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Matching
▶ Input: undirected graph G = (V , E).
▶ M ⊆ E is a matching if each node appears in at most one

edge in M.

▶ Maximum Matching: find a matching of maximum cardinality



16 Bipartite Matching via Flows

Which flow algorithm to use?

▶ Generic augmenting path: O(m val(f∗)) = O(mn).
▶ Capacity scaling: O(m2 logC) = O(m2).
▶ Shortest augmenting path: O(mn2).

For unit capacity simple graphs shortest augmenting path can be

implemented in time O(m√n).

16 Bipartite Matching via Flows 2. Feb. 2024

Harald Räcke 534/580



17 Augmenting Paths for Matchings

Definitions.

▶ Given a matching M in a graph G, a vertex that is not

incident to any edge of M is called a free vertex w. r. .t. M.

▶ For a matching M a path P in G is called an alternating path

if edges in M alternate with edges not in M.

▶ An alternating path is called an augmenting path for

matching M if it ends at distinct free vertices.

Theorem 89

A matching M is a maximum matching if and only if there is no

augmenting path w. r. t. M.
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Augmenting Paths in Action

0 1 2 3
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17 Augmenting Paths for Matchings

Proof.

⇒ If M is maximum there is no augmenting path P , because we

could switch matching and non-matching edges along P .

This gives matching M′ = M ⊕ P with larger cardinality.

⇐ Suppose there is a matching M′ with larger cardinality.

Consider the graph H with edge-set M′ ⊕M (i.e., only edges

that are in either M or M′ but not in both).

Each vertex can be incident to at most two edges (one from

M and one from M′). Hence, the connected components are

alternating cycles or alternating path.

As |M′| > |M| there is one connected component that is a

path P for which both endpoints are incident to edges from

M′. P is an alternating path.
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17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching

using this path. When you arrive at a matching for which no

augmenting path exists you have a maximum matching.

Theorem 90

Let G be a graph, M a matching in G, and let u be a free vertex

w.r.t. M. Further let P denote an augmenting path w.r.t. M and

let M′ = M ⊕ P denote the matching resulting from augmenting

M with P . If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M′.
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17 Augmenting Paths for Matchings

Proof

▶ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

▶ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

▶ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

▶ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

▶ P1 ◦ P ′1 is augmenting path in M (E).
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How to find an augmenting path?

Construct an alternating tree.

u

y

even nodes

odd nodes
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How to find an augmenting path?

Construct an alternating tree.

u

y

x

even nodes

odd nodes

Case 1:
y is free vertex not
contained in T

you found
alternating path
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 2:
y is matched vertex
not in T ; then
mate[y] ∉ T

grow the tree
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 3:
y is already contained
in T as an odd vertex

ignore successor y
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

does not happen in
bipartite graphs

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 543/580



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

graph G = (S ∪ S′, E)
S = {1, . . . , n}
S′ = {1′, . . . , n′}



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

start with an
empty matching



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

free: number of
unmatched nodes in S

r : root of current tree
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1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
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13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

as long as there are
unmatched nodes and
we did not yet try to

grow from all nodes we
continue



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

r is the new node that
we grow from.



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

If r is free start tree
construction



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

Initialize an empty tree.
Note that only nodes i′

have parent pointers.



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

Q is a queue (BFS!!!).

aug is a Boolean that
stores whether we
already found an
augmenting path.



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

as long as we did not
augment and there are
still unexamined leaves

continue...



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

take next unexamined
leaf



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

if x has unmatched
neighbour we found an
augmenting path (note
that y ≠ r because we
are in a bipartite graph)



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

do an augmentation...



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

setting aug = true
ensures that the tree
construction will not

continue



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

reduce number of free
nodes



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

if y is not in the tree yet



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

...put it into the tree



Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

add its buddy to the set
of unexamined leaves



18 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

▶ Input: undirected, bipartite graph G = L∪ R,E.

▶ an edge e = (ℓ, r) has weight we ≥ 0

▶ find a matching of maximum weight, where the weight of a

matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

▶ assume that |L| = |R| = n
▶ assume that there is an edge between every pair of nodes

(ℓ, r) ∈ V × V
▶ can assume goal is to construct maximum weight perfect

matching
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Weighted Bipartite Matching

Theorem 91 (Halls Theorem)

A bipartite graph G = (L∪ R,E) has a perfect matching if and

only if for all sets S ⊆ L, |Γ(S)| ≥ |S|, where Γ(S) denotes the set

of nodes in R that have a neighbour in S.
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18 Weighted Bipartite Matching

s t

1

2

3
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L R
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2̃

3̃

4̃

5̃

S



Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.

▶ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

▶ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

▶ This gives RS ≥ |Γ(LS)|.
▶ The size of the cut is |L| − |LS| + |RS|.
▶ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.
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Algorithm Outline

Idea:

We introduce a node weighting x⃗. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

▶ Suppose that the node weights dominate the edge-weights in

the following sense:

xu + xv ≥ we for every edge e = (u,v).

