
Winter Semester 2023/24

Advanced Algorithms

http://www14.in.tum.de/lehre/2023WS/ada/index.html.en

Susanne Albers

Department of Computer Science

TU München

2WS 2023/24

Organization

Lectures: 3 SWS
Tue, Thu 12–14
Lecture hall: Galileo 8120.EG.001

Exercises: 2 SWS

Teaching assistant: Sebastian Schubert,

Malte Kriegelsteiner

Tue 14–16: Room MI 02.04.011
Thu 14–16: Room MI 01.07.023

© S. Albers

3WS 2023/24

Organization

Problem sets: Made available on Tuesday by 10:00 am via Moodle.

Exam: Written exam, date will be announced.

Valuation: 6 ECTS (3 + 2 SWS)

Prerequisites: Grundlagen: Algorithmen und Datenstrukturen (GAD)
Diskrete Strukturen (DS)
Diskrete Wahrscheinlichkeitstheorie (DWT)

© S. Albers

4WS 2023/24

Literature

 Th. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to

Algorithms, Third Edition, MIT Press, 2009.

 J. Kleinberg and E. Tardos. Algorithm Design. Pearson, Addison

Wesley, 2006.

 M. Mitzenmacher and E. Upfal. Probability and Computing:

Randomization and Probabilistic Techniques in Algorithms and Data

Analysis. Second Edition, Cambridge University Press, 2017.

 Th. Ottmann und P. Widmayer: Algorithmen und Datenstrukturen.

6. Auflage, Springer Verlag, 2017.

 Research papers

© S. Albers

5WS 2023/24

Content

Design and analysis techniques for algorithms

• Divide and conquer

• Greedy approaches

• Dynamic programming

• Randomization

• Amortized analysis

© S. Albers

6WS 2023/24

Content

Problems and application areas:

• Geometric algorithms

• Algebraic algorithms

• Graph algorithms

• Data structures

• Algorithms on strings

• Optimization problems

• Complexity

© S. Albers

7WS 2023/24

Geometric divide-and-conquer

Closest Pair Problem:

Given a set S of n points in the plane, find a pair of points with the

smallest distance.

© S. Albers

8WS 2023/24

Line segment intersection

Find all pairs of intersecting line segments.

...........

......

© S. Albers

9WS 2023/24

Fast Fourier Transform

Multiplication

 
 

0

1

1

0

1

1

bxbxbxq
axaxaxp

n

n

n

n







][, xRqp 

© S. Albers

      
0

1

1

2

2

00

cxcxc
bxbaxaxqxp

n

n

n

n

n

n







10WS 2023/24

Fast Fourier Transform

 FFT algorithms compute the discrete Fourier transform (DFT).

 Many applications in engineering, science and mathematics.

Digital signal processing (e.g. UMTS and LTE)

Image processing

Data compression

Partial differential equations

 Popular algorithm by J. Cooley and J.W. Tukey, 1965, based on

earlier ideas of C.F. Gauß in 1805.

 Included in Top 10 Algorithms of the 20th Century by IEEE journal

Computing in Science & Engineering (2000).

© S. Albers

11WS 2023/24

Randomization

Algorithm may make random choices.

Advantages: Speed and simplicity

• Types of randomized algorithms

• Randomized primality test

• Cryptography: RSA algorithm

© S. Albers

12WS 2023/24

Randomized Search Trees

key

priority

a b c d e f g

3 7 4 1 5 2 6

d

1

a

3

f

2

c

4

e

5

g

6

b

7
© S. Albers

13WS 2023/24

Minimum cuts

© S. Albers

14WS 2023/24

Suffix Trees

Static texts

• Literature databases

• Library systems

• Gene databases

• World Wide Web

Search index

for a text  in order to search for several patterns .

Substring search in time O(||).

© S. Albers

15

Suffix tree

babaabc
a

abc
baabc

abc

a b

 = bbabaabc

b

caabc

c

c

© S. AlbersWS 2023/24

16WS 2023/24

Amortized analysis

• Best case

• Worst case

• Average case

• Amortized worst case

What is the average cost of an operation in a worst case

sequence of operations?

Average execution time of an operation is small, even though a

single operation can have a high execution time.

17WS 2023/24

Fibonacci heaps

18WS 2023/24

Greedy algorithms

Basic examples

• The coin-changing problem

• The Traveling Salesman Problem

Scheduling problems

• Interval scheduling

• Scheduling to minimize lateness

Discussion: Shortest paths and minimum spanning trees

© S. Albers

In each step make the choice that looks best at the moment

19WS 2023/24

Dynamic programming

Recursive approach: Solve a problem by solving several smaller

analogous subproblems of the same type. Then combine these

solutions to generate a solution to the original problem.

