Part V

Matchings

! !
m Harald Racke 532/580

Matching
» Input: undirected graph G = (V, E).

» M < E is a matching if each node appears in at most one
edge in M.

> Maximum Matching: find a matching of maximum cardinality

16 Bipartite Matching via Flows

Which flow algorithm to use?
> Generic augmenting path: O(mval(f*)) = O(mn).
> Capacity scaling: ©(m?logC) = O(m?).

> Shortest augmenting path: ©(mn?).

For unit capacity simple graphs shortest augmenting path can be
implemented in time O(m+/n).

‘m 16 Bipartite Matching via Flows
Harald Racke 534/580

17 Augmenting Paths for Matchings
Definitions.

» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

‘m 17 Augmenting Paths for Matchings
Harald Racke 535/580

17 Augmenting Paths for Matchings

Definitions.

» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

‘m 17 Augmenting Paths for Matchings
Harald Racke

535/580

17 Augmenting Paths for Matchings

Definitions.
» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

> An alternating path is called an augmenting path for
matching M if it ends at distinct free vertices.

‘m 17 Augmenting Paths for Matchings
Harald Racke

535/580

17 Augmenting Paths for Matchings

Definitions.
» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

> An alternating path is called an augmenting path for
matching M if it ends at distinct free vertices.

Theorem 89

A matching M is a maximum matching if and only if there is no
augmenting path w.r.t. M.

‘m 17 Augmenting Paths for Matchings
Harald Racke

535/580

Augmenting Paths in Action

@

Gés 6 7)

‘m 17 Augmenting Paths for Matchings
Harald Racke 536/580

Augmenting Paths in Action

@

</\/m v 2
X

m Harald Racke

17 Augmenting Paths for Matchings

536/580

Augmenting Paths in Action

a

X
X

(1)
5
9

m Harald Racke

17 Augmenting Paths for Matchings

536/580

Augmenting Paths in Action

a

X
X

(1)
5
9

m Harald Racke

17 Augmenting Paths for Matchings

536/580

Augmenting Paths in Action

<4>\25/ /e /a
NN

N

‘m 17 Augmenting Paths for Matchings
Harald Racke 536/580

Augmenting Paths in Action

‘m 17 Augmenting Paths for Matchings
Harald Racke 536/580

17 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

‘m 17 Augmenting Paths for Matchings
Harald Racke 537/580

17 Augmenting Paths for Matchings

Proof.
= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ & M (i.e., only edges
that are in either M or M’ but not in both).

‘m 17 Augmenting Paths for Matchings
Harald Racke 537/580

17 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ & M (i.e., only edges
that are in either M or M’ but not in both).

Each vertex can be incident to at most two edges (one from
M and one from M’). Hence, the connected components are
alternating cycles or alternating path.

m 17 Augmenting Paths for Matchings
Harald Racke 537/580

17 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ & M (i.e., only edges
that are in either M or M’ but not in both).

Each vertex can be incident to at most two edges (one from
M and one from M’). Hence, the connected components are
alternating cycles or alternating path.

As |[M'| > |M| there is one connected component that is a
path P for which both endpoints are incident to edges from
M'. P is an alternating path.

m 17 Augmenting Paths for Matchings
Harald Racke 537/580

17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching
using this path. When you arrive at a matching for which no
augmenting path exists you have a maximum matching.

‘m 17 Augmenting Paths for Matchings
Harald Racke

538/580

17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching
using this path. When you arrive at a matching for which no
augmenting path exists you have a maximum matching.

Theorem 90

Let G be a graph, M a matching in G, and let u be a free vertex
w.r.t. M. Further let P denote an augmenting path w.r.t. M and
let M’ = M @ P denote the matching resulting from augmenting
M with P. If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M'.

I The above theorem allows for an easier implementation of an augmenting l
\ path algorithm. Once we checked for augmenting paths starting from u .
'we don’t have to check for such paths in future rounds.

m 17 Augmenting Paths for Matchings
Harald Racke

538/580

17 Augmenting Paths for Matchings

Proof

‘m 17 Augmenting Paths for Matchings
Harald Racke 539/580

17 Augmenting Paths for Matchings

Proof

> Assume there is an augmenting
path P" w.r.t. M’ starting at u.

‘m 17 Augmenting Paths for Matchings
Harald Racke 539/580

17 Augmenting Paths for Matchings

Proof

> Assume there is an augmenting
path P" w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

‘m 17 Augmenting Paths for Matchings
Harald Racke

539/580

17 Augmenting Paths for Matchings
Proof
> Assume there is an augmenting I
path P" w.r.t. M’ starting at u.
» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

‘m 17 Augmenting Paths for Matchings
Harald Racke

539/580

17 Augmenting Paths for Matchings

Proof
> Assume there is an augmenting I
path P" w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

‘m 17 Augmenting Paths for Matchings
Harald Racke

539/580

17 Augmenting Paths for Matchings

Proof
> Assume there is an augmenting I
path P" w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

‘m 17 Augmenting Paths for Matchings
Harald Racke

539/580

17 Augmenting Paths for Matchings

Proof
> Assume there is an augmenting |
path P" w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

‘m 17 Augmenting Paths for Matchings
Harald Racke

539/580

17 Augmenting Paths for Matchings

Proof

> Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

> u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’
from u to u’ with P;.

