and such that the initial potential is 0, (4) impliesthat COINFLIP is 2-competitive.We de�ne the potential function. Let E be the set of edges e in the tree T such that ADVhas replicated the page to the child node of e but COINFLIP has not replicated the page to thechild node. Let � = 2rXe2E l(e):In the following we prove (3) for all events. Let ch(E) denote the set of the child nodes of alledges contained in E.Type I: ADV replicates the page.Suppose that the page is replicated from node u to node v (and to all nodes along the path fromu to v). Then �CADV = rl(u; v) and �CCF = 0. Thus we must show �� � 2rl(u; v). Thereare two cases to consider depending of whether v 2 ch(E) after the replication.Case 1: v =2 ch(E) after the replication.Then �� = 0.Case 2: v 2 ch(E) after the replication.If u was in ch(E) before the replication, then �� = 2rl(u; v). Otherwise �� � 2rl(u; v).Type II: A request is served by COINFLIP and ADV.Let v be the node at which the request occurs. We have to consider two cases.Case 1: In the tree maintained by COINFLIP, node v already has the page.Then �CCF = 0 and �CADV � 0. Also �� = 0 because COINFLIP does not replicate thepage. Inequality (3) is satis�ed.Case 2: In the tree maintained by COINFLIP, node v does not have the page.Let uCF be the node closest to v in the tree to which COINFLIP has replicated the page.Recall that uCF lies on the path from v to the root. COINFLIP incurs a cost of l(uCF ; v)in serving the request. Then with probability 1r , COINFLIP also replicates the page fromuCF to v. Therefore E[�CCF] = l(uCF ; v) + 1r rl(uCF ; v) = 2l(uCF ; v). For the evaluationof �CADV , we have to consider three cases, depending on ADV's con�guration of nodes withthe page. First suppose that ADV has not replicated the page beyond uCF when the requestoccurs. Then �CADV � l(uCF ; v) = 12E[�CCF]. Note that E[��] = 0 because � doesnot change regardless of whether COINFLIP replicates the page or not. Inequality (3) holds.Next imagine that ADV has replicated the page beyond uCF but not beyond v. Let uADVbe the node closest to v to which ADV has replicated the page. Then �CADV = l(uADV ; v).We have to show that the expected change in potential is E[��] = �2l(uCF ; uADV). Thisimplies E[�CCF] + E[��] = 2l(uCF ; v)� 2l(uCF ; uADV) = 2l(uADV ; v) = 2�CADV . We have�� = 0 if COINFLIP does not replicate the page; otherwise �� = �2rl(uCF ; uADV). HenceE[��] = 1r (�2rl(uCF ; uADV)) = �2l(uCF ; uADV). Finally, suppose that ADV has replicatedthe page beyond v. In this case �CADV = 0. If COINFLIP does not replicate the page, then�� = 0. Otherwise �� = �2rl(uCF ; v). Therefore, E[��] = 1r (�2rl(uCF ; v)) = �2l(uCF ; v) =�E[�CCF]. Inequality (3) holds. 2The COINFLIP algorithm achieves the best possible performance. No randomized on-linealgorithm A can be better than 2-competitive against any adaptive on-line adversary, even on9

a graph consisting of two nodes. This can be seen as follows. Consider two nodes s and tconnected by an edge of length 1 and assume that s has the page initially. An adaptive on-lineadversary issues requests at t until A replicates the page to t. With probability 12 , the adversaryinitially replicates the page to t, and with probability 12 it serves all the requests by accessings. Suppose that A replicates the page after k requests. Then A's cost is k + r, whereas theexpected cost of the adversary is 12(k + r). If A never replicates the page to t, then, by makingthe request sequence su�ciently long, we can achieve a lower bound of 2� �, for any � > 0.4.2 Uniform networksAny replication algorithm for trees can be easily applied to uniform networks. Consider anarbitrary uniform network and let s be the node that has the page initially. Since all edges inthe graph have the same length, we may assume without loss of generality that a replicationalgorithm (on-line or o�-line) serves requests and replicates the page only along edges fs; vg.Hence the network can be reduced to a tree by neglecting the edges fv; wg with v 6= s, w 6= s.Run on this tree, any on-line algorithm for trees can maintain its competitive performance. Theresults given in Section 4.1 imply the following corollaries.Corollary 1 The algorithm GEOMETRIC for uniform networks is (�r�r�1)-competitive againstany oblivious adversary. This is the best competitive ratio that a randomized on-line replicationalgorithm can achieve against this type of adversary.Corollary 2 The algorithm COINFLIP for uniform networks is 2-competitive against any adap-tive on-line adversary. This is the best competitive ratio that a randomized on-line replicationalgorithm can achieve against this type of adversary.5 Algorithms for the ringIn this section we assume that the given net of processors forms a ring. First we will presenttechniques that transform c-competitive algorithms for trees into 2c-competitive algorithms forrings. Using these techniques, we obtain a deterministic ring algorithm and randomized ringalgorithms that are competitive against any oblivious adversary. Then we will develop a random-ized replication algorithm for rings that is competitive against any adaptive on-line adversary.We assume that initially, only one node of the ring, say s, has the page. Let n be the numberof nodes in the ring and let v1; v2; : : : ; vn be the nodes if we scan the ring in clockwise directionstarting from s, i.e., v1 = s. For i = 1; 2; : : : ; n, let ei = fvi; vi+1g be the undirected edge fromvi to vi+1. Naturally, vn+1 equals v1. Again, for any edge ei, l(ei) is the length of ei. Let x andy be any two points on the ring; x and y need not necessarily be processor nodes. We denoteby (x; y) the arc of the ring that is obtained if we start in x and go to y in clockwise direction.Let l(x; y) be the length of the arc (x; y). 10

