
Part V

Matchings

2. Feb. 2024

Harald Räcke 532/580

Matching
▶ Input: undirected graph G = (V , E).
▶ M ⊆ E is a matching if each node appears in at most one

edge in M.

▶ Maximum Matching: find a matching of maximum cardinality

16 Bipartite Matching via Flows

Which flow algorithm to use?

▶ Generic augmenting path: O(m val(f∗)) = O(mn).
▶ Capacity scaling: O(m2 logC) = O(m2).
▶ Shortest augmenting path: O(mn2).

For unit capacity simple graphs shortest augmenting path can be

implemented in time O(m√n).

16 Bipartite Matching via Flows 2. Feb. 2024

Harald Räcke 534/580

17 Augmenting Paths for Matchings

Definitions.

▶ Given a matching M in a graph G, a vertex that is not

incident to any edge of M is called a free vertex w. r. .t. M.

▶ For a matching M a path P in G is called an alternating path

if edges in M alternate with edges not in M.

▶ An alternating path is called an augmenting path for

matching M if it ends at distinct free vertices.

Theorem 89

A matching M is a maximum matching if and only if there is no

augmenting path w. r. t. M.

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 535/580

17 Augmenting Paths for Matchings

Definitions.

▶ Given a matching M in a graph G, a vertex that is not

incident to any edge of M is called a free vertex w. r. .t. M.

▶ For a matching M a path P in G is called an alternating path

if edges in M alternate with edges not in M.

▶ An alternating path is called an augmenting path for

matching M if it ends at distinct free vertices.

Theorem 89

A matching M is a maximum matching if and only if there is no

augmenting path w. r. t. M.

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 535/580

17 Augmenting Paths for Matchings

Definitions.

▶ Given a matching M in a graph G, a vertex that is not

incident to any edge of M is called a free vertex w. r. .t. M.

▶ For a matching M a path P in G is called an alternating path

if edges in M alternate with edges not in M.

▶ An alternating path is called an augmenting path for

matching M if it ends at distinct free vertices.

Theorem 89

A matching M is a maximum matching if and only if there is no

augmenting path w. r. t. M.

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 535/580

17 Augmenting Paths for Matchings

Definitions.

▶ Given a matching M in a graph G, a vertex that is not

incident to any edge of M is called a free vertex w. r. .t. M.

▶ For a matching M a path P in G is called an alternating path

if edges in M alternate with edges not in M.

▶ An alternating path is called an augmenting path for

matching M if it ends at distinct free vertices.

Theorem 89

A matching M is a maximum matching if and only if there is no

augmenting path w. r. t. M.

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 535/580

Augmenting Paths in Action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 536/580

Augmenting Paths in Action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 536/580

Augmenting Paths in Action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 536/580

Augmenting Paths in Action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 536/580

Augmenting Paths in Action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 536/580

Augmenting Paths in Action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 536/580

17 Augmenting Paths for Matchings

Proof.

⇒ If M is maximum there is no augmenting path P , because we

could switch matching and non-matching edges along P .

This gives matching M′ = M ⊕ P with larger cardinality.

⇐ Suppose there is a matching M′ with larger cardinality.

Consider the graph H with edge-set M′ ⊕M (i.e., only edges

that are in either M or M′ but not in both).

Each vertex can be incident to at most two edges (one from

M and one from M′). Hence, the connected components are

alternating cycles or alternating path.

As |M′| > |M| there is one connected component that is a

path P for which both endpoints are incident to edges from

M′. P is an alternating path.

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 537/580

17 Augmenting Paths for Matchings

Proof.

⇒ If M is maximum there is no augmenting path P , because we

could switch matching and non-matching edges along P .

This gives matching M′ = M ⊕ P with larger cardinality.

⇐ Suppose there is a matching M′ with larger cardinality.

Consider the graph H with edge-set M′ ⊕M (i.e., only edges

that are in either M or M′ but not in both).

Each vertex can be incident to at most two edges (one from

M and one from M′). Hence, the connected components are

alternating cycles or alternating path.

As |M′| > |M| there is one connected component that is a

path P for which both endpoints are incident to edges from

M′. P is an alternating path.

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 537/580

17 Augmenting Paths for Matchings

Proof.

⇒ If M is maximum there is no augmenting path P , because we

could switch matching and non-matching edges along P .