‘m 17 Augmenting Paths for Matchings
Harald Racke 539/580

17 Augmenting Paths for Matchings

Proof

> Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

> u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’
from u to u’ with P;.

‘m 17 Augmenting Paths for Matchings
Harald Racke 539/580

17 Augmenting Paths for Matchings

Proof

> Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

> u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’

from u to u’ with P;. §
> P; o P is augmenting path in M (#).

‘m 17 Augmenting Paths for Matchings
Harald Racke 539/580

How to find an augmenting path?

Construct an alternating tree.

/C

()
-/

PEON
QO

S

o4
AN

d
N

/\
O 0O 3 0O O O

O O O O O O

even nodes
odd nodes

m Harald Racke

17 Augmenting Paths for Matchings

540/580

How to find an augmenting path?

Construct an alternating tree.

/C

()
-/

PEON
QO

S

o4
AN

vd
N

/\
O 0O 3 0O O O

» O O O O

O

even nodes
odd nodes

Case 1:
y is free vertex not
contained in T

you found
alternating path

g
‘e,
.
.
.

®

m Harald Racke

17 Augmenting Paths for Matchings

540/580

How to find an augmenting path?

Construct an alternating tree.

/C

()
-/

PEON
QO

S

o4
AN

vd
N

/\
O 0O 3 0O O O

o

O
O
O
O
O}
O

even nodes
odd nodes

Case 2:

vy is matched vertex
not in T; then
mate[y] ¢ T

grow the tree

g
‘e,
.
.
.

©o—0

m Harald Racke

17 Augmenting Paths for Matchings

541/580

How to find an augmenting path?

Construct an alternating tree.

()) O | even nodes
N Y
/C> odd nodes
/ Case 3:
u O 4 O O y is already contained
e \ in T as an odd vertex
.\.Q O ignore successor y
=0

D

0 O
O

m 17 Augmenting Paths for Matchings
Harald Racke 542/580

How to find an augmenting path?

Construct an alternating tree.

/C

even nodes
odd nodes

O

Case 4:
v is already contained
in T as an even vertex

PEON
QO
AR

3 O 0O O

\
*
*
e
‘e
L

g
Q

can’t ignhore y

g
g
g
.

-
L]
“,

® O O O O

does not happen in
bipartite graphs

D

/\
35

O

m 17 Augmenting Paths for Matchings
Harald Racke 543/580

Algorithm 49 BiMatch (G, match)

1: for x € V do mate[x] < O;
2: v < 0; free — n;
3: while free>1and» <n do

»

¥ —r+1
if mate[r] =0 then

fori=1ton do parent[i'] — 0
Q — @; Q.append(r); aug — false;
while aug = false and Q + @ do
X — Q.dequeue();
for y € Ay do
if mate[y] =0 then
augm(mate, parent,y);
aug - true;
free — free —1;
else
if parent[y] =0 then
parent[y] < x;
Q.enqueue(mate[y]);

graph G = (SU S',E)
S={1,...,n}
S ={1,...,n'}

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

start with an
empty matching

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v — 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

free: number of
unmatched nodes in S

7: root of current tree

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free=1and» <n do as long as there are
4. ry—r+1 unmatched nodes and
5: if mate[r] =0 then we did not yet try to
6 fori=1to n do parent[i'] — 0 grow from all nodes we
7 Q — @; Q.append(r); aug — false; continue
8: while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;
18: Q.enqueue(mate[y]);

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4. ¥ —r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

7 is the new node that
we grow from.

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

If v is free start tree
construction

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1to n do parent[i'] < 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

Initialize an empty tree.
Note that only nodes i’
have parent pointers.

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — 7; Q.append(7); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

Q is a queue (BFS!!!).

aug is a Boolean that
stores whether we
already found an
augmenting path.

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = falseand Q #+ & do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

as long as we did not

augment and there are

still unexamined leaves
continue...

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

take next unexamined
leaf

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

if x has unmatched
neighbour we found an
augmenting path (note
that y # r because we
are in a bipartite graph)

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent, y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

do an augmentation...