5.1 General techniquesFirst we present a deterministic strategy for constructing ring algorithms.Algorithm RING: Let P , P 6= s, be the point on the ring satisfying l(s; P) = l(P; s), i.e., Pis the point \opposite" to s. The algorithm �rst cuts the ring at P . It regards the resultingstructure as a tree T with root s = v1. The arc (s; P) represents one branch of the tree andthe arc (P; s) represents another branch of the tree (see Figure 1). We assume that the point Pbecomes part of the arc (s; P). This is signi�cant if P coincides with one of the processor nodesvi. The algorithm RING then uses an on-line replication algorithm A for trees in order to servea request sequence �. That is, RING assumes that � is a request sequence for T and serves therequest sequence using the tree algorithm A..ss = v1sP - @@@@@@@@�������� s = v1s PsFig. 1: A cut of the ringTheorem 4 Let A be an on-line replication algorithm that is c-competitive for an arbitrary tree.If the algorithm RING uses A as tree algorithm, then the resulting algorithm is 2c-competitive.(If A is a randomized on-line algorithm, then the competitive ratio of 2c holds against anyoblivious adversary.)Before we prove this theorem, we mention some important implications. Theorem 1 imme-diately implies the following result.Corollary 3 If RING uses the algorithm GEOMETRIC as the tree algorithm, then the resultingalgorithm is c-competitive against any oblivious adversary, where c = 2�r�r�1 :We observe that c goes to 2ee�1 � 3:16 as r tends to in�nity. Also note that if RING uses theGEOMETRIC algorithm, then only one random number is used during an initialization phase.Next we consider the deterministic replication algorithm for trees proposed by Black andSleator [6]. The algorithm achieves an optimal competitive ratio of 2.Algorithm DETERMINISTIC COUNT: The algorithm works in the same way as the algo-rithm GEOMETRIC. However DETERMINISTIC COUNT does not choose a random numberin order to determine when a replication should occur. Rather it replicates the page to the childnode of an edge when the corresponding count reaches r.Corollary 4 If the algorithm RING uses DETERMINISTIC COUNT as the tree algorithm,then the resulting algorithm is 4-competitive. 11