This gives matching M′ = M ⊕ P with larger cardinality.

⇐ Suppose there is a matching M′ with larger cardinality.

Consider the graph H with edge-set M′ ⊕M (i.e., only edges

that are in either M or M′ but not in both).

Each vertex can be incident to at most two edges (one from

M and one from M′). Hence, the connected components are

alternating cycles or alternating path.

As |M′| > |M| there is one connected component that is a

path P for which both endpoints are incident to edges from

M′. P is an alternating path.

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 537/580

17 Augmenting Paths for Matchings

Proof.

⇒ If M is maximum there is no augmenting path P , because we

could switch matching and non-matching edges along P .

This gives matching M′ = M ⊕ P with larger cardinality.

⇐ Suppose there is a matching M′ with larger cardinality.

Consider the graph H with edge-set M′ ⊕M (i.e., only edges

that are in either M or M′ but not in both).

Each vertex can be incident to at most two edges (one from

M and one from M′). Hence, the connected components are

alternating cycles or alternating path.

As |M′| > |M| there is one connected component that is a

path P for which both endpoints are incident to edges from

M′. P is an alternating path.

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 537/580

17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching

using this path. When you arrive at a matching for which no

augmenting path exists you have a maximum matching.

Theorem 90

Let G be a graph, M a matching in G, and let u be a free vertex

w.r.t. M. Further let P denote an augmenting path w.r.t. M and

let M′ = M ⊕ P denote the matching resulting from augmenting

M with P . If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M′.

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 538/580

17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching

using this path. When you arrive at a matching for which no

augmenting path exists you have a maximum matching.

Theorem 90

Let G be a graph, M a matching in G, and let u be a free vertex

w.r.t. M. Further let P denote an augmenting path w.r.t. M and

let M′ = M ⊕ P denote the matching resulting from augmenting

M with P . If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M′.

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 538/580

17 Augmenting Paths for Matchings

Proof

▶ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

▶ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

▶ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

▶ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

▶ P1 ◦ P ′1 is augmenting path in M (E).

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 539/580

17 Augmenting Paths for Matchings

Proof

▶ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

▶ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

▶ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

▶ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

▶ P1 ◦ P ′1 is augmenting path in M (E).

u

P′

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 539/580

17 Augmenting Paths for Matchings

Proof

▶ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

▶ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

▶ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

▶ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

▶ P1 ◦ P ′1 is augmenting path in M (E).

u

P′

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 539/580

17 Augmenting Paths for Matchings

Proof

▶ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

▶ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

▶ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

▶ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

▶ P1 ◦ P ′1 is augmenting path in M (E).

u

P′

P

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 539/580

17 Augmenting Paths for Matchings

Proof

▶ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

▶ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

▶ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

▶ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

▶ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

P′

P

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 539/580

17 Augmenting Paths for Matchings

Proof

▶ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

▶ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

▶ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

▶ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

▶ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 539/580

17 Augmenting Paths for Matchings

Proof

▶ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

▶ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

▶ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

▶ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

▶ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 539/580

17 Augmenting Paths for Matchings

Proof

▶ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

▶ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

▶ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

▶ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

▶ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

P1

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 539/580

17 Augmenting Paths for Matchings

Proof

▶ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

▶ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

▶ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

▶ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

▶ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

P1

P′1

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 539/580

17 Augmenting Paths for Matchings

Proof

▶ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

▶ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

▶ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

▶ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

▶ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

P1

P′1

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 539/580

How to find an augmenting path?

Construct an alternating tree.

u

y

even nodes

odd nodes

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 540/580

How to find an augmenting path?

Construct an alternating tree.

u

y

x

even nodes

odd nodes

Case 1:
y is free vertex not
contained in T

you found
alternating path

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 540/580

How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 2:
y is matched vertex
not in T ; then
mate[y] ∉ T

grow the tree

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 541/580

How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 3:
y is already contained
in T as an odd vertex

ignore successor y

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 542/580

How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

does not happen in
bipartite graphs

17 Augmenting Paths for Matchings 2. Feb. 2024

Harald Räcke 543/580

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

graph G = (S ∪ S′, E)
S = {1, . . . , n}
S′ = {1′, . . . , n′}

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

start with an
empty matching

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

free: number of
unmatched nodes in S

r : root of current tree

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

as long as there are
unmatched nodes and
we did not yet try to

grow from all nodes we
continue

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

r is the new node that
we grow from.