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug — true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

setting aug = true
ensures that the tree
construction will not
continue

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free—1,
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

reduce number of free
nodes

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

if v is not in the tree yet

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17 parent[y] < x;

18: Q.enqueue(mate[y]);

...put it into the tree

Algorithm 49 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do
4: r—r+1

5 if mate[r] =0 then
6 fori=1ton do parent[i'] — 0
7 Q — @; Q.append(r); aug — false;
8 while aug = false and Q + @ do
9: X — Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent,y);
13: aug - true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] < x;

18: Q.enqueue(mate[y]);

add its buddy to the set
of unexamined leaves

18 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment
» Input: undirected, bipartite graph G = L UR,E.
> an edge e = (£,r) has weight w, > 0

» find a matching of maximum weight, where the weight of a
matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):
» assume that |[L| = |R| =n

> assume that there is an edge between every pair of nodes
L, r)evxVv

> can assume goal is to construct maximum weight perfect
matching

m 18 Weighted Bipartite Matching
Harald Racke

545/580

Weighted Bipartite Matching

Theorem 91 (Halls Theorem)

A bipartite graph G = (L U R, E) has a perfect matching if and
only if for all sets S < L, |[T'(S)| = |S|, where T (S) denotes the set
of nodes in R that have a neighbour in S.

‘m 18 Weighted Bipartite Matching
Harald Racke

546/580

18 Weighted Bipartite Matching

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

‘m 18 Weighted Bipartite Matching
Harald Racke 548/580

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.

‘m 18 Weighted Bipartite Matching
Harald Racke

548/580

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.
> Let S denote a minimum cut and let Lg £ L. N S and

Rs & R N S denote the portion of S inside L and R,
respectively.

m 18 Weighted Bipartite Matching
Harald Racke

548/580

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.
= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.
> Let S denote a minimum cut and let Lg £ L. N S and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.
> Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

m 18 Weighted Bipartite Matching
Harald Racke 548/580

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.

> Let S denote a minimum cut and let Lg £ L. N S and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.

> Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

> This gives Rg > |[T'(Ls)]|.

m 18 Weighted Bipartite Matching
Harald Racke 548/580

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.

> Let S denote a minimum cut and let Lg £ L. N S and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.

> Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

> This gives Rg > |[T'(Ls)]|.

» The size of the cutis |L| — |Lg| + |Rg].

m 18 Weighted Bipartite Matching
Harald Racke 548/580

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.
> Let S denote a minimum cut and let Lg £ L. N S and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.
> Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.
> This gives Rg > |[T'(Ls)]|.
The size of the cutis |L| — |Lg| + |Rg].
> Using the fact that [T'(Ls)| = Ls gives that this is at least |L].

v

m 18 Weighted Bipartite Matching
Harald Racke 548/580

Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, x, € R
denote the weight of node v.

‘m 18 Weighted Bipartite Matching
Harald Racke 549/580

Algorithm Outline

Idea:
We introduce a node weighting X. Letforanodev € V, x, € R
denote the weight of node v.

> Suppose that the node weights dominate the edge-weights in
the following sense:

Xy + Xy = W, for every edge e = (u,v).

‘m 18 Weighted Bipartite Matching
Harald Racke 549/580

Algorithm Outline

Idea:
We introduce a node weighting X. Letforanodev € V, x, € R
denote the weight of node v.
> Suppose that the node weights dominate the edge-weights in
the following sense:

Xy + Xy = W, for every edge e = (u,v).

> Let H(X) denote the subgraph of G that only contains edges
that are tight w.r.t. the node weighting X, i.e. edges
e = (u,v) for which w, = xy + xv.

‘m 18 Weighted Bipartite Matching
Harald Racke 549/580

Algorithm Outline

Idea:
We introduce a node weighting X. Letforanodev € V, x, € R
denote the weight of node v.
> Suppose that the node weights dominate the edge-weights in
the following sense:

Xy + Xy = W, for every edge e = (u,v).

> Let H(X) denote the subgraph of G that only contains edges
that are tight w.r.t. the node weighting X, i.e. edges
e = (u,v) for which w, = xy + xv.

> Try to compute a perfect matching in the subgraph H(x). If
you are successful you found an optimal matching.

m 18 Weighted Bipartite Matching
Harald Racke 549/580

Algorithm Outline

Reason:
» The weight of your matching M* is

D Wauw = D, (utx) =2 Xy

(u,v)eM* (u,v)eM* v

> Any other perfect matching M (in G, not necessarily in H (X))
has

D Wy < D (Xutxy) =D Xy

(u,v)eM (u,v)eM v

‘m 18 Weighted Bipartite Matching
Harald Racke 550/580

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S < L, with

IT'(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(x).

‘m 18 Weighted Bipartite Matching
Harald Racke

551/580

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S < L, with
IT'(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(x).
Idea: reweight such that:

> the total weight assigned to nodes decreases

> the weight function still dominates the edge-weights

m 18 Weighted Bipartite Matching
Harald Racke

551/580

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S < L, with
IT'(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(x).

Idea: reweight such that:
> the total weight assigned to nodes decreases
> the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an
optimal solution (we analyze the running time later).

m 18 Weighted Bipartite Matching
Harald Racke

551/580

Changing Node Weights

Increase node-weights in I'(S) by +06, and decrease the

node-weights in S by —9.

+0

[(S)

m Harald Racke

18 Weighted Bipartite Matching

552/580

Changing Node Weights

Increase node-weights in I'(S) by +06, and decrease the

node-weights in S by —9.

