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Abstract

We present improved competitive on-line algorithms for the page replication problem and
concentrate on important network topologies for which algorithms with a constant compet-
itive ratio can be given. We develop an optimal randomized on-line replication algorithm
for trees and uniform networks; its competitive ratio is approximately 1.58. This perfor-
mance holds against oblivious adversaries. We also give a randomized memoryless replica-
tion algorithm for trees and uniform networks that is 2-competitive against adaptive on-line
adversaries. Furthermore we consider on-line replication algorithms for rings and present
general techniques that transform c-competitive algorithms for trees into 2e-competitive al-
gorithms for rings. As a result we obtain a randomized on-line algorithm for rings that is
3.16-competitive. We also derive two 4-competitive on-line algorithms for rings which are
either deterministic or randomized and memoryless. Again, the randomized results hold
against oblivious adversaries. Apart from these techniques, we finally give a randomized
memoryless replication algorithm for rings that is 4-competitive against adaptive on-line
adversaries.

1 Introduction

This paper deals with problems that arise in the memory management of large multiprocessor
systems. Such multiprocessing environments typically consist of a network of processors, each
of which has its local memory. A global shared memory is modeled by distributing the physical
pages among the local memories. Accesses to the global memory are accomplished by accessing
the local memories. Suppose a processor p wants to read a memory address from page B. If B
is stored in p’s local memory, then this read operation can be accomplished locally. Otherwise,
p determines a processor ¢ holding the page and sends a request to ¢q. The desired information
is then transmitted from ¢ to p, and the communication cost incurred thereby is proportional to
the distance from ¢ to p. If p has to access page B frequently, it may be worthwhile to move or
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copy B from ¢ to p because subsequent accesses will become cheaper. However, transmitting an
entire page incurs a high communication cost proportional to the page size times the distance
from ¢ to p.

If a page is writable, it is reasonable to store only one copy of the page in the entire system.
This avoids the problem of keeping multiple copies of the page consistent. The migration problem
is to decide in which local memory the single copy of the writable page should be stored so that
a sequence of memory accesses can be processed at low cost. On the other hand, if a page is
read-only, it is possible to keep several copies of the page in the system, i.e., a page may be
copied from one local memory to another. In the replication problem we have to determine
which local memories should contain copies of the read-only page. Finding efficient migration
and replication strategies is an important problem that has been studied from a practical and
theoretical point of view [2, 4, 6, 7, 8, 11, 13]. In this paper we study on-line algorithms for the
page replication problem. We analyze the performance of on-line algorithms using competitive
analysis [12], the worst case ratio of the cost incurred by an on-line algorithm and the cost
incurred by an optimal off-line algorithm.

Awerbuch et al. [2] presented a deterministic on-line replication strategy for general graphs
that achieves an optimal competitive ratio of ©(log n), where n is the number of processors. How-
ever, for many important topologies, this bound is not very expressive. Black and Sleator [6],
who initiated the theoretical study of the replication problem, proposed a 2-competitive deter-
ministic on-line algorithm for trees and uniform networks. A uniform network is a complete
graph in which all edges have the same length. Black and Sleator also proved that no determin-
istic on-line replication algorithm can be better than 2-competitive. Bartal et al. [4] presented
a randomized 2(2 4 v/3)-competitive replication algorithm against adaptive on-line adversaries
for the case that the network topology forms a ring. We note that 2(2 ++/3) ~ 7.5. Using the
22+ \/g)—competitive algorithm by Bartal et al., one can construct a deterministic replication
algorithm for the ring that achieves a competitive ratio of 2%(2 ++1/3)2 & 55.7, see [5]. However,
that algorithm is very complicated and not useful in practical applications.

In this paper we develop a number of new deterministic and randomized on-line replication
algorithms. We concentrate on network topologies that are important in practice and for which
on-line algorithms with a constant competitive ratio can be developed. In Section 4.1 we present

a randomized on-line replication algorithm for trees and uniform networks, called GEOMETRIC,
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r

which is ( 2l )-competitive against oblivious adversaries. Here p = and r is the page

pr—1
size factor. For large values of r, which occur in practice, GEOMETRIC’s competitiveness is
approximately —= ~ 1.58. We also show that GEOMETRIC is optimal. Specifically we prove

that no randomized on-line replication algorithm can be better than (pf—:l)—competitive against

oblivious adversaries. Interestingly, our algorithm GEOMETRIC uses only one random number
during an initialization phase and runs completely deterministically thereafter. Lund et al. [9]
have independently developed the same results for trees and uniform networks using a different
approach. Moreover, we give a randomized memoryless on-line replication algorithm for trees
and uniform networks that is 2-competitive against adaptive on-line adversaries. This is the
best competitiveness that can be achieved against adaptive on-line adversaries.

In Section 5 we consider replication algorithms for rings. We present a deterministic tech-
nique that transforms c-competitive algorithms for trees into 2c-competitive algorithms for rings.