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

If r is free start tree
construction

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

Initialize an empty tree.
Note that only nodes i′

have parent pointers.

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

Q is a queue (BFS!!!).

aug is a Boolean that
stores whether we
already found an
augmenting path.

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

as long as we did not
augment and there are
still unexamined leaves

continue...

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

take next unexamined
leaf

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

if x has unmatched
neighbour we found an
augmenting path (note
that y ≠ r because we
are in a bipartite graph)

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

do an augmentation...

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

setting aug = true
ensures that the tree
construction will not

continue

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

reduce number of free
nodes

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

if y is not in the tree yet

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

...put it into the tree

Algorithm 49 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free ← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← ∅; Q. append(r); aug ← false;
8: while aug = false and Q ≠ ∅ do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free ← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]);

add its buddy to the set
of unexamined leaves

18 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

▶ Input: undirected, bipartite graph G = L∪ R,E.

▶ an edge e = (ℓ, r) has weight we ≥ 0

▶ find a matching of maximum weight, where the weight of a

matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

▶ assume that |L| = |R| = n
▶ assume that there is an edge between every pair of nodes

(ℓ, r) ∈ V × V
▶ can assume goal is to construct maximum weight perfect

matching

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 545/580

Weighted Bipartite Matching

Theorem 91 (Halls Theorem)

A bipartite graph G = (L∪ R,E) has a perfect matching if and

only if for all sets S ⊆ L, |Γ(S)| ≥ |S|, where Γ(S) denotes the set

of nodes in R that have a neighbour in S.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 546/580

18 Weighted Bipartite Matching

s t

1

2

3

4

5
L R

1̃

2̃

3̃

4̃

5̃

S

Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.

▶ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

▶ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

▶ This gives RS ≥ |Γ(LS)|.
▶ The size of the cut is |L| − |LS| + |RS|.
▶ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 548/580

Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.

▶ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

▶ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

▶ This gives RS ≥ |Γ(LS)|.
▶ The size of the cut is |L| − |LS| + |RS|.
▶ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 548/580

Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
▶ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

▶ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

▶ This gives RS ≥ |Γ(LS)|.
▶ The size of the cut is |L| − |LS| + |RS|.
▶ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 548/580

Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
▶ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

▶ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

▶ This gives RS ≥ |Γ(LS)|.
▶ The size of the cut is |L| − |LS| + |RS|.
▶ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 548/580

Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
▶ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

▶ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

▶ This gives RS ≥ |Γ(LS)|.

▶ The size of the cut is |L| − |LS| + |RS|.
▶ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 548/580

Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
▶ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

▶ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

▶ This gives RS ≥ |Γ(LS)|.
▶ The size of the cut is |L| − |LS| + |RS|.

▶ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 548/580

Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.
▶ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

▶ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

▶ This gives RS ≥ |Γ(LS)|.
▶ The size of the cut is |L| − |LS| + |RS|.
▶ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 548/580

Algorithm Outline

Idea:

We introduce a node weighting x⃗. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

▶ Suppose that the node weights dominate the edge-weights in

the following sense:

xu + xv ≥ we for every edge e = (u,v).

▶ Let H(x⃗) denote the subgraph of G that only contains edges

that are tight w.r.t. the node weighting x⃗, i.e. edges

e = (u,v) for which we = xu + xv .

▶ Try to compute a perfect matching in the subgraph H(x⃗). If

you are successful you found an optimal matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 549/580

Algorithm Outline

Idea:

We introduce a node weighting x⃗. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

▶ Suppose that the node weights dominate the edge-weights in

the following sense:

xu + xv ≥ we for every edge e = (u,v).

▶ Let H(x⃗) denote the subgraph of G that only contains edges

that are tight w.r.t. the node weighting x⃗, i.e. edges

e = (u,v) for which we = xu + xv .

▶ Try to compute a perfect matching in the subgraph H(x⃗). If

you are successful you found an optimal matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 549/580

Algorithm Outline

Idea:

We introduce a node weighting x⃗. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

▶ Suppose that the node weights dominate the edge-weights in

the following sense:

xu + xv ≥ we for every edge e = (u,v).

▶ Let H(x⃗) denote the subgraph of G that only contains edges

that are tight w.r.t. the node weighting x⃗, i.e. edges

e = (u,v) for which we = xu + xv .