Drawback: Repeated computation of solutions

Dynamic-programming method: Once a subproblem has been

solved, store its solution in a table so that it can be retrieved later

by simple table lookup.

© S. Albers

20WS 2023/24

Dynamic programming

• Matrix chain multiplication

• Segmented least squares

• Optimal binary search trees

• Subset sums & knapsacks

© S. Albers

21WS2023/24

Maximum flow problem

10

5

10

5

5

5

9

9

3

3

3

8 8

5

15

12

4

4

4
2

2

7

s

t

01 - Divide and Conquer

23WS 2023/24

The divide-and-conquer paradigm

• Quicksort

• Formulation and analysis of the paradigm

• Geometric divide-and-conquer

- Closest pair problem

- Line segment intersection

- Voronoi diagrams

© S. Albers

24WS 2023/24

function Quick (S: sequence): sequence;

{returns the sorted sequence S}

begin

if #S ≤ 1 then Quick:=S;

else { choose pivot/splitter element v in S;

partition S into Sl with elements ≤ v,

and Sr with elements ≥ v;

Quick:= }

end;

Quicksort: Sorting by partitioning

S

Sl ≤ v v Sr ≥ v

v

Quick(Sl) v Quick(Sr)

© S. Albers

25WS 2023/24

Formulation of the D&C paradigm

Divide-and-conquer method for solving a

problem instance of size n:

1. Divide

n > c: Divide the problem into k subproblems of

sizes n1,...,nk (k  2).

n  c: Solve the problem directly.

2. Conquer

Solve the k subproblems in the same way

(recursively).

3. Merge

Combine the partial solutions to generate a

solution for the original instance.

© S. Albers

26WS 2023/24

Analysis

T(n) : maximum number of steps necessary for solving an instance of

size n

T(n) =

Special case: k = 2, n1 = n2 = n/2

cost for divide and merge: DM(n)

T(1) = a

T(n) = 2T(n/2) + DM(n)

© S. Albers

27WS 2023/24

Geometric divide-and-conquer

Closest Pair Problem:

Given a set S of n points in the plane, find a pair of points with the

smallest distance.

© S. Albers

28WS 2023/24

Divide-and-conquer method

1. Divide: Divide S into two equal sized sets Sl und Sr .

2. Conquer: dl = mindist(Sl) dr = mindist(Sr)

3. Merge: dlr = min{ d(pl ,pr) | pl  Sl , pr  Sr }

return min{dl , dr , dlr }

Sr
Sl

S
dl

dlr

dr

© S. Albers

29WS 2023/24

Divide-and-conquer method

SrSl

S

p d

d = min {dl , dr }

1. Divide: Divide S into two equal sets Sl und Sr .

2. Conquer: dl = mindist(Sl) dr = mindist(Sr)

3. Merge: dlr = min{ d(pl ,pr) | pl  Sl , pr  Sr }

return min{dl , dr , dlr }

Computation of dlr :

30WS 2023/24

Merge step

1. Consider only points within distance d of the bisection line,

in the order of increasing y-coordinates.

2. For each point p consider all points q within y-distance

at most d; there are at most 7 such points.

© S. Albers

31WS 2023/24

Merge step

d

d

d d

d = min { dl , dr }

p

S

Sl Sr

p1

p3

p4

p2

© S. Albers

32WS 2023/24

Implementation

 Initially sort the points in S in order of increasing x-coordinates

O(n log n).

Each bisection line can be determined in O(1) time.

 Once the subproblems Sl , Sr are solved, generate a list of the

points in S in order of increasing y-coordinates.

This can be done by merging the sorted lists of points of Sl , Sr

(merge sort).

© S. Albers

33

Sorted lists

© S. Albers

Sl Sr

Sll Slr Srl Srr

WS 2023/24

34WS 2023/24

Running time (divide-and-conquer)

 Guess the solution by repeated substitution.

 Verify by induction.

Solution: O(n log n)

© S. Albers

35WS 2023/24

Guess by repeated substitution

annT

anannTannT

anannTannT

anannTannTnT

4)16/(16

3)8/)16/(2(83)8/(8

2)4/)8/(2(42)4/(4

)2/)4/(2(2)2/(2)(


















3

3)2/(2
)(

na

nannT
nT

© S. Albers

36WS 2023/24

Verify by induction

1

1

(2) 2 (2) 2

2 2 (1) 2

2 (1) 2

2

log

i i i

i i

i i

i

T T a

a i a

a i a

a i

an n





 

  

  





© S. Albers

37WS 2023/24

Line segment intersection

Find all pairs of intersecting line segments.