Combining this technique with the algorithm GEOMETRIC, we obtain a randomized algorithm
2 T
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algorithms for rings which are either deterministic or randomized and memoryless. The ran-

for rings that achieves a competitive ratio of ( ) &~ 3.16. We also derive two 4-competitive
domized performances hold against oblivious adversaries. Our 4-competitive deterministic al-
gorithm is very simple and greatly improves the competitive ratio of 55.7 mentioned above.
We also present a randomized version of our deterministic technique for constructing ring algo-
rithms; this variant achieves the same performance. Finally, using an approach different from
the above technique, we develop a randomized memoryless replication algorithm for rings that
is 4-competitive against adaptive on-line adversaries.

2 Problem statement and competitive analysis

Formally, the page replication problem can be described as follows. We are given an undirected
graph . Each node in G corresponds to a processor and the edges represent the interconnec-
tion network. Associated with each edge is a length that is equal to the distance between the
connected processors. We assume that the edge lengths satisfy the triangle inequality. In the
page replication problem we generally concentrate on one particular page. We say that a node
v has the page if the page is contained in v’s local memory. A request at a node v occurs if v
wants to read an address from the page. The request can be satisfied at zero cost if v has the
page. Otherwise the request is served by accessing a node w holding the page and the incurred
cost equals the distance from v to w. After the request is satisfied, the page may be replicated
from node w to any other node v’ that does not hold the page (node v’ may coincide with node
v). The cost incurred by this replication is r times the distance from w to v’. Here r denotes
the page size factor. In practical applications, r is a large value, usually several hundred or
thousand. (The page may only be replicated after a request because it is impossible to delay
the service of the memory access while the entire page is copied.) We study the page replication
problem under the assumption that a node having the page never drops it. A page replication
algorithm is usually presented with an entire sequence of requests that must be served with low
total cost. A page replication algorithm is on-line if it serves every request without knowledge
of any future requests.

We analyze the performance of on-line page replication algorithms using competitive analysis
[12]. In a competitive analysis, the cost incurred by an on-line algorithm is compared to the
cost incurred by an optimal off-line algorithm. An optimal off-line algorithm knows the entire
request sequence in advance and can serve it with minimum cost. Let C'4(c) and Copr(c) be
the cost of the on-line algorithm A and the optimal off-line algorithm OPT on a request sequence
o. Usually an on-line algorithm is called c-competitive if there exists a constant e such that
Ca(o) < c¢-Copr(o)+a holds for every request sequence. Note, however, that if the constant a
depends on r and the number of processors in the network, then an on-line replication algorithm
can be 0-competitive by replicating the page initially to all processors and assigning the total
cost of initial replications to a. On the other hand, if ¢ does not depend on r, an additive
constant cannot reduce the competitiveness of an on-line replication algorithm because r can be
large relative to the cost of serving a number of accesses. Therefore, we use a stronger definition.



We call an on-line replication algorithm e-competitive if
Ca(o) < c-Copr(o)

for all request sequences o. If A is a randomized algorithm, then C'4(o) must be replaced by the
expected cost incurred by A, where the expectation is taken over the random choices made by
A. In this paper we evaluate randomized on-line algorithms only against oblivious and adaptive
on-line adversaries, see [5] for details. An oblivious adversary has to generate a request sequence
in advance and is not allowed to see the random choices made by the on-line algorithm. An
adaptive on-line adversary may see the random choices made by the on-line algorithm, i.e., when
generating a new request the adversary can see all the on-line algorithm’s random choices on
past requests. However, an adaptive on-line adversary also has to serve the request sequence
on-line.

3 Basic definitions and techniques

Before describing our new algorithms in the following sections, we introduce some basic defini-
tions for trees. These will be useful throughout the paper, since, even when considering uniform
networks or rings, we will often reduce the algorithms and their analyses to the case that the
underlying topology forms a tree.

The root of the given tree is generally denoted by s. We assume that initially, only s has the
page. Consider an undirected edge e = {v,w} in the tree. The node in {v,w} that is farther
away from the root is called the child node of e. The length of e is denoted by I(e). Given two
nodes u and v in the tree, let {(u, v) denote the length of the (unique) path from u to v.

In the following we will always assume that if an algorithm (on-line or off-line) replicates
the page from a node w to a node v, then the page is also replicated to all nodes on the path
from w to v. This does not incur extra cost. Thus, the nodes with the page always form a
connected component of the given tree. Note that if a node v does not have the page, then the
closest node w with the page lies on the path from v to the root, and all paths from v to a
node with the page pass through w. Therefore, we may assume without loss of generality that
a replication algorithm always serves requests at a node not holding the page by accessing the
closest node with the page. This cannot increase the total cost incurred in serving the whole
request sequence.