▶ Let H(x⃗) denote the subgraph of G that only contains edges

that are tight w.r.t. the node weighting x⃗, i.e. edges

e = (u,v) for which we = xu + xv .

▶ Try to compute a perfect matching in the subgraph H(x⃗). If

you are successful you found an optimal matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 549/580



Algorithm Outline

Idea:

We introduce a node weighting x⃗. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

▶ Suppose that the node weights dominate the edge-weights in

the following sense:

xu + xv ≥ we for every edge e = (u,v).

▶ Let H(x⃗) denote the subgraph of G that only contains edges

that are tight w.r.t. the node weighting x⃗, i.e. edges

e = (u,v) for which we = xu + xv .

▶ Try to compute a perfect matching in the subgraph H(x⃗). If

you are successful you found an optimal matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 549/580



Algorithm Outline

Idea:

We introduce a node weighting x⃗. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

▶ Suppose that the node weights dominate the edge-weights in

the following sense:

xu + xv ≥ we for every edge e = (u,v).

▶ Let H(x⃗) denote the subgraph of G that only contains edges

that are tight w.r.t. the node weighting x⃗, i.e. edges

e = (u,v) for which we = xu + xv .

▶ Try to compute a perfect matching in the subgraph H(x⃗). If

you are successful you found an optimal matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 549/580



Algorithm Outline

Idea:

We introduce a node weighting x⃗. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

▶ Suppose that the node weights dominate the edge-weights in

the following sense:

xu + xv ≥ we for every edge e = (u,v).

▶ Let H(x⃗) denote the subgraph of G that only contains edges

that are tight w.r.t. the node weighting x⃗, i.e. edges

e = (u,v) for which we = xu + xv .

▶ Try to compute a perfect matching in the subgraph H(x⃗). If

you are successful you found an optimal matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 549/580



Algorithm Outline

Reason:

▶ The weight of your matching M∗ is∑
(u,v)∈M∗

w(u,v) =
∑

(u,v)∈M∗
(xu + xv) =

∑
v
xv .

▶ Any other perfect matching M (in G, not necessarily in H(x⃗))
has ∑

(u,v)∈M
w(u,v) ≤

∑
(u,v)∈M

(xu + xv) =
∑
v
xv .
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Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S ⊆ L, with

|Γ(S)| < |S|, where Γ denotes the neighbourhood w.r.t. the

subgraph H(x⃗).

Idea: reweight such that:

▶ the total weight assigned to nodes decreases

▶ the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an

optimal solution (we analyze the running time later).
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Changing Node Weights

Increase node-weights in Γ(S) by +δ, and decrease the

node-weights in S by −δ.

▶ Total node-weight decreases.

▶ Only edges from S to R − Γ(S)
decrease in their weight.

▶ Since, none of these edges is

tight (otw. the edge would be

contained in H(x⃗), and hence

would go between S and Γ(S))
we can do this decrement for

small enough δ > 0 until a new

edge gets tight.

L R

S

Γ(S)

−δ

+δ
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Weighted Bipartite Matching

Edges not drawn have weight 0.
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Weighted Bipartite Matching
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Weighted Bipartite Matching
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Weighted Bipartite Matching

Edges not drawn have weight 0.

δ = 1
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Weighted Bipartite Matching
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Weighted Bipartite Matching
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Weighted Bipartite Matching
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Weighted Bipartite Matching
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Weighted Bipartite Matching
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Weighted Bipartite Matching
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Analysis

How many iterations do we need?

▶ One reweighting step increases the number of edges out of S
by at least one.

▶ Assume that we have a maximum matching that saturates

the set Γ(S), in the sense that every node in Γ(S) is matched

to a node in S (we will show that we can always find S and a

matching such that this holds).

▶ This matching is still contained in the new graph, because all

its edges either go between Γ(S) and S or between L− S and

R − Γ(S).
▶ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.
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matching such that this holds).

▶ This matching is still contained in the new graph, because all

its edges either go between Γ(S) and S or between L− S and

R − Γ(S).
▶ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.
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Analysis

▶ We will show that after at most n reweighting steps the size

of the maximum matching can be increased by finding an

augmenting path.

▶ This gives a polynomial running time.
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How to find an augmenting path?

Construct an alternating tree.

u

y
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Analysis

How do we find S?

▶ Start on the left and compute an alternating tree, starting at

any free node u.

▶ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

▶ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

▶ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 557/580



Analysis

How do we find S?

▶ Start on the left and compute an alternating tree, starting at

any free node u.

▶ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

▶ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

▶ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 557/580



Analysis

How do we find S?

▶ Start on the left and compute an alternating tree, starting at

any free node u.

▶ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

▶ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

▶ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 557/580



Analysis

How do we find S?

▶ Start on the left and compute an alternating tree, starting at

any free node u.

▶ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

▶ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

▶ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 557/580



Analysis

▶ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

▶ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

▶ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

▶ An augmentation takes at most O(n) time.