▶ Try to compute a perfect matching in the subgraph H(x⃗). If

you are successful you found an optimal matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 549/580

Algorithm Outline

Idea:

We introduce a node weighting x⃗. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

▶ Suppose that the node weights dominate the edge-weights in

the following sense:

xu + xv ≥ we for every edge e = (u,v).

▶ Let H(x⃗) denote the subgraph of G that only contains edges

that are tight w.r.t. the node weighting x⃗, i.e. edges

e = (u,v) for which we = xu + xv .

▶ Try to compute a perfect matching in the subgraph H(x⃗). If

you are successful you found an optimal matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 549/580

Algorithm Outline

Reason:

▶ The weight of your matching M∗ is∑
(u,v)∈M∗

w(u,v) =
∑

(u,v)∈M∗
(xu + xv) =

∑
v
xv .

▶ Any other perfect matching M (in G, not necessarily in H(x⃗))
has ∑

(u,v)∈M
w(u,v) ≤

∑
(u,v)∈M

(xu + xv) =
∑
v
xv .

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 550/580

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S ⊆ L, with

|Γ(S)| < |S|, where Γ denotes the neighbourhood w.r.t. the

subgraph H(x⃗).

Idea: reweight such that:

▶ the total weight assigned to nodes decreases

▶ the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an

optimal solution (we analyze the running time later).

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 551/580

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S ⊆ L, with

|Γ(S)| < |S|, where Γ denotes the neighbourhood w.r.t. the

subgraph H(x⃗).

Idea: reweight such that:

▶ the total weight assigned to nodes decreases

▶ the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an

optimal solution (we analyze the running time later).

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 551/580

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S ⊆ L, with

|Γ(S)| < |S|, where Γ denotes the neighbourhood w.r.t. the

subgraph H(x⃗).

Idea: reweight such that:

▶ the total weight assigned to nodes decreases

▶ the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an

optimal solution (we analyze the running time later).

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 551/580

Changing Node Weights

Increase node-weights in Γ(S) by +δ, and decrease the

node-weights in S by −δ.

▶ Total node-weight decreases.

▶ Only edges from S to R − Γ(S)
decrease in their weight.

▶ Since, none of these edges is

tight (otw. the edge would be

contained in H(x⃗), and hence

would go between S and Γ(S))
we can do this decrement for

small enough δ > 0 until a new

edge gets tight.

L R

S

Γ(S)

−δ

+δ

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 552/580

Changing Node Weights

Increase node-weights in Γ(S) by +δ, and decrease the

node-weights in S by −δ.

▶ Total node-weight decreases.

▶ Only edges from S to R − Γ(S)
decrease in their weight.

▶ Since, none of these edges is

tight (otw. the edge would be

contained in H(x⃗), and hence

would go between S and Γ(S))
we can do this decrement for

small enough δ > 0 until a new

edge gets tight.

L R

S

Γ(S)

−δ

+δ

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 552/580

Changing Node Weights

Increase node-weights in Γ(S) by +δ, and decrease the

node-weights in S by −δ.

▶ Total node-weight decreases.

▶ Only edges from S to R − Γ(S)
decrease in their weight.

▶ Since, none of these edges is

tight (otw. the edge would be

contained in H(x⃗), and hence

would go between S and Γ(S))
we can do this decrement for

small enough δ > 0 until a new

edge gets tight.

L R

S

Γ(S)

−δ

+δ

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 552/580

Changing Node Weights

Increase node-weights in Γ(S) by +δ, and decrease the

node-weights in S by −δ.

▶ Total node-weight decreases.

▶ Only edges from S to R − Γ(S)
decrease in their weight.

▶ Since, none of these edges is

tight (otw. the edge would be

contained in H(x⃗), and hence

would go between S and Γ(S))
we can do this decrement for

small enough δ > 0 until a new

edge gets tight.
L R

S

Γ(S)

−δ

+δ

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 552/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

δ = 1

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

δ = 1

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 553/580

Weighted Bipartite Matching

Edges not drawn have weight 0.

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 553/580

Analysis

How many iterations do we need?

▶ One reweighting step increases the number of edges out of S
by at least one.

▶ Assume that we have a maximum matching that saturates

the set Γ(S), in the sense that every node in Γ(S) is matched

to a node in S (we will show that we can always find S and a

matching such that this holds).