...........

......

© S. Albers

38WS 2023/24

Line segment intersection

Find all pairs of intersecting line segments.

A

B
C

D

E

A.

B.

C.

D.

E.

.A
.D

.B
.C

.E

The representation of the horizontal line segments by their endpoints

allows for a vertical partitioning of all objects.

© S. Albers

39WS 2023/24

ReportCuts

Input: Set S of vertical line segments and endpoints of

horizontal line segments.

Output: All intersections of vertical line segments with horizontal

line segments, for which at least one endpoint is in S.

1. Divide

if |S| > 1

then using vertical bisection line L, divide S into equal size

sets S1 (to the left of L) and S2 (to the right of L)

else S contains no intersections

© S. Albers

40WS 2023/24

ReportCuts

A

B

C

D

E

A
D

B
C

ES

S1 S2

1. Divide:

2. Conquer:

ReportCuts(S1); ReportCuts(S2)

© S. Albers

41WS 2023/24

ReportCuts

3. Merge: ???

Possible intersections of a horizontal line segment h in S1

Case 1: both endpoints in S1

h

S1
S2

© S. Albers

42WS 2023/24

ReportCuts

h

S1
S2

Case 2: only one endpoint of h in S1

2 a) right endpoint in S1

© S. Albers

43WS 2023/24

ReportCuts

2 b) left endpoint of h in S1

h
right endpoint in S2

h

right endpoint not in S2

S2S1

S1
S2

© S. Albers

44WS 2023/24

Procedure: ReportCuts(S)

3. Merge:

Return the intersections of vertical line segments in S2 with

horizontal line segments in S1, for which the left endpoint is in S1

and the right endpoint is neither in S1 nor in S2 .

Proceed analogously for S1 .

S1 S2

© S. Albers

45WS 2023/24

Implementation

Set S

L(S): y-coordinates of all segments whose left endpoint in S,

but right endpoint is not in S.

R(S): y-coordinates of all segments whose right endpoint is in S,

but left endpoint is not in S.

V(S): y-intervals of all vertical line segments in S.

© S. Albers

46WS 2023/24

Base cases

S contains only one element e.

Case 1: e = (x,y) is a left endpoint of horizontal line segment s

L(S) = {(y,s)} R(S) =  V(S) = 

Case 2: e = (x,y) is a right endpoint of horizontal line segment s

L(S) =  R(S) = {(y,s)} V(S) = 

Case 3: e = (x, y1, y2) is a vertical line segment s

L(S) =  R(S) =  V(S) = {([y1, y2],s)}

© S. Albers

47WS 2023/24

Merge step

Assume that L(Si), R(Si), V(Si) are known for i = 1,2.

S = S1  S2

L(S) = L(S1)\R(S2)  L(S2)

R(S) = R(S2)\L(S1)  R(S1)

V(S) = V(S1)  V(S2)

L, R: ordered by increasing y-coordinates (and segment number)

linked lists

V: ordered by increasing lower endpoints

linked list

© S. Albers

48WS 2023/24

Output of the intersections

V(S2)

h3

h2

h1

L(S1)\R(S2)

© S. Albers

49WS 2023/24

Running time

Initially, the input (vertical line segments, left/right endpoints of

horizontal line segments) has to be sorted and stored in an array.

Divide-and-conquer:

T(n) = 2T(n/2) + a∙n + size of output

T(1) = O(1)

O(n log n + k) k = # intersections

© S. Albers

50WS 2023/24

Computation of a Voronoi diagram

Input: Set of sites

Output: Partition of the plane into regions, each consisting of the

points closer to one particular site than to any other site.

© S. Albers

51WS 2023/24

Definition of Voronoi diagrams

P : Set of sites

H(p | p’) = {x | x is closer to p than to p’ }

Voronoi region of p:

)'|()(
}\{'


pPp

ppHpVR




© S. Albers

52WS 2023/24

Computation of a Voronoi Diagram

Divide: Partition the set of sites into two equal sized sets.

Conquer: Recursive computation of the two smaller Voronoi diagrams.

Stopping condition: The Voronoi diagram of a single site is the

whole plane.

Merge: Connect the diagrams by adding new edges.

© S. Albers

53WS 2023/24

Computation of a Voronoi diagram

Output: The complete Voronoi diagram.

Running time: O(n log n), where n is the number of sites.

© S. Albers