We present a technique that we will frequently use to analyze on-line replication algorithms
for trees. Let T be a tree and o be a request sequence for T'. We usually analyze an on-line
replication algorithm A by partitioning the costs that are incurred by A and by OPT into parts
that are incurred by each edge of the tree. Suppose an algorithm serves a request at a node
v. Then an edge e incurs a cost equal to the length of e if e belongs to the path from v to the
closest node with the page. If e does not belong to that path, then e incurs a cost of zero. An
edge also incurs the cost of a replication across it. Let C'4(0o, €) denote the cost that is incurred
by edge e when A serves o. Analogously, let Copr(0o,€) be the cost that is incurred by e when
OPT serves o. (If A is a randomized algorithm, then C4(0,€) is the expected cost incurred by
e.) The performance of an on-line algorithm A is generally evaluated by comparing C'4(o,€) to



Copr(o,e€) for all edges e of the tree. In order to analyze C4(o, €), we introduce some notation.
Let 0 = o(1),0(2),...,0(m) be a request sequence of length m and let o(t), 1 <t < m, be the
request at time ¢. Suppose o(t) is a request at node v. We set

a,(e,t) =1
if e belongs to the path from v to the root. Otherwise we set
as(e,t) =0.

If a,(e,t) = 1, we say that o(t) causes an access at edge e. Let

a,(e) = in:ag(e, t),

i.e., a,(e) is the number of requests that cause an access at edge e. The following simple lemma
is crucial in our analyses.

Lemma 1 Let A be an on-line replication algorithm that, given an arbitrary tree T and a request
sequence o for T, satisfies

Ca(o,e) < c-minfa,(e),r}-I(e) (1)

for all edges e. Then the algorithm A is c-competitive. (If A is a randomized algorithm, then
Ca(o,e) is the expected cost incurred by e and the competitive ratio of ¢ holds against any
oblivious adversary.)

Proof: We prove that for any edge e, Copr(o, €) = min{a,(e),r}-l(e). By Eq. (1), this implies
Ca(o,e) < ¢-Copr(o,e) for all edges e, and hence A is c-competitive. If a,(e) < r, then
OPT does not replicate the page across e and e incurs a cost of a,(e)l(e). Hence Copr(o,e) =
as(€) - l(e) = min{a,(e),r}(e). On the other hand, if a,(e) > r, then OPT replicates the
page across e immediately, before serving any requests, and e incurs a cost of ri(e). Thus
Copr(o,e) =r-l(e) = min{a,(e), r}(e). O

4 Algorithms for trees and uniform networks

First, in Section 4.1, we describe and analyze two randomized on-line algorithms for trees. The
first of these algorithms achieves an optimal competitive ratio against any oblivious adversary.
We also give an algorithm that is competitive against any adaptive on-line adversary. In Sec-
tion 4.2 we demonstrate that both our algorithms can be easily applied to uniform networks,

while maintaining their competitive performance. Throughout this section let p = #

4.1 Trees

Algorithm GEOMETRIC (for trees): The algorithm first chooses a random number from

the set {1,2,...,r}. Specifically, the number i is chosen with probability p; = a - p'~!, where
o = ppr__ll. While processing the request sequence, the algorithm maintains a count on each



edge of the tree. Initially, all counts are set to 0. If there is a request at a node v that does
not have the page, then all counts along the path from v to the closest node with the page are
incremented by 1. When a count reaches the value of the randomly chosen number, the page is
replicated to the child node of the corresponding edge.

Before we analyze the performance of GEOMETRIC, we mention a few observations and
remarks. The algorithm is called GEOMETRIC because p;yi/p; = p is constant for all i =
1,2,...,r = 1. It is easy to verify that > :_; p; = 1. Suppose that GEOMETRIC processes a
request sequence o. We can easily prove by induction on the number of requests processed so far
that the counts on a path from the root to a node v are always monotonically non-increasing.
Furthermore, after each request, a node (except for the root s) has the page if and only if it is
the child node of an edge whose count is equal to the value of the randomly chosen number.

Theorem 1 For any tree, the algorithm GEOMFETRIC is (pf—:l)-competitive against any obliv-

ious adversary.

Note that pf:l goes to 55 ~ 1.58 as r tends to infinity. Furthermore, GEOMETRIC uses

only one random number during an initialization phase and runs completely deterministically
thereafter.

Proof: Consider an arbitrary tree 7" and a request sequence o for T. Let e be an edge of the
tree and let E[C¢(o, €)] denote the expected cost incurred by edge e when GEOMETRIC serves
o. We will show that

r

FlColo, )] < (=) - min{as(e), 7} - 1(e) 2)

for any edge e of T'. Lemma 1 implies the theorem.

Let k = a,(e) and o(t1),0(t2),...,0(t;x) be the requests in o that cause an access at the
edge e. Note that the algorithm GEOMETRIC increases the count of e exactly at the requests
o(t1),0(ta),...,o(tr), provided that the page has not been replicated across e so far.

First, assume that & > r. Since >"i_; p; = 1, GEOMETRIC has replicated the page across
e before the request o(f,41). Thus the edge e incurs the same cost as if we had k = r. For this
reason it suffices to consider the case that k satisfies 1 < k < r and show F[Cg(0o,€)] < c-k-l(e),

where ¢ = —f—. This proves (2).