▶ This matching is still contained in the new graph, because all

its edges either go between Γ(S) and S or between L− S and

R − Γ(S).
▶ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 554/580

Analysis

How many iterations do we need?

▶ One reweighting step increases the number of edges out of S
by at least one.

▶ Assume that we have a maximum matching that saturates

the set Γ(S), in the sense that every node in Γ(S) is matched

to a node in S (we will show that we can always find S and a

matching such that this holds).

▶ This matching is still contained in the new graph, because all

its edges either go between Γ(S) and S or between L− S and

R − Γ(S).
▶ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 554/580

Analysis

How many iterations do we need?

▶ One reweighting step increases the number of edges out of S
by at least one.

▶ Assume that we have a maximum matching that saturates

the set Γ(S), in the sense that every node in Γ(S) is matched

to a node in S (we will show that we can always find S and a

matching such that this holds).

▶ This matching is still contained in the new graph, because all

its edges either go between Γ(S) and S or between L− S and

R − Γ(S).

▶ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 554/580

Analysis

How many iterations do we need?

▶ One reweighting step increases the number of edges out of S
by at least one.

▶ Assume that we have a maximum matching that saturates

the set Γ(S), in the sense that every node in Γ(S) is matched

to a node in S (we will show that we can always find S and a

matching such that this holds).

▶ This matching is still contained in the new graph, because all

its edges either go between Γ(S) and S or between L− S and

R − Γ(S).
▶ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 554/580

Analysis

▶ We will show that after at most n reweighting steps the size

of the maximum matching can be increased by finding an

augmenting path.

▶ This gives a polynomial running time.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 555/580

How to find an augmenting path?

Construct an alternating tree.

u

y

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 556/580

How to find an augmenting path?

Construct an alternating tree.

u

y

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 556/580

Analysis

How do we find S?

▶ Start on the left and compute an alternating tree, starting at

any free node u.

▶ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

▶ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

▶ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 557/580

Analysis

How do we find S?

▶ Start on the left and compute an alternating tree, starting at

any free node u.

▶ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

▶ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

▶ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 557/580

Analysis

How do we find S?

▶ Start on the left and compute an alternating tree, starting at

any free node u.

▶ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

▶ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

▶ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 557/580

Analysis

How do we find S?

▶ Start on the left and compute an alternating tree, starting at

any free node u.

▶ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

▶ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

▶ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 557/580

Analysis

▶ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

▶ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

▶ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

▶ An augmentation takes at most O(n) time.

▶ In total we obtain a running time of O(n4).
▶ A more careful implementation of the algorithm obtains a

running time of O(n3).

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 558/580

Analysis

▶ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

▶ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

▶ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

▶ An augmentation takes at most O(n) time.

▶ In total we obtain a running time of O(n4).
▶ A more careful implementation of the algorithm obtains a

running time of O(n3).

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 558/580

Analysis

▶ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

▶ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

▶ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

▶ An augmentation takes at most O(n) time.

▶ In total we obtain a running time of O(n4).
▶ A more careful implementation of the algorithm obtains a

running time of O(n3).

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 558/580

Analysis

▶ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

▶ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

▶ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

▶ An augmentation takes at most O(n) time.

▶ In total we obtain a running time of O(n4).
▶ A more careful implementation of the algorithm obtains a

running time of O(n3).

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 558/580

Analysis

▶ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

▶ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

▶ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

▶ An augmentation takes at most O(n) time.

▶ In total we obtain a running time of O(n4).

▶ A more careful implementation of the algorithm obtains a

running time of O(n3).

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 558/580

Analysis

▶ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

▶ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

▶ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

▶ An augmentation takes at most O(n) time.

▶ In total we obtain a running time of O(n4).
▶ A more careful implementation of the algorithm obtains a

running time of O(n3).

18 Weighted Bipartite Matching 2. Feb. 2024

Harald Räcke 558/580

How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

The cycle w ↔ y − x ↔ w
is called a blossom.
w is called the base of the
blossom (even node!!!).
The path u-w is called the
stem of the blossom.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 559/580

How to find an augmenting path?

Construct an alternating tree.

u

x

y

w

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

The cycle w ↔ y − x ↔ w
is called a blossom.
w is called the base of the
blossom (even node!!!).
The path u-w is called the
stem of the blossom.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 559/580

How to find an augmenting path?