We remark that the combination of RING and DETERMINISTIC COUNT is a complete de-terministic on-line algorithm.Theorem 4 and Theorem 3 imply the following result.Corollary 5 If RING uses the algorithm COINFLIP as tree algorithm, then the resulting algo-rithm is 4-competitive against any oblivious adversary.Note that the combination of RING and COINFLIP is memoryless.Next we present a randomized variant of the algorithm RING and a statement analogous toTheorem 4.Algorithm RING(RANDOM): The algorithm works in the same as the algorithm RING.However, instead of cutting the ring at the point opposite to s, the algorithm RING(RANDOM)chooses a point P uniformly at random on the ring and cuts the ring at that point P .Theorem 5 Let A be an on-line replication algorithm that is c-competitive for an arbitrarytree. If the algorithm RING(RANDOM) uses A as tree algorithm, then the resulting algorithmis 2c-competitive against any oblivious adversary.Theorem 5 implies that if the cutting point P is chosen randomly, the same competitive per-formance is obtained as if the cutting point is chosen deterministically to be the point opposite tos. Therefore, statements analogous to Corollaries 3 - 5 hold. Note, however, that a combinationof RING(RANDOM) and DETERMINISTIC COUNT is not a purely deterministic algorithm.It remains to prove the above theorems. In the following we present a detailed proof ofTheorem 4. Since Theorem 5 is an interesting statement but does not yield stronger resultsthan Theorem 4, we omit a proof of Theorem 5. The proof of Theorem 5 is similar to that ofTheorem 4.Proof of Theorem 4: Let � be a request sequence for the ring. We start with some observationson how the optimal o�-line algorithm OPT serves �. Consider the state of the ring after OPThas served �. Let ua and ub be the nodes farthest from s to which OPT has replicated the pagein clockwise and counter-clockwise direction, respectively. Figure 2(a) illustrates this situation.We may assume without loss of generality that OPT replicates the page from s to ua and froms to ub at the beginning of the request sequence, before any requests are served. This does notincur a higher cost as if the replication is done while requests are processed..sssub sua(a)Fig. 2. ...sssub sua(b)sQAny request at a node that belongs to (s; ua) or (ub; s) can then be served at zero cost. LetQ be the point on (ua; ub) which satis�es l(ua; Q) = l(Q; ub), see Figure 2(b). Any request at a12

node v that belongs to (ua; Q) is served by accessing ua and the incurred cost equals l(ua; v).Any request at a node v that belongs to (Q; ub) is served by accessing ub, and the incurred costequals l(v; ub).Let CR(�) be the cost incurred by RING in serving �. Furthermore, let T be the tree thatis obtained if the ring is cut at point P ..sssub sua sP(a)Fig. 3. ...ss suasubsP(b)Case 1: Suppose that P belongs either to (s; ua) or to (ub; s), see Figure 3.Let TOPT be the o�-line algorithm that serves � optimally, i.e. with minimal cost, on the treeT . By assumption, since the tree algorithm A is c-competitive, CR(�) � c � CTOPT(�). Also,CTOPT(�) � 2r � l(s; P): Since COPT (�) � r � l(s; P), we obtainCR(�) � c � CTOPT(�) � 2cr � l(s; P) � 2c � COPT (�)and the theorem is proved.Case 2: Now suppose that P belongs neither to (s; ua) nor to (ub; s).We only consider the case that l(s; ua) � l(ub; s). The case l(ub; s) � l(s; ua) is symmetric.Now, let TOPT be the algorithm that �rst replicates the page from s to ua and from s to ubin clockwise and counter-clockwise direction, respectively, and then serves the request sequenceas follows. Any request at a node v that belongs to (ua; P) is served by accessing ua, and anyrequest at a node v that belongs to (P; ub), v 6= P , is served by accessing ub. Since both RINGand TOPT use T as underlying tree and since tree algorithm A is c-competitive, we haveCR(�) � c �CTOPT (�):In the following we will show that CTOPT(�) � 2 � COPT (�): (5)This implies the theorem. ...sssub suasQ sPFig. 4.13

We compare the cost incurred by TOPT and OPT. Note that only requests at nodes on(P;Q) are served in di�erent ways by TOPT and OPT. For each request on (P;Q), TOPTincurs a cost that is by at most 2l(P;Q) greater than the cost incurred by OPT. There occur atmost r requests on (P;Q), since otherwise OPT would have replicated the page from ua beyondP . Thus CTOPT(�) � COPT (�) + r � 2l(P;Q):We have l(P;Q) = 12(l(s; ua)� l(ub; s)) � 12l(s; ua). Thus,CTOPT (�) � COPT (�) + r � l(s; ua) � 2 � COPT (�)and (5) is proved. 25.2 A randomized algorithm against adaptive adversariesWe present an on-line replication algorithm that is 4-competitive against any adaptive on-lineadversary. This algorithm has the additional advantage of being memoryless. The replicationstrategy used by the algorithm is motivated by the HARMONIC k-server algorithm [10].Algorithm HARM-RING: If there is a request at a node with the page, then the algorithmperforms no action. If there is a request at a node v without the page, then let wa and wb be thenodes farthest from s to which HARM-RING has replicated the page in clockwise and counter-clockwise direction, respectively. With probability l(wa;v)l(wa;wb) the algorithm serves the request byaccessing wb, and with probability l(v;wb)l(wa;wb) the algorithm serves the request by accessing wa.Then with probability 1r , HARM-RING replicates the page to v from the node that was actuallyaccessed during the service of the request.Theorem 6 The algorithm HARM-RING is 4-competitive against any adaptive on-line adver-sary.Proof: For any request sequence � generated by an adaptive on-line adversary, we comparesimultaneous runs of HARM-RING and ADV on �. As in the proof of Theorem 3, the actions ofHARM-RING and ADV can be classi�ed into two types of events. (Type I) ADV replicates thepage. (Type II) A request is served by HARM-RING and ADV; this event may be accompaniedby HARM-RING replicating the page to the requesting node. As before, we will give a non-negative potential function �, that is initially 0, so thatE[�CHR] + E[��] � 4 ��CADV (6)for all events. This implies the theorem. Here �CHR and �CADV denote the cost incurred byHARM-RING and ADV during the event; �� is the change in potential.We de�ne the potential function. At any given time, let ua and ub be the nodes farthestfrom s to which ADV has replicated the page in clockwise and counter-clockwise direction,respectively. Recall that wa and wb are the nodes farthest from s to which HARM-RING hasreplicated the page. Let� = 4rmaxf0; l(s; ua)� l(s; wa)g+ 4rmaxf0; l(ub; s)� l(wb; s)g:14