So suppose we have 1 < k < r. The algorithm GEOMETRIC first chooses a random number
i from the set {1,2,...,r}. If i satisfies ¢ < k, the edge e incurs a cost of r 4 i. Otherwise e
incurs a cost of k. Thus

k r
E[Cq(o,e)] = Ue)Q_(r+api+ Y kp)
=1 1=k+1
k k r
= l(e)(z roepi_l —I—Zioepi_l + Z koepi_l)
=1 =1 1=k+1
ey =) ke = (ke 1 k(e - ph)
= )=, ot (p—1)2 PESE



We have p— 1= % Thus

ElCato,l] = SH00( ~ 1)+ kot = (o = 1)+ kG = )
= )
pT’
— pr_l-k-l(e).D

We now prove that GEOMETRIC’s competitive ratio is optimal for all values of r.

Theorem 2 Let A be a randomized on-line replication algorithm. Then A cannot be better than

(pf:l)-competitive against any oblivious adversary, even on a graph consisting of two nodes.

Proof: Let s and t be two nodes connected by an edge of length 1. We assume that initially,
only node s has the page. We will construct a request sequence ¢ consisting of requests at node

For:=1,2,..., let ¢; be the probability that A replicates the page from s to t after exactly
1 requests, given a request sequence that consists only of requests at node ¢. In the following we
compare the algorithm A to the algorithm GEOMETRIC. Let E[C4(0)] and E[Cg(o)] denote
the expected cost incurred by A and GEOMETRIC on a request sequence o. Furthermore, for
i=1,2,...,7, let p; = o p'~1. We consider two cases.

Case 1: There exists an [, where 1 < [ < r, such that Y\, ¢ > S0, pi.

Let k£ be the smallest number satisfying the above inequality, i.e., ZZ 1G> ZZ 1 pi and
ZZ 14 < ZZ 1 pi for all j with 1 < j < k. Let o be the request sequence that consists of
k requests at node t. We show that the inequality E[C4(0)]— [Cg( )] > 0 holds. This implies
E[C4(0)] > ElCg(o)] = -k and A cannot be better than (f=

optimal off-line cost on & equals k. Since, with probability 1 — lel ¢;, A has not replicated the

)-competitive because the

page to t after the service of the request sequence o, we have

k k
FE[C4(0)] = Z(r +i)q + k(1 - qu)
Similarly, we also have
k k
F[Cq(0)] = Z(r +i)p; + k(1 — sz)
k k
Hence E[C4(0)] - Z (r— Z

1=1
Since 28 ;> % piand r—k > 0 we obtain

k k k k
EICA(0)] - FlCa(o)] > Y il = pi) = S2(Y 0 = Yo pa)-



; — — k k k k
Fori=2,3,...,k we have 2;211 q; < 2;211 pjand hence } i q; =3 7 pj > D imi 45— 2 =i Pjt
— — k k
SIh 45— T P = =1 45 — =1 Pj- We conclude

k
E[Ca(0)] = E[Cg(0)] > Z(Z q; — Zpy‘) >3O aq=> pi)>0.

; 7 7=t =1 j=1 7=1

k k k k
=1 5= =

Case 2: For all £ =1,2,...,r, the inequality Zle g; < Zle p; is satisfied.
Let o be the request sequence that consists of 2r requests at node ¢. Let A’ be the on-line
algorithm with ¢/ = ¢;, for i =1,2,...,r — 1, and ¢. =1 — " ¢;. Then

E[Ca(0)] = i(r—l—i)qﬁ-%(l—iqi) > Ti(r—l—i)qz'—l-%(l—riqi)
— Y l+idtad = FCalo)

Since >y ¢-=>"_1p; =1 and ijl q < Zle p; for all j with 1 < j < r, Case 1 immediately

K3

implies F[C'4(0)] > E[Ca(0)] > F[Cq(o)] = pf:l -1, and A cannot be better than (pf:l)—

competitive because the optimal off-line cost equals . O

Next we present another on-line replication algorithm for trees. This algorithm has the
advantage of being memoryless, i.e., it does not need any memory (for instance for counts) in
order to determine when a replication should take place. Also, its competitive performance
holds against adaptive on-line adversaries.

Algorithm COINFLIP (for trees): If there is a request at a node with the page, then the
algorithm performs no action. If there is a request at a node v without the page, the algorithm
serves the request by accessing the closest node u with the page. Then with probability %, the
algorithm replicates the page from u to v.

Theorem 3 The algorithm COINFLIP is 2-competitive against any adaptive on-line adversary.

Proof: We use a potential function ® to analyze COINFLIP. For any request sequence o
generated by an adaptive on-line adversary ADV, we compare simultaneous runs of COINFLIP
and ADV on ¢ by merging the actions of both algorithms into a single sequence of events. This
sequence contains two types of events: (Type I) ADV replicates the page. (Type Il) A request
is served by COINFLIP and ADYV; this event may be accompanied by COINFLIP replicating
the page to the requesting node.

For any event, let ACcr and AC4py denote the costs incurred by COINFLIP and ADV
during the event, and let A® denote the change in potential. We will show that for any event,

E[ACCF] + E[A(I)] <2AC4py. (3)
Summing up this inequality for all events, we obtain

ElCcr(o)]+ E[®epnd] — E[Pstard] < 2Capv(o), (4)



where @+ and ®.,4 denote the initial and final potential. Since we will choose the potential
function such that & is always non-negative and such that the initial potential is 0, (4) implies
that COINFLIP is 2-competitive.

