
1 Note that the cases do not cover all pos- |

6.2 Master Theorem ! sibilities. !
Lemma 5
Leta >1,b > 1 and € > 0 denote constants. Consider the
recurrence

T(n) = aT() +f(n) .

Case 1.
If f(n) = O(n'°%@-€) then T(n) = O(nlosra),

Case 2.
If f(n) = ©(n'°8(@ logk n) then T(n) = O(n'osr 21ogk ™1 n),
k>0.

Case 3.
If f(n) = Q(nlo8 (D +¢) and for sufficiently large n
af(y) <cf(n) for some constant c <1 then T(n) = O(f(n)).

m Harald Racke 55/70

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b!, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

‘m 6.2 Master Theorem
Harald Racke 56/70

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem
Harald Racke

57/70

6.2 Master Theorem

This gives
log, n—1

T(n) =nlo8a 4+ > a?(%) :

i=0

‘m 6.2 Master Theorem
Harald Racke 58/70

Case 1. Now suppose that f(n) < cn'o8ra—€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0

logyn-1 1\ logya—e

se 3 a(y)

i=0

log, n—1]
p-illogya-e) _ peiplogpay—i _ peig—i | = CnIOgb a-c Z (bS)l

i=0
zl 0‘1 ’:1;1 _ Cnlogba—E(beloghn . 1)/(196 _ 1)
= cnlo8ra=€(n€ — 1)/ (b€ - 1)
C

_ logp, a ., _ €
pe_ 1 r(mt=1)/(n7)

Hence,

Cc

T(n) < <

pe g > T(n) = 08 9).

‘m 6.2 Master Theorem
Harald Racke 59/70

Case 2. Now suppose that f(n) < cn'ogra,

log, n—1 n
T —nlowd =3 aif (1)
i=0
log, n—1 log, a
i(n
3 a(y)

i=0

IA

log, n—1
=cnlogra X

i=0
cnl°8 4log, n

Hence,

T(n) = 08 log,n) |= T(n) = 08 logn).

‘m 6.2 Master Theorem
Harald Racke 60/70

Case 2. Now suppose that f(n) = cn'og 4,

log, n—1 n
_ plogpa _ i
Tn)-—n = Z af(bi)
i=0
pn-1 log, a
i n Zb
>c > a i
i=0
log, n—-1
:Cnlogha Z 1
i=0
= cnl°® %log, n

Hence,

T(n) = Qn'%%log,n) |= T(n) = Q% 4logn).

m 6.2 Master Theorem
Harald Racke

61/70

Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

T(n) —nlogra =

logp n—1

i=0
log, n—1

<c > ai<%

i=0
-1

n:hgjﬁzlogbn‘ = cnlosra Z
i=0

S ()
)
o (3]

£-1
_ Cnlogba Z (‘g _ l)k

i=0

I3
= cnlogn ¢ Z ik
i=1

~ L pk+1
~1p

c
~ Enlogh a€k+1

= T(n) = O(n'°% 4 1ogk 1 n).

m Harald Racke

6.2 Master Theor

em

62/70

Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

o e =S at (1
3 ar(y)
logp n—1
< > cif(n) +omona)
i=0

q<112?_oql=1’lq_"q“ = <7 log a)
Hence,

T(n) <0O0(f(n)) =>Tn) = ®(f(n)).‘

m 6.2 Master Theorem
Harald Racke

63/70

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
110110101 A
110000]01100]01111 B
1011001000

This gives that two n-bit integers can be added in time O(n).

‘m 6.2 Master Theorem
Harald Racke 64/70

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11

10001

100010

e e et 0.0 0.0 000
L_atmostmin=2nbits. 1 0001000
10111011

1
1
method” for multiplying integers. |
I
1
]

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n: O((m + n)m) = O(nm).

‘m 6.2 Master Theorem
Harald Racke 65/70

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

By By ‘ X | Aj Ao

Then it holds that

A=A, -27 + Agand B=B; - 27 + By

Hence,

A-B=AB;-2"+ (A1By + AoBy) - 27 + AoBo

‘m 6.2 Master Theorem
Harald Racke 66/70

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| =1 then O(1)
2: return ag - bg O(1)
3: split A into Ag and A, O(n)
4: split B into By and B; O(n)
5. Z» — mult(Aq,B7) T(%)
6: Z1 — mult(Ay, Bg) + mult(Ag, By) ZT(%) +O(n)
7: Zo — mult(Ag, Bo) T(%)
8 return Z - 2" + 71 - 22 + 7 O(n)

We get the following recurrence:
n

T(n) = 4T<2

)+0(n).

‘m 6.2 Master Theorem
Harald Racke 67/70

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT () + f(n).
> Case 1: f(n) = O(nlogra-¢) T(n) = O(nlosra)
> Case 2: f(n) = O@(nlo%ralogn) T(n) = O(nlo8ralogh*! n)
> Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))

Inour case a =4, b =2, and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n?=¢) = O(n'o8ra=cy,

We get a running time of ©(n?) for our algorithm.

=> Not better then the “school method”.

‘m 6.2 Master Theorem
Harald Racke 68/70

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,
Algorithm 4 mult(A, B)
1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
A more precise | | 5 Z2 — mult(Ay, B1) T(%)
:(correct) analysis ! | 6: Zg — mult(Ag, Bo) T(%)
E?g;lsui?:gtgit E 7. 71 < mult(Ao +Al’BO;:—Bl) —Z>—Zp T(%) + (9(11)
i needs time '] 8: return Zp - 2" + 71 - 22 + Zp O(n)

T(%+1)+0(n).

I
I
I ey S, |

‘m 6.2 Master Theorem
Harald Racke 69/70

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT () + f(n).

> Case 1: f(n) = O(n'ogra-c) T(n) = ©(n'osr @)

> Case 2: f(n) = O(n'°ealogkn) T(n) = O(n'o8 4 1ogk™!

> Case 3: f(n) = Q(nlogb a+te) T(n) =0(f(n))

Again we are in Case 1. We get a running time of
O(n'°g23) ~ @(n'9).

A huge improvement over the “school method”.

n)

‘m 6.2 Master Theorem
Harald Racke

70/70

	Master Theorem