▶ In total we obtain a running time of O(n4).
▶ A more careful implementation of the algorithm obtains a

running time of O(n3).
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

The cycle w ↔ y − x ↔ w
is called a blossom.
w is called the base of the
blossom (even node!!!).
The path u-w is called the
stem of the blossom.
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Flowers and Blossoms

Definition 92

A flower in a graph G = (V , E) w.r.t. a matching M and a (free)

root node r , is a subgraph with two components:

▶ A stem is an even length alternating path that starts at the

root node r and terminates at some node w. We permit the

possibility that r = w (empty stem).

▶ A blossom is an odd length alternating cycle that starts and

terminates at the terminal node w of a stem and has no

other node in common with the stem. w is called the base of

the blossom.
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Flowers and Blossoms

1

2

3

4

5

6

7

8

9

1 2 3 4 5

6

7

8

9

10

11

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 561/580



Flowers and Blossoms

Properties:

1. A stem spans 2ℓ+ 1 nodes and contains ℓ matched edges for

some integer ℓ ≥ 0.

2. A blossom spans 2k+ 1 nodes and contains k matched

edges for some integer k ≥ 1. The matched edges match all

nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of

an alternating tree starting at r ).
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Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable

from the root (or from the base of the blossom) through two

distinct alternating paths; one with even and one with odd

length.

5. The even alternating path to x terminates with a matched

edge and the odd path with an unmatched edge.
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Flowers and Blossoms

1 2 3 4 5

6
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8

9
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Shrinking Blossoms

When during the alternating tree construction we discover a

blossom B we replace the graph G by G′ = G/B, which is

obtained from G by contracting the blossom B.

▶ Delete all vertices in B (and its incident edges) from G.

▶ Add a new (pseudo-)vertex b. The new vertex b is connected

to all vertices in V \ B that had at least one edge to a vertex

from B.
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Shrinking Blossoms

▶ Edges of T that connect a node u
not in B to a node in B become

tree edges in T ′ connecting u to

b.

▶ Matching edges (there is at most

one) that connect a node u not in

B to a node in B become matching

edges in M′.
▶ Nodes that are connected in G to

at least one node in B become

connected to b in G′.

w

x y
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Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices
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Example: Blossom Algorithm
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Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the

root, B the blossom, and w the base. Let graph G′ = G/B with

pseudonode b. Let M′ be the matching in the contracted graph.

Lemma 93

If G′ contains an augmenting path P ′ starting at r (or the

pseudo-node containing r ) w.r.t. the matching M′ then G
contains an augmenting path starting at r w.r.t. matching M.
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Correctness

Proof.

If P ′ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

▶ Next suppose that the stem is non-empty.

P1 P3
r i b ` q

P1

P3

r i w

k ` q
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Correctness

▶ After the expansion ℓ must be incident to some node in the

blossom. Let this node be k.

▶ If k ≠ w there is an alternating path P2 from w to k that

ends in a matching edge.

▶ P1 ◦ (i,w) ◦ P2 ◦ (k, ℓ) ◦ P3 is an alternating path.

▶ If k = w then P1 ◦ (i,w) ◦ (w, ℓ) ◦ P3 is an alternating path.
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Correctness

Proof.

Case 2: empty stem

▶ If the stem is empty then after expanding the blossom,

w = r .

P3
b ` q

P3

w

k ` q

▶ The path r ◦ P2 ◦ (k, ℓ) ◦ P3 is an alternating path.
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Correctness

Lemma 94

If G contains an augmenting path P from r to q w.r.t. matching

M then G′ contains an augmenting path from r (or the

pseudo-node containing r ) to q w.r.t. M′.
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Correctness

Proof.

▶ If P does not contain a node from B there is nothing to prove.

▶ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.
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Correctness

Illustration for Case 1:

r

i

j q

b j q
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Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.
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Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

Search for an augmenting path
starting at r .
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1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

A(i) contains neighbours of node i.

We create a copy Ā(i) so that we later
can shrink blossoms.
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4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

found is just a Boolean that allows
to abort the search process...
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In the beginning no node is in the tree.
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4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do
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Put the root in the tree.

list could also be a set or a stack.
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As long as there are nodes with
unexamined neighbours...
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...examine the next one



Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

If you found augmenting path
abort and start from next root.



Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

Examine the neighbours of a node i
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For all neighbours j do...
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You have found a blossom...
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You have found a free node which
gives you an augmenting path.
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If you find a matched node that is not
in the tree you grow...



Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
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6: found ← true;

7: return
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mate(j) is a new node from
which you can grow further.



Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Contract blossom identified by
nodes i and j



Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
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4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Get all nodes of the blossom.

Time: O(m)
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4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
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Identify all neighbours of b.

Time: O(m) (how?)
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b will be an even node, and it has
unexamined neighbours.
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Every node that was adjacent to a node
in B is now adjacent to b
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Only for making a blossom
expansion easier.



Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list
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5: form a circular double linked list of nodes in B
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Only delete links from nodes not in B to B.

When expanding the blossom again we can
recreate these links in time O(m).



Analysis

▶ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

▶ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
▶ There are at most n contractions as each contraction reduces

the number of vertices.

▶ The expansion can trivially be done in the same time as

needed for all contractions.

▶ An augmentation requires time O(n). There are at most n of

them.

▶ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .
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Example: Blossom Algorithm
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