We define the potential function. Let IV be the set of edges e in the tree T' such that ADV
has replicated the page to the child node of e but COINFLIP has not replicated the page to the
child node. Let

¢ =2r Z l(e).
ecel
In the following we prove (3) for all events. Let ch(F£) denote the set of the child nodes of all
edges contained in F.

Type I: ADV replicates the page.

Suppose that the page is replicated from node u to node v (and to all nodes along the path from
u to v). Then AC pyv = rl(u,v) and ACcr = 0. Thus we must show A® < 2rl(u,v). There
are two cases to consider depending of whether v € ch(F) after the replication.

Case 1: v ¢ ch(F) after the replication.

Then A® = 0.

Case 2: v € ch(F) after the replication.

If u was in ch(F) before the replication, then A® = 2rl(u,v). Otherwise A® < 2rl(u,v).

Type II: A request is served by COINFLIP and ADV.

Let v be the node at which the request occurs. We have to consider two cases.

Case 1: In the tree maintained by COINFLIP, node v already has the page.

Then ACeor = 0 and AC4py > 0. Also A® = 0 because COINFLIP does not replicate the
page. Inequality (3) is satisfied.

Case 2: In the tree maintained by COINFLIP, node v does not have the page.

Let wcr be the node closest to v in the tree to which COINFLIP has replicated the page.
Recall that ucp lies on the path from v to the root. COINFLIP incurs a cost of l(ucp,v)
in serving the request. Then with probability %, COINFLIP also replicates the page from
ucp to v. Therefore E[ACcr] = l(ucr,v) + %rl(u(;F,v) = 2l(ucp,v). For the evaluation
of AC 4pv, we have to consider three cases, depending on ADV’s configuration of nodes with
the page. First suppose that ADV has not replicated the page beyond ucp when the request
occurs. Then ACupv > l(ucr,v) = %E[ACCF]. Note that F[A®] = 0 because ® does
not change regardless of whether COINFLIP replicates the page or not. Inequality (3) holds.
Next imagine that ADV has replicated the page beyond ucp but not beyond v. Let wapy
be the node closest to v to which ADV has replicated the page. Then ACapy = l(uapv,v).
We have to show that the expected change in potential is F[A®] = —2l(ucp,uapy). This
implies F[ACcr] + E[A®] = 2l(ucr,v) — 2l(ucr,uapv) = 2l(uapv,v) = 2AC4py. We have
A® = 0 if COINFLIP does not replicate the page; otherwise A® = —2r{(ucp,uapv). Hence
E[A®] = %(—er(u(;F,uADV)) = —2l(ucr,uapy). Finally, suppose that ADV has replicated
the page beyond v. In this case AC4py = 0. If COINFLIP does not replicate the page, then
A® = 0. Otherwise A® = —2rl(ucp, v). Therefore, E[A®] = L(=2rl(ucp,v)) = =2l(ucr,v) =
—FE[ACcF]. Inequality (3) holds. O

The COINFLIP algorithm achieves the best possible performance. No randomized on-line
algorithm A can be better than 2-competitive against any adaptive on-line adversary, even on



a graph consisting of two nodes. This can be seen as follows. Consider two nodes s and ¢
connected by an edge of length 1 and assume that s has the page initially. An adaptive on-line
adversary issues requests at ¢ until A replicates the page to t. With probability %, the adversary
initially replicates the page to ¢, and with probability % it serves all the requests by accessing
s. Suppose that A replicates the page after k requests. Then A’s cost is k + r, whereas the
expected cost of the adversary is %(k + r). If A never replicates the page to ¢, then, by making
the request sequence sufficiently long, we can achieve a lower bound of 2 — ¢, for any € > 0.

4.2 Uniform networks

Any replication algorithm for trees can be easily applied to uniform networks. Consider an
arbitrary uniform network and let s be the node that has the page initially. Since all edges in
the graph have the same length, we may assume without loss of generality that a replication
algorithm (on-line or off-line) serves requests and replicates the page only along edges {s,v}.
Hence the network can be reduced to a tree by neglecting the edges {v, w} with v # s, w # s.
Run on this tree, any on-line algorithm for trees can maintain its competitive performance. The
results given in Section 4.1 imply the following corollaries.

Corollary 1 The algorithm GEFOMETRIC for uniform networks is (pf:l)-competitive against
any oblivious adversary. This is the best competitive ratio that a randomized on-line replication

algorithm can achieve against this type of adversary.

Corollary 2 The algorithm COINFLIP for uniform networks is 2-competitive against any adap-
tive on-line adversary. This is the best competitive ratio that a randomized on-line replication
algorithm can achieve against this type of adversary.

5 Algorithms for the ring

In this section we assume that the given net of processors forms a ring. First we will present
techniques that transform c-competitive algorithms for trees into 2¢-competitive algorithms for
rings. Using these techniques, we obtain a deterministic ring algorithm and randomized ring
algorithms that are competitive against any oblivious adversary. Then we will develop a random-
ized replication algorithm for rings that is competitive against any adaptive on-line adversary.