> Total node-weight decreases.

+0

[(S)

m Harald Racke

18 Weighted Bipartite Matching

552/580

Changing Node Weights

Increase node-weights in I'(S) by +06, and decrease the
node-weights in S by —§.

> Total node-weight decreases.

» Only edges from S to R —T'(S)
decrease in their weight.

+0

[(S)

‘m 18 Weighted Bipartite Matching
Harald Racke

552/580

Changing Node Weights

Increase node-weights in I'(S) by +06, and decrease the
node-weights in S by —§.

> Total node-weight decreases.

» Only edges from S to R —T'(S)
decrease in their weight. +6|T(S)

> Since, none of these edges is
tight (otw. the edge would be
contained in H(X), and hence

would go between S and I'(S)) 0
we can do this decrement for
small enough 6 > 0 until a new
edge gets tight.
L R

m 18 Weighted Bipartite Matching
Harald Racke 552/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

‘m 18 Weighted Bipartite Matching
Harald Racke 553/580

Analysis
How many iterations do we need?

> One reweighting step increases the number of edges out of S
by at least one.

‘m 18 Weighted Bipartite Matching
Harald Racke 554/580

Analysis

How many iterations do we need?

> One reweighting step increases the number of edges out of S
by at least one.

> Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

m 18 Weighted Bipartite Matching
Harald Racke 554/580

Analysis

How many iterations do we need?

> One reweighting step increases the number of edges out of S
by at least one.

> Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

> This matching is still contained in the new graph, because all
its edges either go between I'(S) and S or between L — S and
R -T(S).

m 18 Weighted Bipartite Matching
Harald Racke 554/580

Analysis

How many iterations do we need?

> One reweighting step increases the number of edges out of S
by at least one.

> Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

> This matching is still contained in the new graph, because all
its edges either go between I'(S) and S or between L — S and
R -T(S).

» Hence, reweighting does not decrease the size of a
maximum matching in the tight sub-graph.

m 18 Weighted Bipartite Matching
Harald Racke 554/580

Analysis

> We will show that after at most n reweighting steps the size

of the maximum matching can be increased by finding an
augmenting path.

» This gives a polynomial running time.

‘m 18 Weighted Bipartite Matching
Harald Racke

555/580

How to find an augmenting path?

Construct an alternating tree.

OO0
O—O
@<O&/CO
S o—0
__LO—O
\OO:\‘OQ

m Harald Racke

18 Weighted Bipartite Matching

556/580

How to find an augmenting path?

Construct an alternating tree.

OO0
O—O

@< O &/ O—0O
S o—0
OO,

\C O:\‘C O

m Harald Racke

18 Weighted Bipartite Matching

556/580

Analysis

How do we find S?

> Start on the left and compute an alternating tree, starting at
any free node u.

‘m 18 Weighted Bipartite Matching
Harald Racke 557/580

Analysis

How do we find S?

> Start on the left and compute an alternating tree, starting at
any free node u.

> If this construction stops, there is no perfect matching in the
tight subgraph (because for a perfect matching we need to
find an augmenting path starting at u).

m 18 Weighted Bipartite Matching
Harald Racke 557/580

Analysis

How do we find S?

> Start on the left and compute an alternating tree, starting at
any free node u.

> If this construction stops, there is no perfect matching in the
tight subgraph (because for a perfect matching we need to
find an augmenting path starting at u).

> The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

m 18 Weighted Bipartite Matching
Harald Racke 557/580

Analysis

How do we find S?

> Start on the left and compute an alternating tree, starting at
any free node u.

> If this construction stops, there is no perfect matching in the
tight subgraph (because for a perfect matching we need to
find an augmenting path starting at u).

> The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

> All odd vertices are matched to even vertices. Furthermore,
the even vertices additionally contain the free vertex u.
Hence, [Voddl = IT (Veven)| < [Veven!l, and all odd vertices are
saturated in the current matching.

‘m 18 Weighted Bipartite Matching
Harald Racke 557/580

Analysis

» The current matching does not have any edges from V,qq to
L\ Veven (edges that may possibly be deleted by changing
weights).

‘m 18 Weighted Bipartite Matching
Harald Racke 558/580

Analysis

» The current matching does not have any edges from V,qq to
L\ Veven (edges that may possibly be deleted by changing
weights).

> After changing weights, there is at least one more edge
connecting Veven to a node outside of Vqq. After at most n
reweights we can do an augmentation.

m 18 Weighted Bipartite Matching
Harald Racke

558/580

Analysis

» The current matching does not have any edges from V,qq to
L\ Veven (edges that may possibly be deleted by changing
weights).

> After changing weights, there is at least one more edge
connecting Veven to a node outside of Vqq. After at most n
reweights we can do an augmentation.

> A reweighting can be trivially performed in time O(n?)
(keeping track of the tight edges).

m 18 Weighted Bipartite Matching
Harald Racke 558/580

Analysis

» The current matching does not have any edges from V,qq to
L\ Veven (edges that may possibly be deleted by changing
weights).