Intuitively, � is the length of the range of the ring at which ADV has the page but HARM-RINGhas not. We will show (6) for all events.(Type I) ADV replicates the page.Suppose that the page is replicated from node u to node v. Assume without loss of generalitythat the page is replicated in clockwise direction, i.e., the arc (s; ua) is extended. The casethat the arc (ub; s) is extended is analogous. We have �CADV = rl(u; v) and �CHR = 0. Wemust show E[��] � 4rl(u; v). If neither node u nor v has the page in the ring maintained byHARM-RING, then �� = 4rl(u; v). Otherwise �� � 4rl(u; v). Inequality (6) holds.(Type II) A request is served by HARM-RING and ADV.Let v be the node requesting the page. If v has the page in the ring maintained by HARM-RING,then �CHR = 0, �CADV � 0 and �� = 0 because HARM-RING does not replicate the page.Inequality (6) is satis�ed. In the remainder we assume that v does not have the page in the ringmaintained by HARM-RING, i.e., v lies on the arc (wa; wb) and wa 6= v 6= wb. ThenE[�CHR] = l(v; wb)l(wa; wb)(l(wa; v) + 1rrl(wa; v)) + l(wa; v)l(wa; wb)(l(v; wb) + 1r rl(v; wb))= 4 l(wa; v) � l(v; wb)l(wa; wb) :We may assume without loss of generality that in the ring maintained by ADV, v lies on thearc (s; ua) or ADV serves the request by accessing ua. The case that v lies on the arc (ub; s)or that ADV serves the request by accessing ub is symmetric. For the evaluation of E[��] and�CADV we investigate three cases regarding the relative positions of ua; wa and v, as illustratedin Figure 5.We introduce an ordering on the nodes of the ring such that for two nodes x; y:x < y if l(s; x) < l(s; y):...sssua swas v(1) ...ss suaswas v(2) ...ss suaswas v(3)Fig. 5: Three case regarding the locations of ua, wa, and vCase 1: Suppose that wa < v � ua.We have �CADV = 0. The change in potential is �4rl(wa; v) if HARM-RING replicates the pagefrom wa to v. If HARM-RING replicates the page from wb to v, then the change in potential isnon-positive. ThusE[��] � 1r l(v; wb)l(wa; wb)(�4rl(wa; v)) = �4 l(wa; v) � l(v; wb)l(wa; wb) = �E[�CHR]15