We assume that initially, only one node of the ring, say s, has the page. Let n be the number
of nodes in the ring and let vy, vq, ..., v, be the nodes if we scan the ring in clockwise direction
starting from s, i.e., vy = s. For i = 1,2,...,n, let ¢; = {v;, v;41} be the undirected edge from
v; to vi41. Naturally, v,41 equals vy. Again, for any edge e;, I(e;) is the length of e;. Let z and
y be any two points on the ring; x and y need not necessarily be processor nodes. We denote
by (,y) the arc of the ring that is obtained if we start in 2 and go to y in clockwise direction.
Let I(x,y) be the length of the arc (z,y).

10



5.1 General techniques

First we present a deterministic strategy for constructing ring algorithms.

Algorithm RING: Let P, P # s, be the point on the ring satisfying (s, P) = [(P, s), i.e., P
is the point “opposite” to s. The algorithm first cuts the ring at P. It regards the resulting
structure as a tree 7" with root s = vy. The arc (s, P) represents one branch of the tree and
the arc (P, s) represents another branch of the tree (see Figure 1). We assume that the point P
becomes part of the arc (s, P). This is significant if P coincides with one of the processor nodes
v;. The algorithm RING then uses an on-line replication algorithm A for trees in order to serve
a request sequence o. That is, RING assumes that ¢ is a request sequence for T and serves the
request sequence using the tree algorithm A.

s=1u sS=1U

Fig. 1: A cut of the ring

Theorem 4 Let A be an on-line replication algorithm that is c-competitive for an arbitrary tree.
If the algorithm RING uses A as tree algorithm, then the resulting algorithm is 2c-competitive.
(If A is a randomized on-line algorithm, then the competitive ratio of 2c¢ holds against any
oblivious adversary.)

Before we prove this theorem, we mention some important implications. Theorem 1 imme-
diately implies the following result.

Corollary 3 If RING uses the algorithm GEOMETRIC as the tree algorithm, then the resulting

. . .o, . . . T
algorithm is c-competitive against any oblivious adversary, where ¢ = pQT’)_l.

We observe that ¢ goes to 62_61 ~ 3.16 as r tends to infinity. Also note that if RING uses the
GEOMETRIC algorithm, then only one random number is used during an initialization phase.

Next we consider the deterministic replication algorithm for trees proposed by Black and
Sleator [6]. The algorithm achieves an optimal competitive ratio of 2.

Algorithm DETERMINISTIC_COUNT: The algorithm works in the same way as the algo-
rithm GEOMETRIC. However DETERMINISTIC_COUNT does not choose a random number
in order to determine when a replication should occur. Rather it replicates the page to the child
node of an edge when the corresponding count reaches r.

Corollary 4 If the algorithm RING uses DETERMINISTIC_.COUNT as the tree algorithm,
then the resulting algorithm is 4-competitive.

11



We remark that the combination of RING and DETERMINISTIC_COUNT is a complete de-
terministic on-line algorithm.

Theorem 4 and Theorem 3 imply the following result.

Corollary 5 If RING uses the algorithm COINFLIP as tree algorithm, then the resulting algo-
rithm is 4-competitive against any oblivious adversary.

Note that the combination of RING and COINFLIP is memoryless.

Next we present a randomized variant of the algorithm RING and a statement analogous to
Theorem 4.

Algorithm RING(RANDOM): The algorithm works in the same as the algorithm RING.
However, instead of cutting the ring at the point opposite to s, the algorithm RING(RANDOM)
chooses a point P uniformly at random on the ring and cuts the ring at that point P.

Theorem 5 Let A be an on-line replication algorithm that is c-competitive for an arbitrary
tree. If the algorithm RING(RANDOM) uses A as tree algorithm, then the resulting algorithm
is 2c-competitive against any oblivious adversary.

Theorem 5 implies that if the cutting point P is chosen randomly, the same competitive per-
formance is obtained as if the cutting point is chosen deterministically to be the point opposite to
s. Therefore, statements analogous to Corollaries 3 - 5 hold. Note, however, that a combination

of RING(RANDOM) and DETERMINISTIC_COUNT is not a purely deterministic algorithm.

It remains to prove the above theorems. In the following we present a detailed proof of
Theorem 4. Since Theorem 5 is an interesting statement but does not yield stronger results
than Theorem 4, we omit a proof of Theorem 5. The proof of Theorem 5 is similar to that of
Theorem 4.

Proof of Theorem 4: Let ¢ be a request sequence for the ring. We start with some observations
on how the optimal off-line algorithm OPT serves o. Consider the state of the ring after OPT
has served o. Let u, and uy be the nodes farthest from s to which OPT has replicated the page
in clockwise and counter-clockwise direction, respectively. Figure 2(a) illustrates this situation.
We may assume without loss of generality that OPT replicates the page from s to u, and from
s to up at the beginning of the request sequence, before any requests are served. This does not
incur a higher cost as if the replication is done while requests are processed.

s s
Up Up

Ug, Ug,

Q
Fig. 2. (a) (b)

Any request at a node that belongs to (s, us) or (up, s) can then be served at zero cost. Let
@) be the point on (u,, up) which satisfies [(uq, Q) = {(Q, up), see Figure 2(b). Any request at a

12



node v that belongs to (u,, Q) is served by accessing u, and the incurred cost equals [(u,,v).
Any request at a node v that belongs to (@, us) is served by accessing us, and the incurred cost
equals [(v, up).