Construct an alternating tree.

u

x

y

w

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

The cycle w ↔ y − x ↔ w
is called a blossom.
w is called the base of the
blossom (even node!!!).
The path u-w is called the
stem of the blossom.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 559/580

Flowers and Blossoms

Definition 92

A flower in a graph G = (V , E) w.r.t. a matching M and a (free)

root node r , is a subgraph with two components:

▶ A stem is an even length alternating path that starts at the

root node r and terminates at some node w. We permit the

possibility that r = w (empty stem).

▶ A blossom is an odd length alternating cycle that starts and

terminates at the terminal node w of a stem and has no

other node in common with the stem. w is called the base of

the blossom.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 560/580

Flowers and Blossoms

Definition 92

A flower in a graph G = (V , E) w.r.t. a matching M and a (free)

root node r , is a subgraph with two components:

▶ A stem is an even length alternating path that starts at the

root node r and terminates at some node w. We permit the

possibility that r = w (empty stem).

▶ A blossom is an odd length alternating cycle that starts and

terminates at the terminal node w of a stem and has no

other node in common with the stem. w is called the base of

the blossom.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 560/580

Flowers and Blossoms

Definition 92

A flower in a graph G = (V , E) w.r.t. a matching M and a (free)

root node r , is a subgraph with two components:

▶ A stem is an even length alternating path that starts at the

root node r and terminates at some node w. We permit the

possibility that r = w (empty stem).

▶ A blossom is an odd length alternating cycle that starts and

terminates at the terminal node w of a stem and has no

other node in common with the stem. w is called the base of

the blossom.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 560/580

Flowers and Blossoms

1

2

3

4

5

6

7

8

9

1 2 3 4 5

6

7

8

9

10

11

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 561/580

Flowers and Blossoms

Properties:

1. A stem spans 2ℓ+ 1 nodes and contains ℓ matched edges for

some integer ℓ ≥ 0.

2. A blossom spans 2k+ 1 nodes and contains k matched

edges for some integer k ≥ 1. The matched edges match all

nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of

an alternating tree starting at r).

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 562/580

Flowers and Blossoms

Properties:

1. A stem spans 2ℓ+ 1 nodes and contains ℓ matched edges for

some integer ℓ ≥ 0.

2. A blossom spans 2k+ 1 nodes and contains k matched

edges for some integer k ≥ 1. The matched edges match all

nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of

an alternating tree starting at r).

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 562/580

Flowers and Blossoms

Properties:

1. A stem spans 2ℓ+ 1 nodes and contains ℓ matched edges for

some integer ℓ ≥ 0.

2. A blossom spans 2k+ 1 nodes and contains k matched

edges for some integer k ≥ 1. The matched edges match all

nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of

an alternating tree starting at r).

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 562/580

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable

from the root (or from the base of the blossom) through two

distinct alternating paths; one with even and one with odd

length.

5. The even alternating path to x terminates with a matched

edge and the odd path with an unmatched edge.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 563/580

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable

from the root (or from the base of the blossom) through two

distinct alternating paths; one with even and one with odd

length.

5. The even alternating path to x terminates with a matched

edge and the odd path with an unmatched edge.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 563/580

Flowers and Blossoms

1 2 3 4 5

6

7

8

9

10

11

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 564/580

Shrinking Blossoms

When during the alternating tree construction we discover a

blossom B we replace the graph G by G′ = G/B, which is

obtained from G by contracting the blossom B.

▶ Delete all vertices in B (and its incident edges) from G.

▶ Add a new (pseudo-)vertex b. The new vertex b is connected

to all vertices in V \ B that had at least one edge to a vertex

from B.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 565/580

Shrinking Blossoms

When during the alternating tree construction we discover a

blossom B we replace the graph G by G′ = G/B, which is

obtained from G by contracting the blossom B.

▶ Delete all vertices in B (and its incident edges) from G.

▶ Add a new (pseudo-)vertex b. The new vertex b is connected

to all vertices in V \ B that had at least one edge to a vertex

from B.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 565/580

Shrinking Blossoms

When during the alternating tree construction we discover a

blossom B we replace the graph G by G′ = G/B, which is

obtained from G by contracting the blossom B.

▶ Delete all vertices in B (and its incident edges) from G.