and (6) holds.Case 2: Suppose that wa � ua < v.In this case �CADV = l(ua; v). If HARM-RING replicates the page from wa to v, then thepotential change is �4rl(wa; ua). Again, if HARM-RING replicated the page from wb to v, thenthe change in potential is non-positive. ThereforeE[��] � 1r l(v; wb)l(wa; wb)(�4rl(wa; ua)) = �4 l(wa; ua) � l(v; wb)l(wa; wb) :We obtain E[�CHR] + E[��] � 4 l(ua; v) � l(v; wb)l(wa; wb) � 4l(ua; v) = 4�CADV :The second inequality holds because l(v;wb)l(wa;wb) � 1. Inequality (6) is satis�ed.Case 3: Suppose that ua < wa < v. Here �CADV = l(ua; v) and �� � 0. We haveE[�CHR] = 4 l(wa; v) � l(v; wb)l(wa; wb) � 4l(wa; v) � 4l(ua; v) = 4�CADV :As before, the �rst inequality follows from the fact that l(v;wb)l(wa;wb) � 1. Again, Eq. (6) holds. 26 Conclusion and open problemsWe have investigated the page replication problem for important network topologies such astrees, uniform networks and rings. For these topologies we have developed deterministic andrandomized on-line algorithms that achieve a constant competitive ratio. Our randomized algo-rithms for trees and uniform networks achieve the best possible competitive ratios. While thecompetitiveness achieved by deterministic and randomized algorithms is settled for trees anduniform networks, a number of open problems remain with respect to the ring topology. Oneinteresting problem is to tighten the gap for deterministic algorithms. We have presented a 4-competitive deterministic replication algorithm. Black and Sleator [6] mention (without proof)that no deterministic on-line algorithm for rings can be better than 52-competitive. Moreover,no lower bounds are known on the competitiveness achieved by randomized on-line algorithmson rings. An interesting problem is to develop lower or improved upper bounds for rings.This paper (and almost all other related previous work) studies the page replication underthe assumption that the local memories of the processors have in�nite memory capacity. Thatis, whenever an algorithm wants to replicate a given page into the local memory of a processor,there is room for it; no other page needs to be dropped. An important problem is to study thepage replication under the assumption that the local memories have bounded capacity. Bartal etal. [4] showed that in this model, no on-line replication algorithm in any topology can be betterthan
(m)-competitive, where m is the total number of pages that can be stored in the network.They also gave an O(m)-competitive algorithm for uniform networks. One approach to overcomethe �(m) bound might be to consider special memory types. Albers and Koga [1] studied thepage migration problem for direct-mapped memories, i.e., the processors use a hash functionin order to locate pages in their local memories. Awerbuch et al. [3] investigated distributedpaging problems when an on-line algorithm has slightly more memory capacity than the o�-linealgorithm. 16

Topology ProblemRing Determine the competitive ratios c achieved bydeterministic and randomized on-line algorithms.Best bounds known for{ det. alg.: 2:5 � c � 4{ rand. alg. against oblivious adv.: c � 3:16{ rand. alg. against adaptive on-line adv.: c � 4Arbitrary Find memory models for which on-line algorithmswith a competitive ratio of o(m) can be developed.Table 1: Summary of open problemsReferences[1] S. Albers and H. Koga. Page migration with limited local memory capacity. In Proc. 4thInternational Workshop on Algorithms and Data Structures (WADS95), Springer LNCS,Vol. 955, pages 147{158, 1995.[2] B. Awerbuch, Y. Bartal and A. Fiat. Competitive distributed �le allocation. In Proc. 25thAnnual ACM Symposium on Theory of Computing, pages 164{173, 1993.[3] B. Awerbuch, Y. Bartal and A. Fiat. Distributed paging for general networks. In Proc. 7thAnnual ACM-SIAM Symposium on Discrete Algorithms, pages 574{538, 1996.[4] Y. Bartal, A. Fiat and Y. Rabani. Competitive algorithms for distributed data management.In Proc. 24th Annual ACM Symposium on Theory of Computing, pages 39{50, 1992.[5] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos and A. Wigderson. On the power ofrandomization in on-line algorithms. Algorithmica, 11(1):2{14, 1994.[6] D.L. Black and D.D. Sleator. Competitive algorithms for replication and migration prob-lems. Technical Report Carnegie Mellon University, CMU-CS-89-201, 1989.[7] M. Chrobak, L.L. Larmore, N. Reingold and J. Westbrook. Page migration algorithmsusing work functions. In Proc. 4th International Annual Symposium on Algorithms andComputation, Springer LNCS Vol. 762, pages 406{415, 1993.[8] D. Downey and D. Foster. Comparative models of the �le assignment problem. ComputingSurveys, 14(2):287{313, 1982.[9] C. Lund, N. Reingold, J. Westbrook and D. Yan. On-line distributed data management. InProc. of the 2nd Annual European Symposium on Algorithms, Springer LNCS Vol. 855,pages 202{214, 1994.[10] P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms. In Proc.16th International Colloquium on Automata, Languages and Progamming, Springer LNCSVol. 372, pages 687{703, 1989. 17

[11] C. Scheurich and M. Dubois. Dynamic page migration in multiprocessors with distributedglobal memory. IEEE Transactions on Computers, 38(8):1154{1163, 1989.[12] D.D. Sleator and R.E. Tarjan. Amortized e�ciency of list update and paging rules. Com-munication of the ACM, 28:202{208, 1985.[13] J. Westbrook. Randomized algorithms for the multiprocessor page migration. SIAM Journalon Computing, 23:951{965, 1994.

18