Let CRr(o) be the cost incurred by RING in serving o. Furthermore, let 7" be the tree that
is obtained if the ring is cut at point P.

s s
Uup Ug,
ua
P r "
Fig. 3. (a) (b)

Case 1: Suppose that P belongs either to (s, u,) or to (us,s), see Figure 3.

Let TOPT be the off-line algorithm that serves o optimally, i.e. with minimal cost, on the tree
T. By assumption, since the tree algorithm A is c-competitive, Cr(o) < ¢ - Cropr(o). Also,
Cropr(c) < 2r-l(s, P). Since Copr(o) > r- (s, P), we obtain

Cr(o) <c-Cropr(o) <2cr-l(s, P) <2c-Copr(o)

and the theorem is proved.

Case 2: Now suppose that P belongs neither to (s, u,) nor to (up, s).

We only consider the case that (s, u,) > [(up,s). The case l[(up,s) > l(s,u,) is symmetric.
Now, let TOPT be the algorithm that first replicates the page from s to u, and from s to up
in clockwise and counter-clockwise direction, respectively, and then serves the request sequence
as follows. Any request at a node v that belongs to (ug, P) is served by accessing u,, and any
request at a node v that belongs to (P, uy), v # P, is served by accessing ;. Since both RING
and TOPT use T as underlying tree and since tree algorithm A is c-competitive, we have

Cr(o) < c-Cropr(0).

In the following we will show that

Cropr(o) <2-Copr(o). (5)
This implies the theorem.
s
up
ua
Qp
Fig. 4.
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We compare the cost incurred by TOPT and OPT. Note that only requests at nodes on
(P, Q) are served in different ways by TOPT and OPT. For each request on (P,Q), TOPT
incurs a cost that is by at most 2{(P, Q) greater than the cost incurred by OPT. There occur at
most r requests on (P, Q), since otherwise OPT would have replicated the page from u, beyond
P. Thus

Cropr(o) < Copr(o)+1-2l(P,Q).

We have [(P, Q) = £(I(s, ua) — I(us, s)) < 31(s,uq). Thus,
Cropr(o) < Copr(o) +r-1(s,u,) <2-Copr(o)

and (5) is proved. O

5.2 A randomized algorithm against adaptive adversaries

We present an on-line replication algorithm that is 4-competitive against any adaptive on-line
adversary. This algorithm has the additional advantage of being memoryless. The replication
strategy used by the algorithm is motivated by the HARMONIC k-server algorithm [10].

Algorithm HARM-RING: If there is a request at a node with the page, then the algorithm
performs no action. If there is a request at a node v without the page, then let w, and wy; be the
nodes farthest from s to which HARM-RING has replicated the page in clockwise and counter-
clockwise direction, respectively. With probability %% the algorithm serves the request by

1(v,wp)
l(wa,wp)

Then with probability %, HARM-RING replicates the page to v from the node that was actually
accessed during the service of the request.

accessing wy, and with probability

the algorithm serves the request by accessing w,.

Theorem 6 The algorithm HARM-RING is 4-competitive against any adaptive on-line adver-
sary.

Proof: For any request sequence o generated by an adaptive on-line adversary, we compare
simultaneous runs of HARM-RING and ADV on ¢. As in the proof of Theorem 3, the actions of
HARM-RING and ADV can be classified into two types of events. (Type I) ADV replicates the
page. (Type II) A request is served by HARM-RING and ADV; this event may be accompanied
by HARM-RING replicating the page to the requesting node. As before, we will give a non-
negative potential function ®, that is initially 0, so that

E[ACHR]+ E[A®] < 4- AC4py (6)

for all events. This implies the theorem. Here ACyRr and AC 4py denote the cost incurred by
HARM-RING and ADV during the event; A® is the change in potential.

We define the potential function. At any given time, let u, and wu, be the nodes farthest
from s to which ADV has replicated the page in clockwise and counter-clockwise direction,
respectively. Recall that w, and wy are the nodes farthest from s to which HARM-RING has
replicated the page. Let

¢ = 4r max{0, (s, u,) — l(s, wy) } + 4r max{0, [(up, s) — [(wp, 5) }.

14



Intuitively, @ is the length of the range of the ring at which ADV has the page but HARM-RING
has not. We will show (6) for all events.

(Type I) ADV replicates the page.

Suppose that the page is replicated from node u to node v. Assume without loss of generality
that the page is replicated in clockwise direction, i.e., the arc (s,u,) is extended. The case
that the arc (up, s) is extended is analogous. We have AC4py = rl(u,v) and ACyr = 0. We
must show E[A®] < 4rl(u,v). If neither node w nor v has the page in the ring maintained by
HARM-RING, then A® = 4r{(u,v). Otherwise A® < 4rl(u,v). Inequality (6) holds.