▶ Add a new (pseudo-)vertex b. The new vertex b is connected

to all vertices in V \ B that had at least one edge to a vertex

from B.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 565/580

Shrinking Blossoms

▶ Edges of T that connect a node u
not in B to a node in B become

tree edges in T ′ connecting u to

b.

▶ Matching edges (there is at most

one) that connect a node u not in

B to a node in B become matching

edges in M′.
▶ Nodes that are connected in G to

at least one node in B become

connected to b in G′.

w

x y

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 566/580

Shrinking Blossoms

▶ Edges of T that connect a node u
not in B to a node in B become

tree edges in T ′ connecting u to

b.

▶ Matching edges (there is at most

one) that connect a node u not in

B to a node in B become matching

edges in M′.
▶ Nodes that are connected in G to

at least one node in B become

connected to b in G′.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 566/580

Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

56

14

2

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

56

14

2

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

56

14

2

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

8

1011

14

15

1

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Example: Blossom Algorithm

0123

456

7

89

10111213

14

151617

different
choices
different
choices

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 567/580

Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the

root, B the blossom, and w the base. Let graph G′ = G/B with

pseudonode b. Let M′ be the matching in the contracted graph.

Lemma 93

If G′ contains an augmenting path P ′ starting at r (or the

pseudo-node containing r) w.r.t. the matching M′ then G
contains an augmenting path starting at r w.r.t. matching M.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 568/580

Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the

root, B the blossom, and w the base. Let graph G′ = G/B with

pseudonode b. Let M′ be the matching in the contracted graph.

Lemma 93

If G′ contains an augmenting path P ′ starting at r (or the

pseudo-node containing r) w.r.t. the matching M′ then G
contains an augmenting path starting at r w.r.t. matching M.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 568/580

Correctness

Proof.

If P ′ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

▶ Next suppose that the stem is non-empty.

P1 P3
r i b ` q

P1

P3

r i w

k ` q

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 569/580

Correctness

Proof.

If P ′ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

▶ Next suppose that the stem is non-empty.

P1 P3
r i b ` q

P1

P3

r i w

k ` q

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 569/580

Correctness

Proof.

If P ′ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

▶ Next suppose that the stem is non-empty.

P1 P3
r i b ` q

P1

P3

r i w

k ` q

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 569/580

Correctness

Proof.

If P ′ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

▶ Next suppose that the stem is non-empty.

P1 P3
r i b ` q

P1

P3

r i w

k ` q

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 569/580

Correctness

▶ After the expansion ℓ must be incident to some node in the

blossom. Let this node be k.

▶ If k ≠ w there is an alternating path P2 from w to k that

ends in a matching edge.

▶ P1 ◦ (i,w) ◦ P2 ◦ (k, ℓ) ◦ P3 is an alternating path.

▶ If k = w then P1 ◦ (i,w) ◦ (w, ℓ) ◦ P3 is an alternating path.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 570/580

Correctness

Proof.

Case 2: empty stem

▶ If the stem is empty then after expanding the blossom,

w = r .

P3
b ` q

P3

w

k ` q

▶ The path r ◦ P2 ◦ (k, ℓ) ◦ P3 is an alternating path.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 571/580

Correctness

Proof.

Case 2: empty stem

▶ If the stem is empty then after expanding the blossom,

w = r .
P3

b ` q

P3

w

k ` q

▶ The path r ◦ P2 ◦ (k, ℓ) ◦ P3 is an alternating path.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 571/580

Correctness

Proof.

Case 2: empty stem

▶ If the stem is empty then after expanding the blossom,

w = r .
P3

b ` q

P3

w

k ` q

▶ The path r ◦ P2 ◦ (k, ℓ) ◦ P3 is an alternating path.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 571/580

Correctness

Proof.

Case 2: empty stem

▶ If the stem is empty then after expanding the blossom,

w = r .
P3

b ` q

P3

w

k ` q

▶ The path r ◦ P2 ◦ (k, ℓ) ◦ P3 is an alternating path.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 571/580

Correctness

Lemma 94

If G contains an augmenting path P from r to q w.r.t. matching

M then G′ contains an augmenting path from r (or the

pseudo-node containing r) to q w.r.t. M′.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 572/580

Correctness

Proof.

▶ If P does not contain a node from B there is nothing to prove.

▶ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 573/580

Correctness

Proof.

▶ If P does not contain a node from B there is nothing to prove.

▶ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 573/580

Correctness

Proof.

