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Organization

Lectures: 3 SWS
Tue, Thu 12–14
Lecture hall: Galileo 8120.EG.001

Exercises:        2 SWS

Teaching assistant: Sebastian Schubert,

Malte Kriegelsteiner

Tue 14–16: Room MI 02.04.011
Thu 14–16: Room MI 01.07.023

© S. Albers
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Organization

Problem sets: Made available on Tuesday by 10:00 am via Moodle. 

Exam: Written exam, date will be announced.

Valuation: 6 ECTS (3 + 2 SWS)

Prerequisites: Grundlagen: Algorithmen und Datenstrukturen (GAD)
Diskrete Strukturen (DS)
Diskrete Wahrscheinlichkeitstheorie (DWT)

© S. Albers
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Literature

 Th. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to

Algorithms, Third Edition, MIT Press, 2009.

 J. Kleinberg and E. Tardos. Algorithm Design. Pearson, Addison 

Wesley, 2006.

 M. Mitzenmacher and E. Upfal. Probability and Computing: 

Randomization and Probabilistic Techniques in Algorithms and Data 

Analysis. Second Edition, Cambridge University Press, 2017.

 Th. Ottmann und P. Widmayer: Algorithmen und Datenstrukturen.  

6. Auflage, Springer Verlag, 2017.

 Research papers

© S. Albers
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Content

Design and analysis techniques for algorithms

• Divide and conquer

• Greedy approaches

• Dynamic programming

• Randomization

• Amortized analysis

© S. Albers
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Content

Problems and application areas:

• Geometric algorithms

• Algebraic algorithms

• Graph algorithms

• Data structures

• Algorithms on strings

• Optimization problems

• Complexity

© S. Albers
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Geometric divide-and-conquer 

Closest Pair Problem:

Given a set S of n points in the plane, find a pair of points with the

smallest distance.

© S. Albers
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Line segment intersection

Find all pairs of intersecting line segments.

...........

......

© S. Albers
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Fast Fourier Transform

Multiplication
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Fast Fourier Transform

 FFT algorithms compute the discrete Fourier transform (DFT).

 Many applications in engineering, science and mathematics. 

Digital signal processing (e.g. UMTS and LTE)

Image processing

Data compression

Partial differential equations

 Popular algorithm by J. Cooley and J.W. Tukey, 1965, based on 

earlier ideas of C.F. Gauß in 1805. 

 Included in Top 10 Algorithms of the 20th Century by IEEE journal

Computing in Science & Engineering (2000).

© S. Albers
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Randomization

Algorithm may make random choices.

Advantages: Speed and simplicity

• Types of randomized algorithms

• Randomized primality test

• Cryptography: RSA algorithm

© S. Albers
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Randomized Search Trees 
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Minimum cuts

© S. Albers
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Suffix Trees

Static texts

• Literature databases

• Library systems

• Gene databases

• World Wide Web

Search index

for a text  in order to search for several patterns .

Substring search in time O(||).

© S. Albers
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Suffix tree
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Amortized analysis

• Best case

• Worst case

• Average case

• Amortized worst case

What is the average cost of an operation in a worst case

sequence of operations?

Average execution time of an operation is small, even though a 

single operation can have a high execution time. 
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Fibonacci heaps
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Greedy algorithms

Basic examples

• The coin-changing problem

• The Traveling Salesman Problem

Scheduling problems

• Interval scheduling

• Scheduling to minimize lateness

Discussion: Shortest paths and minimum spanning trees

© S. Albers
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Dynamic programming

Recursive approach: Solve a problem by solving several smaller

analogous subproblems of the same type. Then combine these

solutions to generate a solution to the original problem.

Drawback: Repeated computation of solutions

Dynamic-programming method: Once a subproblem has been

solved, store its solution in a table so that it can be retrieved later

by simple table lookup.

© S. Albers
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Dynamic programming

• Matrix chain multiplication

• Segmented least squares

• Optimal binary search trees

• Subset sums & knapsacks

© S. Albers
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Maximum flow problem
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The divide-and-conquer paradigm

• Quicksort

• Formulation and analysis of the paradigm

• Geometric divide-and-conquer

- Closest pair problem

- Line segment intersection

- Voronoi diagrams

© S. Albers
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function Quick (S: sequence): sequence;

{returns the sorted sequence S}

begin

if #S ≤ 1 then Quick:=S;

else { choose pivot/splitter element v in S;

partition S into Sl with elements ≤ v,

and Sr with elements ≥ v;

Quick:=                                       }

end;

Quicksort: Sorting by partitioning

S

Sl ≤ v v Sr ≥ v

v

Quick(Sl) v Quick(Sr)

© S. Albers
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Formulation of the D&C paradigm

Divide-and-conquer method for solving a 

problem instance of size n:

1. Divide

n > c: Divide the problem into k subproblems of

sizes n1,...,nk (k  2).

n  c: Solve the problem directly.

2. Conquer

Solve the k subproblems in the same way

(recursively).

3. Merge

Combine the partial solutions to generate a 

solution for the original instance.

© S. Albers
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Analysis

T(n) : maximum number of steps necessary for solving an instance of 

size n

T(n) =

Special case: k = 2, n1 = n2 = n/2

cost for divide and merge: DM(n)

T(1) = a

T(n) = 2T(n/2) + DM(n)

© S. Albers
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Geometric divide-and-conquer 

Closest Pair Problem:

Given a set S of n points in the plane, find a pair of points with the

smallest distance.