> After changing weights, there is at least one more edge
connecting Veven to a node outside of Vqq. After at most n
reweights we can do an augmentation.

> A reweighting can be trivially performed in time O(n?)
(keeping track of the tight edges).

> An augmentation takes at most @ (n) time.

m 18 Weighted Bipartite Matching
Harald Racke 558/580

Analysis

» The current matching does not have any edges from V,qq to

L\ Veven (edges that may possibly be deleted by changing
weights).

> After changing weights, there is at least one more edge
connecting Veven to a node outside of Vqq. After at most n
reweights we can do an augmentation.

> A reweighting can be trivially performed in time O(n?)
(keeping track of the tight edges).

> An augmentation takes at most @ (n) time.

> In total we obtain a running time of O (n?).

m 18 Weighted Bipartite Matching
Harald Racke 558/580

Analysis

» The current matching does not have any edges from V,qq to

L\ Veven (edges that may possibly be deleted by changing
weights).

> After changing weights, there is at least one more edge
connecting Veven to a node outside of Vqq. After at most n
reweights we can do an augmentation.

> A reweighting can be trivially performed in time O(n?)
(keeping track of the tight edges).

> An augmentation takes at most @ (n) time.
> In total we obtain a running time of O (n?).

» A more careful implementation of the algorithm obtains a
running time of ©(n?).

m 18 Weighted Bipartite Matching
Harald Racke 558/580

How to find an augmenting path?

Construct an alternating tree.

p / N\
vd
N

even nodes
odd nodes

Case 4:
v is already contained
in T as an even vertex

PN
Q
5

can’t ignore y

o
/\

.0 O O O O

‘m 19 Maximum Matching in General Graphs
Harald Racke 559/580

How to find an augmenting path?

Construct an alternating tree.

p / N\
vd
N

even nodes
odd nodes

Case 4:
v is already contained
in T as an even vertex

PN
Q
5

can’t ignore y

O O O O

g
ams® =

’ X

‘m 19 Maximum Matching in General Graphs
Harald Racke 559/580

How to find an augmenting path?

Construct an alternating tree.

p / N\
vd
N

even nodes
odd nodes

Case 4:
v is already contained
in T as an even vertex

O O O O

can’t ignore y

Thecycle w -« y —x - w

is called a blossom.

w is called the base of the
blossom (even nodel!l!).

’ ‘ | X The path u-w is called the
stem of the blossom.

g
ams® =

m 19 Maximum Matching in General Graphs
Harald Racke 559/580

Flowers and Blossoms

Definition 92
A flower in a graph G = (V,E) w.r.t. a matching M and a (free)
root node 7, is a subgraph with two components:

‘m 19 Maximum Matching in General Graphs
Harald Racke 560/580

Flowers and Blossoms

Definition 92
A flower in a graph G = (V, E) w.r.t. a matching M and a (free)
root node 7, is a subgraph with two components:
» A stem is an even length alternating path that starts at the
root node 7 and terminates at some node w. We permit the
possibility that ¥ = w (empty stem).

‘m 19 Maximum Matching in General Graphs
Harald Racke 560/580

Flowers and Blossoms

Definition 92
A flower in a graph G = (V, E) w.r.t. a matching M and a (free)
root node 7, is a subgraph with two components:

» A stem is an even length alternating path that starts at the
root node 7 and terminates at some node w. We permit the
possibility that ¥ = w (empty stem).

» A blossom is an odd length alternating cycle that starts and
terminates at the terminal node w of a stem and has no
other node in common with the stem. w is called the base of
the blossom.

m 19 Maximum Matching in General Graphs
Harald Racke 560/580

Flowers and Blossoms

‘m 19 Maximum Matching in General Graphs
Harald Racke 561/580

Flowers and Blossoms

Properties:

1. A stem spans 2/ + 1 nodes and contains ¢ matched edges for
some integer £ > 0.

‘m 19 Maximum Matching in General Graphs
Harald Racke 562/580

Flowers and Blossoms

Properties:

1. A stem spans 2/ + 1 nodes and contains ¢ matched edges for
some integer £ > 0.

2. A blossom spans 2k + 1 nodes and contains k matched
edges for some integer k > 1. The matched edges match all
nodes of the blossom except the base.

‘m 19 Maximum Matching in General Graphs
Harald Racke

562/580

Flowers and Blossoms

Properties:

1. A stem spans 2/ + 1 nodes and contains ¢ matched edges for
some integer £ > 0.

2. A blossom spans 2k + 1 nodes and contains k matched
edges for some integer k > 1. The matched edges match all
nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of
an alternating tree starting at r).

m 19 Maximum Matching in General Graphs
Harald Racke

562/580

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable
from the root (or from the base of the blossom) through two
distinct alternating paths; one with even and one with odd
length.