▶ If P does not contain a node from B there is nothing to prove.

▶ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 573/580

Correctness

Proof.

▶ If P does not contain a node from B there is nothing to prove.

▶ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 573/580

Correctness

Proof.

▶ If P does not contain a node from B there is nothing to prove.

▶ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 573/580

Correctness

Proof.

▶ If P does not contain a node from B there is nothing to prove.

▶ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 573/580

Correctness

Illustration for Case 1:

r

i

j q

b j q

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 574/580

Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.

Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.

Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

Search for an augmenting path
starting at r .

Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

A(i) contains neighbours of node i.

We create a copy Ā(i) so that we later
can shrink blossoms.

Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

found is just a Boolean that allows
to abort the search process...

Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

In the beginning no node is in the tree.

Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

Put the root in the tree.

list could also be a set or a stack.

Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

As long as there are nodes with
unexamined neighbours...

Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

...examine the next one

Algorithm 50 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ ∅ do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

If you found augmenting path
abort and start from next root.

Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

Examine the neighbours of a node i

Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

For all neighbours j do...

Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

You have found a blossom...

Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

You have found a free node which
gives you an augmenting path.

Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

If you find a matched node that is not
in the tree you grow...

Algorithm 51 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

mate(j) is a new node from
which you can grow further.

Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 578/580

Contract blossom identified by
nodes i and j

Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 578/580

Get all nodes of the blossom.

Time: O(m)

Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 578/580

Identify all neighbours of b.

Time: O(m) (how?)

Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 578/580

b will be an even node, and it has
unexamined neighbours.

Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 578/580

Every node that was adjacent to a node
in B is now adjacent to b

Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 578/580

Only for making a blossom
expansion easier.

Algorithm 52 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 578/580

Only delete links from nodes not in B to B.

When expanding the blossom again we can
recreate these links in time O(m).

Analysis

▶ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

▶ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
▶ There are at most n contractions as each contraction reduces

the number of vertices.

▶ The expansion can trivially be done in the same time as

needed for all contractions.

▶ An augmentation requires time O(n). There are at most n of

them.

▶ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 579/580

Analysis

▶ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

▶ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).

▶ There are at most n contractions as each contraction reduces

the number of vertices.

▶ The expansion can trivially be done in the same time as

needed for all contractions.

▶ An augmentation requires time O(n). There are at most n of

them.

▶ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 579/580

Analysis

▶ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

▶ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
▶ There are at most n contractions as each contraction reduces

the number of vertices.

▶ The expansion can trivially be done in the same time as

needed for all contractions.

▶ An augmentation requires time O(n). There are at most n of

them.

▶ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 579/580

Analysis

▶ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

▶ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
▶ There are at most n contractions as each contraction reduces

the number of vertices.

▶ The expansion can trivially be done in the same time as

needed for all contractions.

▶ An augmentation requires time O(n). There are at most n of

them.

▶ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 579/580

Analysis

▶ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

▶ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
▶ There are at most n contractions as each contraction reduces

the number of vertices.

▶ The expansion can trivially be done in the same time as

needed for all contractions.

▶ An augmentation requires time O(n). There are at most n of

them.

▶ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 579/580

Analysis

▶ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

▶ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
▶ There are at most n contractions as each contraction reduces

the number of vertices.

▶ The expansion can trivially be done in the same time as

needed for all contractions.

▶ An augmentation requires time O(n). There are at most n of

them.

▶ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 579/580

Example: Blossom Algorithm

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

1

0

1 2 3 4 5 6

7 9 10

13
14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

1

0

1 2 3 4 5 6

7 9 10

13
14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

1

0

1 2 3 4 5 6

7 9 10

13
14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2

3

3 4 5 6

10

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2

3

3 4 5 6

10

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2

3

3 4 5 6

10

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2

3

3 4 5 6

10

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2 3 4 5 6

9 10

13
14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

1

2

0

1 2 3 4 5 6

7 9 10

13
14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

1

2

0

1 2 3 4 5 6

7 9 10

13
14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

Example: Blossom Algorithm

2

0

1 2 3 4 5 6

7 8 9 10

11
12 13

14

15

19 Maximum Matching in General Graphs 2. Feb. 2024

Harald Räcke 580/580

	Matchings
	Definition
	Bipartite Matching via Flows
	Augmenting Paths for Matchings
	Weighted Bipartite Matching
	Maximum Matching in General Graphs

