A Fast Matching Algorithm

Algorithm 52 Bimatch-Hopcroft-Karp(G)

" M-

2: repeat

3 let P = {Pq,...,Py} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.
5 M~M& PLU---UPy)

6: until ? = o

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

m Harald Racke 477/488

Analysis Hopcroft-Karp

Lemma 90
Given a matching M and a matching M* with |M*| — |M| = 0.
There exist |M*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

> Similar to the proof that a matching is optimal iff it does not
contain an augmenting path.

> Consider the graph G = (V,M & M*), and mark edges in this
graph blue if they are in M and red if they are in M*.

» The connected components of G are cycles and paths.

> The graph contains k ¢ |[M*| — |[M| more red edges than
blue edges.

> Hence, there are at least k components that form a path

starting and ending with a red edge. These are augmenting
paths w.r.t. M.

‘m 18 The Hopcroft-Karp Algorithm
Harald Ricke 478/488

Analysis Hopcroft-Karp

> Let P1,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

>» M Mo PU---UPy)=M&P &---aPy.
> Let P be an augmenting path in M.

Lemma 91
Theset A< Mo (M ©P)=(PyU---UPy) ®P contains at least
(k + 1) edges.

m 18 The Hopcroft-Karp Algorithm
Harald Ricke 479/488

Analysis Hopcroft-Karp

Proof.

> The set describes exactly the symmetric difference between
matchings M and M’ & P.

> Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as |[M'| = |[M| + k + 1.

» Each of these paths is of length at least .

m 18 The Hopcroft-Karp Algorithm
Harald Ricke 480/488

Analysis Hopcroft-Karp

Lemma 92

P is of length at least { + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

> If P does not intersect any of the Py, ..., Py, this follows from
the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Pq,..., Py}.

» This edge is not contained in A.
» Hence, |A| < k{ + |P| — 1.

» The lower bound on |A| gives (k + 1)f < |A| < k€ + |P| — 1,
and hence |P| =¥ + 1.

Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has £ edges

then the cardinality of the maximum matching is of size at most
vl

M| + {+1"

Proof.

The symmetric difference between M and M* contains |[M*| — | M|

vertex-disjoint augmenting paths. Each of these paths contains at

m 18 The Hopcroft-Karp Algorithm
Harald Racke 481/488

Analysis Hopcroft-Karp

Lemma 93
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

Proof.

> After iteration [/[V|] the length of a shortest augmenting
path must be at least [/|V]] +1 = +/|V].

» Hence, there can be at most |V|/(+/|V]| + 1) < +/|V]
additional augmentations.

least £ + 1 vertices. Hence, there can be at most % of them.
‘m 18 The Hopcroft-Karp Algorithm
Harald Racke 482/488
Analysis Hopcroft-Karp
Lemma 94
One phase of the Hopcroft-Karp algorithm can be implemented in
time O(m).

construct a “level graph” G':

» construct Level O that includes all free vertices on left side L
construct Level 1 containing all neighbors of Level 0
construct Level 2 containing matching neighbors of Level 1

construct Level 3 containing all neighbors of Level 2

vV v. v Y

> stop when a level (apart from Level 0) contains a free vertex

can be done in time @ (m) by a modified BFS

m 18 The Hopcroft-Karp Algorithm
Harald Ricke 483/488

'm 18 The Hopcroft-Karp Algorithm
Harald Racke 484/488

Analysis Hopcroft-Karp

> a shortest augmenting path must go from Level 0 to the last
layer constructed

> it can only use edges between layers

> construct a maximal set of vertex disjoint augmenting path
connecting the layers

» for this, go forward until you either reach a free vertex or you
reach a “dead end” v

» if you reach a free vertex delete the augmenting path and all
incident edges from the graph

> if you reach a dead end backtrack and delete v together with
its incident edges

m 18 The Hopcroft-Karp Algorithm
Harald Ricke 485/488

Analysis Hopcroft-Karp

Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is @ (mn)
» a search (successful or unsuccessful) takes time O (n)

> a search deletes at least one edge from the level graph

there are at most n phases

Time: O(mn?).

m 18 The Hopcroft-Karp Algorithm
Harald Racke 487/488

Analysis for Unit-capacity Simple Networks

cost for searches during a phase is @ (m)

> an edge/vertex is traversed at most twice

need at most @ (/n) phases

> after \/n phases there is a cut of size at most \/n in the
residual graph

» hence at most /n additional augmentations required

Time: O(myn).

'm 18 The Hopcroft-Karp Algorithm
Harald Ricke 488/488

	The Hopcroft-Karp Algorithm