(Type II) A request is served by HARM-RING and ADV.

Let v be the node requesting the page. If v has the page in the ring maintained by HARM-RING,
then ACypr = 0, AC4py > 0 and A® = 0 because HARM-RING does not replicate the page.
Inequality (6) is satisfied. In the remainder we assume that v does not have the page in the ring
maintained by HARM-RING, i.e., v lies on the arc (wg, wp) and w, # v # wy. Then

E[ACHE] %(l(wa, o) + %rl(wa, o))+ %(z(u w) + %M(U, w))
o Hwg,v) - (v, wy)
=4 l(wq, wp) '

We may assume without loss of generality that in the ring maintained by ADV, v lies on the
arc (s,u,) or ADV serves the request by accessing u,. The case that v lies on the arc (u, s)
or that ADV serves the request by accessing wu; is symmetric. For the evaluation of E[A®] and
AC spy we investigate three cases regarding the relative positions of u,, w, and v, as illustrated
in Figure 5.

We introduce an ordering on the nodes of the ring such that for two nodes x, y:

<y if I(s,x) <l(s,y).

Wy, Wy, Wy,

(1) (2) (3)

Fig. 5: Three case regarding the locations of u,, w,, and v

Case 1: Suppose that w, < v < u,.

We have AC4py = 0. The change in potential is —4r{(w,, v) if HARM-RING replicates the page
from w, to v. If HARM-RING replicates the page from wy to v, then the change in potential is
non-positive. Thus

l(wg,v) - (v, wp)

1 (v, wp) _
;m(—élrl(wa,v))_ 4

E[A®] < = —E[ACHR]

l(wq, wp)
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and (6) holds.

Case 2: Suppose that w, < u, < v.
In this case ACypv = l(uq,v). If HARM-RING replicates the page from w, to v, then the
potential change is —4rl(wq, uy). Again, if HARM-RING replicated the page from wy to v, then
the change in potential is non-positive. Therefore

1 (v, ws)

Hwq,ug) - (v, wy)
— 4 .
rl(wg, wp)

l(wq, wp)

E[A®] < (—4rl(wy, ug)) = —

We obtain
g, v) - (v, wp)

E[ACHR] + E[A(I)] <4 l(w wb)

< Al(ug,v) = 4AC4py.

The second inequality holds because M < 1. Inequality (6) is satisfied.

Wa , Wp

Case 3: Suppose that u, < w, < v. Here ACspv = l(ug4, v) and AP < 0. We have

EIACHR] = 4l(w“’ v) - l{v, wy)

< Al(wg, v) < 4l(ug,v) = 4A .
[(wnw) < Al(wg, v) < H(ug,v) Capv

As before, the first inequality follows from the fact that {v.wp) < 1. Again, Eq. (6) holds. O

l(waywb)

6 Conclusion and open problems

We have investigated the page replication problem for important network topologies such as
trees, uniform networks and rings. For these topologies we have developed deterministic and
randomized on-line algorithms that achieve a constant competitive ratio. Our randomized algo-
rithms for trees and uniform networks achieve the best possible competitive ratios. While the
competitiveness achieved by deterministic and randomized algorithms is settled for trees and
uniform networks, a number of open problems remain with respect to the ring topology. One
interesting problem is to tighten the gap for deterministic algorithms. We have presented a 4-
competitive deterministic replication algorithm. Black and Sleator [6] mention (without proof)
that no deterministic on-line algorithm for rings can be better than %—Competitive. Moreover,
no lower bounds are known on the competitiveness achieved by randomized on-line algorithms

on rings. An interesting problem is to develop lower or improved upper bounds for rings.

This paper (and almost all other related previous work) studies the page replication under
the assumption that the local memories of the processors have infinite memory capacity. That
is, whenever an algorithm wants to replicate a given page into the local memory of a processor,
there is room for it; no other page needs to be dropped. An important problem is to study the
page replication under the assumption that the local memories have bounded capacity. Bartal et
al. [4] showed that in this model, no on-line replication algorithm in any topology can be better
than Q(m)-competitive, where m is the total number of pages that can be stored in the network.
They also gave an O(m)-competitive algorithm for uniform networks. One approach to overcome
the ©(m) bound might be to consider special memory types. Albers and Koga [1] studied the
page migration problem for direct-mapped memories, i.e., the processors use a hash function
in order to locate pages in their local memories. Awerbuch et al. [3] investigated distributed
paging problems when an on-line algorithm has slightly more memory capacity than the off-line
algorithm.
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Topology | Problem

Ring Determine the competitive ratios ¢ achieved by
deterministic and randomized on-line algorithms.
Best bounds known for

—det. alg.: 25 <e< 4

—rand. alg. against oblivious adv.: ¢ < 3.16

— rand. alg. against adaptive on-line adv.: ¢ < 4

Arbitrary | Find memory models for which on-line algorithms

with a competitive ratio of o(m) can be developed.

Table 1: Summary of open problems
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