© S. Albers
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Divide-and-conquer method

1. Divide: Divide S into two equal sized sets Sl und Sr .

2. Conquer: dl = mindist(Sl )      dr = mindist(Sr )

3. Merge: dlr = min{ d(pl ,pr ) | pl  Sl , pr  Sr }

return min{dl , dr , dlr }

Sr
Sl

S
dl

dlr

dr

© S. Albers
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Divide-and-conquer method

SrSl

S

p d

d = min {dl , dr }

1. Divide: Divide S into two equal sets Sl und Sr .

2. Conquer: dl = mindist(Sl )      dr = mindist(Sr )

3. Merge: dlr = min{ d(pl ,pr ) | pl  Sl , pr  Sr }

return min{dl , dr , dlr }

Computation of dlr :
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Merge step

1. Consider only points within distance d of the bisection line,

in the order of increasing y-coordinates.

2. For each point p consider all points q within y-distance

at most d; there are at most 7 such points. 

© S. Albers
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Merge step

d

d

d d

d = min { dl , dr }

p

S

Sl Sr

p1

p3

p4

p2

© S. Albers
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Implementation

 Initially sort the points in S in order of increasing x-coordinates

O(n log n).

Each bisection line can be determined in O(1) time.

 Once the subproblems Sl , Sr are solved, generate a list of the 

points in S in order of increasing y-coordinates. 

This can be done by merging the sorted lists of points of Sl , Sr

(merge sort).

© S. Albers
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Sorted lists

© S. Albers

Sl Sr

Sll Slr Srl Srr
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Running time (divide-and-conquer)

 Guess the solution by repeated substitution.

 Verify by induction.

Solution: O(n log n)

© S. Albers
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Guess by repeated substitution
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Verify by induction
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Line segment intersection

Find all pairs of intersecting line segments.

...........

......

© S. Albers
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Line segment intersection

Find all pairs of intersecting line segments.

A

B
C

D

E

A.

B.

C.

D.

E.

.A
.D

.B
.C

.E

The representation of the horizontal line segments by their endpoints

allows for a vertical partitioning of all objects.

© S. Albers
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ReportCuts

Input: Set S of vertical line segments and endpoints of

horizontal line segments.

Output: All intersections of vertical line segments with horizontal

line segments, for which at least one endpoint is in S.

1. Divide

if |S| > 1

then using vertical bisection line L, divide S into equal size

sets S1 (to the left of L) and S2 (to the right of L)

else S contains no intersections

© S. Albers
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ReportCuts

A

B

C

D

E

A
D

B
C

ES

S1 S2

1. Divide:

2. Conquer:

ReportCuts(S1); ReportCuts(S2)

© S. Albers
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ReportCuts

3. Merge: ???

Possible intersections of a horizontal line segment h in S1

Case 1: both endpoints in S1

h

S1
S2

© S. Albers
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ReportCuts

h

S1
S2

Case 2: only one endpoint of h in S1

2 a) right endpoint in S1

© S. Albers
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ReportCuts

2 b) left endpoint of h in S1

h
right endpoint in S2

h

right endpoint not in S2

S2S1

S1
S2

© S. Albers
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Procedure: ReportCuts(S)

3. Merge:

Return the intersections of vertical line segments in S2 with

horizontal line segments in S1, for which the left endpoint is in S1

and the right endpoint is neither in S1 nor in S2 . 

Proceed analogously for S1 .

S1 S2

© S. Albers
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Implementation

Set S

L(S): y-coordinates of all segments whose left endpoint in S,       

but right endpoint is not in S.

R(S): y-coordinates of all segments whose right endpoint is in S,          

but left endpoint is not in S.

V(S): y-intervals of all vertical line segments in S.

© S. Albers
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Base cases

S contains only one element e.

Case 1: e = (x,y) is a left endpoint of horizontal line segment s

L(S) = {(y,s)} R(S) =  V(S) = 

Case 2: e = (x,y) is a right endpoint of horizontal line segment s

L(S) =  R(S) = {(y,s)} V(S) = 

Case 3: e = (x, y1, y2) is a vertical line segment s

L(S) =  R(S) =  V(S) = {([y1, y2],s)}

© S. Albers
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Merge step

Assume that L(Si), R(Si), V(Si) are known for i = 1,2.

S = S1  S2

L(S) = L(S1)\R(S2)  L(S2) 

R(S) = R(S2)\L(S1)  R(S1) 

V(S) = V(S1)  V(S2)

L, R: ordered by increasing y-coordinates (and segment number)

linked lists

V: ordered by increasing lower endpoints

linked list

© S. Albers
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Output of the intersections

V(S2)

h3

h2

h1

L(S1)\R(S2)

© S. Albers



49WS 2023/24

Running time

Initially, the input (vertical line segments, left/right endpoints of 

horizontal line segments) has to be sorted and stored in an array.

Divide-and-conquer:

T(n) = 2T(n/2) + a∙n + size of output

T(1) = O(1)

O(n log n + k) k = # intersections

© S. Albers
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Computation of a Voronoi diagram

Input: Set of sites

Output: Partition of the plane into regions, each consisting of the   

points closer to one particular site than to any other site.

© S. Albers
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Definition of Voronoi diagrams

P : Set of sites

H(p | p’ ) = {x | x is closer to p than to p’ }

Voronoi region of p:

)'|()(
}\{'


pPp

ppHpVR



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Computation of a Voronoi Diagram

Divide: Partition the set of sites into two equal sized sets.

Conquer: Recursive computation of the two smaller Voronoi diagrams.

Stopping condition: The Voronoi diagram of a single site is the

whole plane.

Merge: Connect the diagrams by adding new edges.

© S. Albers
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Computation of a Voronoi diagram

Output: The complete Voronoi diagram.

Running time: O(n log n), where n is the number of sites.

© S. Albers


