6.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

m Harald Racke 123/142

6.3 Fibonacci Heaps

Additional implementation details:
> Every node x stores its degree in a field x. degree. Note that
this can be updated in constant time when adding a child to
X.
» Every node stores a boolean value x. marked that specifies
whether x is marked or not.

‘m 6.3 Fibonacci Heaps
Harald Racke 124/142

6.3 Fibonacci Heaps

The potential function:
> £(S) denotes the number of trees in the heap.
> m(S) denotes the number of marked nodes.
> We use the potential function ®(S) = t(S) + 2m(S).

The potential is ®(S) =5+2-3=11.

‘m 6.3 Fibonacci Heaps
Harald Racke 125/142

6.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant
amount of work, where the constant is chosen “big enough” (to
take care of the constants that occur).

To make this more explicit we use ¢ to denote the amount of
work that a unit of potential can pay for.

m 6.3 Fibonacci Heaps
Harald Racke 126/142

6.3 Fibonacci Heaps

S. minimum ()
> Access through the min-pointer.
> Actual cost O(1).
» No change in potential.
> Amortized cost O(1).

‘m 6.3 Fibonacci Heaps
Harald Racke 127/142

63 FibonaCCi HeapS replaced by red edges.

S.merge(S’)

> Merge the root lists.

» Adjust the min-pointer

Running time:
> Actual cost O(1).
» No change in potential.

» Hence, amortized cost is O(1).

- In the figure below the dashed edges are

I
: e The minimum of the left heap becomes
: the new minimum of the merged heap.

‘m 6.3 Fibonacci Heaps
Harald Racke

128/142

'x is inserted next to the min-pointer as

6.3 Fibonacci HeapS | this is our entry point into the root-list.

S. insert(x)
> Create a new tree containing x.
> Insert x into the root-list.
» Update min-pointer, if necessary.

Running time:
> Actual cost O(1).
» Change in potential is +1.
» Amortized costisc+ O(1) = O(1).

‘m 6.3 Fibonacci Heaps
Harald Racke 129/142

' D(min) is the number of !

6.3 FibonaCCi HeapS ! children of the node that E

! P
| stores the minimum.

S. delete-min(x)

> Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).

‘m 6.3 Fibonacci Heaps
Harald Racke 130/142

' D(min) is the number of !

6.3 FibonaCCi HeapS ! children of the node that E

! P
| stores the minimum.

S. delete-min(x)

> Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).

> Consolidate root-list so that no roots have the same degree.
Time t - O(1) (see next slide).

‘m 6.3 Fibonacci Heaps
Harald Racke 130/142

6.3 Fibonacci Heaps

Consolidate:

current

: During the consolidation we traverse the root list. Whenever we discover two :
1 trees that have the same degree we merge these trees. In order to efficiently :
: check whether two trees have the same degree, we use an array that contains for 1
: every degree value d a pointer to a tree left of the current pointer whose root has |
degree d (if such a tree exist). :

I
[

‘m 6.3 Fibonacci Heaps
Harald Racke 131/142

6.3 Fibonacci Heaps

Consolidate:

?le
current) —

‘m 6.3 Fibonacci Heaps
Harald Racke 131/142

6.3 Fibonacci Heaps

Consolidate:
o[1]2]3
?lelqle°
current - 7

‘m 6.3 Fibonacci Heaps
Harald Racke 131/142

6.3 Fibonacci Heaps

Consolidate:
o[1]2]3
?lelqle°
current - 7

‘m 6.3 Fibonacci Heaps
Harald Racke 131/142

6.3 Fibonacci Heaps

Consolidate:
o[1]2]3
(e} ? ? (e}
current - 7

‘m 6.3 Fibonacci Heaps
Harald Racke 131/142

6.3 Fibonacci Heaps

Consolidate:
o[1]2]3
PIPIL®
current =

‘m 6.3 Fibonacci Heaps
Harald Racke 131/142

6.3 Fibonacci Heaps

Consolidate:

current =

‘m 6.3 Fibonacci Heaps
Harald Racke 131/142

6.3 Fibonacci Heaps

Consolidate:

current k\/|

‘m 6.3 Fibonacci Heaps
Harald Racke 131/142

6.3 Fibonacci Heaps

Consolidate:

‘m 6.3 Fibonacci Heaps
Harald Racke 131/142

. . : t and t’ denote the number of trees before and
63 FlbonaCCI Heaps 1 after the delete-min() operation, respectively.
: Dy, is an upper bound on the degree (i.e., num-
: ber of children) of a tree node.