‘m 19 Maximum Matching in General Graphs
Harald Racke 563/580

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable
from the root (or from the base of the blossom) through two
distinct alternating paths; one with even and one with odd
length.

5. The even alternating path to x terminates with a matched
edge and the odd path with an unmatched edge.

m 19 Maximum Matching in General Graphs
Harald Racke 563/580

Flowers and Blossoms

(O=——(e>—19

O—0—W

‘m 19 Maximum Matching in General Graphs
Harald Racke 564/580

Shrinking Blossoms

When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.

‘m 19 Maximum Matching in General Graphs
Harald Racke 565/580

Shrinking Blossoms

When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.

> Delete all vertices in B (and its incident edges) from G.

‘m 19 Maximum Matching in General Graphs
Harald Racke 565/580

Shrinking Blossoms

When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.
> Delete all vertices in B (and its incident edges) from G.
> Add a new (pseudo-)vertex b. The new vertex b is connected
to all vertices in V \ B that had at least one edge to a vertex
from B.

m 19 Maximum Matching in General Graphs
Harald Racke 565/580

Shrinking Blossoms

» Edges of T that connect a hode u
not in B to a node in B become
tree edges in T’ connecting u to
b.

» Matching edges (there is at most
one) that connect a node u not in
B to a node in B become matching
edges in M'.

» Nodes that are connected in G to
at least one node in B become
connected to b in G'.

m 19 Maximum Matching in General Graphs
Harald Racke 566/580

Shrinking Blossoms

» Edges of T that connect a hode u
not in B to a node in B become
tree edges in T’ connecting u to
b.

» Matching edges (there is at most
one) that connect a node u not in
B to a node in B become matching
edges in M'.

» Nodes that are connected in G to
at least one node in B become
connected to b in G'.

m 19 Maximum Matching in General Graphs
Harald Racke 566/580

Example: Blossom Algorithm

(4]

11
(9 &

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

(4]

l
(1) {
is

(9

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

(4]

l
(1) {
is

(9

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

(4]

(9

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

(9 &

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

(4]

g}

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

(4]

g}

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

g}

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

g}

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

(¢}

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

¢}

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

m 19 Maximum Matching in General Graphs 2. Feb. 2024
Harald Racke 567/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

choices

different

m Harald Racke

19 Maximum Matching in General Graphs

2. Feb. 2024
567/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

(9 &

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

(9 &

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Example: Blossom Algorithm

(9 &

‘m 19 Maximum Matching in General Graphs
Harald Racke 567/580

Correctness

Assume that in G we have a flower w.r.t. matching M. Let v be the
root, B the blossom, and w the base. Let graph G’ = G/B with
pseudonode b. Let M’ be the matching in the contracted graph.

‘m 19 Maximum Matching in General Graphs
Harald Racke 568/580

Correctness

Assume that in G we have a flower w.r.t. matching M. Let v be the
root, B the blossom, and w the base. Let graph G’ = G/B with
pseudonode b. Let M’ be the matching in the contracted graph.

Lemma 93

If G’ contains an augmenting path P’ starting at v (or the
pseudo-node containing v) w.r.t. the matching M’ then G
contains an augmenting path starting at v w.r.t. matching M.

m 19 Maximum Matching in General Graphs
Harald Racke

568/580

Correctness

Proof.

If P’ does not contain b it is also an augmenting path in G.

‘m 19 Maximum Matching in General Graphs
Harald Racke 569/580

Correctness

Proof.
If P” does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

> Next suppose that the stem is non-empty.

‘m 19 Maximum Matching in General Graphs
Harald Racke 569/580

Correctness

Proof.
If P” does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

> Next suppose that the stem is non-empty.

@ o () 0 @

‘m 19 Maximum Matching in General Graphs
Harald Racke 569/580

Correctness

Proof.
If P’ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

> Next suppose that the stem is non-empty.

@ o () o @

‘m 19 Maximum Matching in General Graphs
Harald Racke 569/580

Correctness

> After the expansion £ must be incident to some node in the
blossom. Let this node be k.

> If k + w there is an alternating path P, from w to k that
ends in a matching edge.

> Ppo (i,w) o Pyo (k,¥) o P3is an alternating path.

» If k = w then Py o (i,w) o (w,¥) o P53 is an alternating path.

‘m 19 Maximum Matching in General Graphs
Harald Racke 570/580

Correctness
Proof.

Case 2: empty stem

> If the stem is empty then after expanding the blossom,
w=7r.

‘m 19 Maximum Matching in General Graphs
Harald Racke 571/580

Correctness
Proof.

Case 2: empty stem

> If the stem is empty then after expanding the blossom,
w=7r.

‘m 19 Maximum Matching in General Graphs
Harald Racke 571/580

Correctness
Proof.

Case 2: empty stem

> If the stem is empty then after expanding the blossom,
w="r.

‘m 19 Maximum Matching in General Graphs
Harald Racke 571/580

Correctness
Proof.

Case 2: empty stem

> If the stem is empty then after expanding the blossom,
w="r.

» The path v o P, o (k,¥) o P3 is an alternating path.

‘m 19 Maximum Matching in General Graphs
Harald Racke 571/580

Correctness

Lemma 94

If G contains an augmenting path P from v to q w.r.t. matching
M then G’ contains an augmenting path from v (or the
pseudo-node containing r) to q w.r.t. M.

‘m 19 Maximum Matching in General Graphs
Harald Racke 572/580

Correctness

Proof.
> If P does not contain a node from B there is nothing to prove.

‘m 19 Maximum Matching in General Graphs
Harald Racke 573/580

Correctness

Proof.
> If P does not contain a node from B there is nothing to prove.
» We can assume that v and g are the only free nodes in G.

‘m 19 Maximum Matching in General Graphs
Harald Racke 573/580

Correctness

Proof.
> If P does not contain a node from B there is nothing to prove.
» We can assume that v and g are the only free nodes in G.

Case 1: empty stem

‘m 19 Maximum Matching in General Graphs
Harald Racke 573/580

Correctness

Proof.
> If P does not contain a node from B there is nothing to prove.
» We can assume that v and g are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

‘m 19 Maximum Matching in General Graphs
Harald Racke 573/580

Correctness

Proof.
> If P does not contain a node from B there is nothing to prove.
» We can assume that v and g are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.

P is of the form P o (i, j) o P>, for some node j and (i, j) is
unmatched.

‘m 19 Maximum Matching in General Graphs
Harald Racke 573/580

Correctness

Proof.

> If P does not contain a node from B there is nothing to prove.
» We can assume that v and g are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.

P is of the form P o (i, j) o P>, for some node j and (i, j) is
unmatched.

(b, j) o P> is an augmenting path in the contracted network.

m 19 Maximum Matching in General Graphs
Harald Racke

573/580

Correctness

lllustration for Case 1:

)))
N N\ N\
O—@—0O
N\ N\

‘m 19 Maximum Matching in General Graphs
Harald Racke 574/580

Correctness

Case 2: non-empty stem

Correctness

Case 2: non-empty stem

Let P3 be alternating path from » to w; this exists because » and
w are root and base of a blossom. Define M. = M & P3.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from » to w; this exists because » and
w are root and base of a blossom. Define M. = M & P3.

In M., v is matched and w is unmatched.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from » to w; this exists because » and
w are root and base of a blossom. Define M. = M & P3.

In M., v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from » to w; this exists because » and
w are root and base of a blossom. Define M. = M & P3.

In M., v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from » to w; this exists because » and
w are root and base of a blossom. Define M. = M & P3.

In M., v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M.

For M’, the blossom has an empty stem. Case 1 applies.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from » to w; this exists because » and
w are root and base of a blossom. Define M. = M & P3.

In M., v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M.

For M’, the blossom has an empty stem. Case 1 applies.

G’ has an augmenting path w.r.t. M/ . It must also have an
augmenting path w.r.t. M’, as both matchings have the same
cardinality.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from » to w; this exists because » and
w are root and base of a blossom. Define M. = M & P3.

In M., v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M.

For M’, the blossom has an empty stem. Case 1 applies.

G’ has an augmenting path w.r.t. M/ . It must also have an
augmenting path w.r.t. M’, as both matchings have the same
cardinality.

This path must go between v and q.

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list + @ do
delete a node i from list
examine(i, found)
if found = true then return

OBV -

Search for an augmenting path
starting at r.

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list + @ do
delete a node i from list
examine(i, found)
if found = true then return

DN ® @ H W

A(i) contains neighbours of node i.

We create a copy A(i) so that we later
can shrink blossoms.

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list + @ do
delete a node i from list
examine(i, found)
if found = true then return

© N o v o wis

found is just a Boolean that allows
to abort the search process...

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list + @ do
delete a node i from list
examine(i, found)
if found = true then return

© N o v o~ E N

In the beginning no node is in the tree.

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list + @ do
delete a node i from list
examine(i, found)
if found = true then return

© N o B W N =

Put the root in the tree.

list could also be a set or a stack.

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list # @ do
delete a node i from list
examine(i, found)
if found = true then return

o N B h W =

As long as there are nodes with
unexamined neighbours...

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list + @ do
delete a node i from list
examine(i, found)
if found = true then return

O 9 v R W =

...examine the next one

Algorlthm 50 search (7, found)

set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to ¥ and initialize list — {r}
while list + @ do
delete a node i from list
examine(i, found)
if found = true then return

U AN

If you found augmenting path
abort and start from next root.

Algorithm 51 examine(i, found)

1. forall j € A(i) do
2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-J,

5 pred(q) < i;

6: found — true;

7 return

8 if j is matched and unlabeled then

9 pred(j) < i;

0 pred(mate(j)) < j;

1 add mate(j) to list

Examine the neighbours of a node i

Algorithm 51 examine(i, found)

1. forall j € A(i) do
2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-J,

5 pred(q) < i;

6: found — true;

7 return

8 if j is matched and unlabeled then

9 pred(j) < i;

0 pred(mate(j)) < j;

1 add mate(j) to list

For all neighbours j do...