Actual cost for delete-min() -----------------------------

> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists c; s.t. actual cost is at most c¢; - (D4, + 1).

Amortized cost for delete-min()
> t' < D, + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—1t;
> We can pay ¢ - (t — Dy, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—Dyp-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)

forc=cy .

m 6.3 Fibonacci Heaps
Harald Racke 132/142

6.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will be
a set of distinct binomial trees, and, hence, the Fibonacci heap
will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then
D, <logn.

m 6.3 Fibonacci Heaps
Harald Racke 133/142

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
Nothing else to do.

‘m 6.3 Fibonacci Heaps
Harald Racke 134/142

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.

> If the heap-property is violated, cut the parent edge of x, and
make x into a root.

» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).

m 6.3 Fibonacci Heaps
Harald Racke 134/142

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.

> If the heap-property is violated, cut the parent edge of x, and
make x into a root.

» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).

m 6.3 Fibonacci Heaps
Harald Racke 134/142

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 6.3 Fibonacci Heaps
Harald Racke 134/142

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 6.3 Fibonacci Heaps
Harald Racke 134/142

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

» Decrease key-value of element x reference by h.

> Cut the parent edge of x, and make x into a root.

» Adjust min-pointers, if necessary.

> Execute the following:
p — parent[x];

while (p is marked)

pp — parent[p];
cut of p; make it into a root; unmark it;

p = pp;

| Marking a node can be viewed as a
1 first step towards becoming a root.
:The first time x loses a child it is

: marked; the second time it loses a
1 child it is made into a root.

if p is unmarked and not a root mark it;

m Harald Racke

6.3 Fibonacci Heaps

135/142

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
> Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t'=t+7, as every cut creates one new root.

> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A < +2(—0+2)=4-1¢ R — :

t and t": number of

1
> Amortized cost is at most 608 ORI B E1537
Ioperatlon.
co(l+1)+c(4d—-¥) < (c2—c)l+4c+c2 = O(1),! mand m’: number of
 marked nodes before
if c > co. "and after operation.

‘m 6.3 Fibonacci Heaps
Harald Racke 136/142

Delete node

H. delete(x):
» decrease value of x to —co.

> delete-min.

Amortized cost: @ (D)
> O(1) for decrease-key.
> O(Dy) for delete-min.

‘m 6.3 Fibonacci Heaps
Harald Racke 137/142

6.3 Fibonacci Heaps

Lemma 2
Let x be a node with degree k and let y1,..., vy denote the
children of x in the order that they were linked to x. Then

0 ifi=1

degree(yi) Z{ i-2 ifi>1

1 The marking process is very important for the proof of
1 this lemma. It ensures that a node can have lost at most
: one child since the last time it became a non-root node.
:When losing a first child the node gets marked; when
1 losing the second child it is cut from the parent and made
: into a root.

‘m 6.3 Fibonacci Heaps
Harald Racke 138/142

6.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,..., ;1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

> Since, then y; has lost at most one child.
» Therefore, degree(y;) > i — 2.

‘m 6.3 Fibonacci Heaps
Harald Racke

139/142

6.3 Fibonacci Heaps

> Let si be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

> so=1ands; = 2.
Let x be a degree k node of size s, and let y1,..., Vi beits
children.

k
Sk =2+ > size(y;)
i=2

‘m 6.3 Fibonacci Heaps
Harald Racke 140/142

i i ¢ = 21 + V5) denotes the golden ratio.!
6.3 Fibonacci Heaps e s |

Definition 3
Consider the following non-standard Fibonacci type sequence:

1 ifk=0

Fr=4 2 ifk=1
Fy_q1 +Fx_» if k=2

Facts:
1. Fk><i>k
2. Fork =2: F =2+ Y52 F.

The above facts can be easily proved by induction. From this it
follows that s > Fy > ¢X, which gives that the maximum degree
in a Fibonacci heap is logarithmic.

‘m 6.3 Fibonacci Heaps
Harald Racke 141/142

k=0: l1=Fy=9"=1

_1. _ 1 - b2

k=1: 2=F >o! ~1.61

k-2,k-1— ki Fy = Fx_1 + Fx_p > ®K 1 + dk—2 = pk—2(p41) = ¢k

k=2: 3=F=2+1=2+F
k-1— k: Fr=F 1 +F =2+ F+F_,=2+>CF

m 6.3 Fibonacci Heaps
Harald Racke 142/142

	Fibonacci Heaps