Algorithm 51 examine(i, found)

1. forall j € A(i) do
2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-—1J

5 pred(q) < i;

6: found — true;

7 return

8 if j is matched and unlabeled then

9 pred(j) < i;

0 pred(mate(j)) < j;

1 add mate(j) to list

You have found a blossom...

Algorithm 51 examine(i, found)

1. forall j € A(i) do
2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-J,

5 pred(q) < i;

6: found — true;

7 return

8 if j is matched and unlabeled then

9 pred(j) < i;

0 pred(mate(j)) < j;

1 add mate(j) to list

You have found a free node which
gives you an augmenting path.

Algorithm 51 examine(i, found)

1. forall j € A(i) do
2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-J,

5 pred(q) < i;

6: found — true;

7 return

8 if j is matched and unlabeled then

9 pred(j) < i;

0 pred(mate(j)) < j;

1 add mate(j) to list

If you find a matched node that is not
in the tree you grow...

Algorithm 51 examine(i, found)

1. forall j € A(i) do
2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-J,

5 pred(q) < i;

6: found — true;

7 return

8 if j is matched and unlabeled then

9 pred(j) < i;

0 pred(mate(j)) < j;

1 add mate(j) to list

mate(j) is a new node from
which you can grow further.

Algorithm 52 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxcpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

o v W N =

Contract blossom identified by
nodes i and j

‘m 19 Maximum Matching in General Graphs
Harald Racke 578/580

Algorithm 52 contract(i, j)

: trace pred-indices of 7 and j to identify a blossom B
create new node b and set A(b) — UxcpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

o v W N =

Get all nodes of the blossom.

Time: O(m)

m 19 Maximum Matching in General Graphs
Harald Racke 578/580

Algorithm 52 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UyxepA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

o v W =

Identify all neighbours of b.
Time: O(m) (how?)

‘m 19 Maximum Matching in General Graphs
Harald Racke 578/580

Algorithm 52 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxcpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

SUNCANE S -

b will be an even node, and it has
unexamined neighbours.

‘m 19 Maximum Matching in General Graphs
Harald Racke 578/580

Algorithm 52 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxcpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

o A W =

Every node that was adjacent to a node
in B is now adjacent to b

‘m 19 Maximum Matching in General Graphs
Harald Racke 578/580

Algorithm 52 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxcpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

[R

Only for making a blossom
expansion easier.

‘m 19 Maximum Matching in General Graphs
Harald Racke 578/580

Algorithm 52 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxcpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

o v W =

Only delete links from nodes not in B to B.

When expanding the blossom again we can
recreate these links in time O(m).

‘m 19 Maximum Matching in General Graphs
Harald Racke 578/580

Analysis

> A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

‘m 19 Maximum Matching in General Graphs
Harald Racke 579/580

Analysis

> A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

» The time between two contraction-operation is basically a
BFS/DFS on a graph. Hence takes time O (m).

‘m 19 Maximum Matching in General Graphs
Harald Racke

579/580

Analysis

> A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

» The time between two contraction-operation is basically a
BFS/DFS on a graph. Hence takes time O (m).

» There are at most n contractions as each contraction reduces
the number of vertices.

m 19 Maximum Matching in General Graphs
Harald Racke 579/580

Analysis

> A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

» The time between two contraction-operation is basically a
BFS/DFS on a graph. Hence takes time O (m).

» There are at most n contractions as each contraction reduces
the number of vertices.

> The expansion can trivially be done in the same time as
needed for all contractions.

m 19 Maximum Matching in General Graphs
Harald Racke 579/580

Analysis

> A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

» The time between two contraction-operation is basically a
BFS/DFS on a graph. Hence takes time O (m).

» There are at most n contractions as each contraction reduces
the number of vertices.

> The expansion can trivially be done in the same time as
needed for all contractions.

> An augmentation requires time @ (n). There are at most n of
them.

m 19 Maximum Matching in General Graphs
Harald Racke 579/580

Analysis

> A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

» The time between two contraction-operation is basically a
BFS/DFS on a graph. Hence takes time O (m).

» There are at most n contractions as each contraction reduces
the number of vertices.

> The expansion can trivially be done in the same time as
needed for all contractions.

> An augmentation requires time @ (n). There are at most n of
them.

» |In total the running time is at most

n-(Omn) +On)) = O(mn?) .

m 19 Maximum Matching in General Graphs
Harald Racke 579/580

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

©
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

©,
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

©,
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

©,
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

©,
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

Example: Blossom Algorithm

©,
®

‘m 19 Maximum Matching in General Graphs
Harald Racke 580/580

	Matchings
	Definition
	Bipartite Matching via Flows
	Augmenting Paths for Matchings
	Weighted Bipartite Matching
	Maximum Matching in General Graphs

