
High Probability

Definition 18 (High Probability)

We say a randomized algorithm has running time O(logn) with

high probability if for any constant α the running time is at most

O(logn) with probability at least 1− 1
nα .

Here the O-notation hides a constant that may depend on α.

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 201/291

High Probability

Suppose there are polynomially many events E1, E2, . . . , E�,
� = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 202/291

High Probability

Suppose there are polynomially many events E1, E2, . . . , E�,
� = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probability that all Ei hold is at least

Pr[E1 ∧ · · ·∧ E�]

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 202/291

High Probability

Suppose there are polynomially many events E1, E2, . . . , E�,
� = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probability that all Ei hold is at least

Pr[E1 ∧ · · ·∧ E�] = 1− Pr[Ē1 ∨ · · ·∨ Ē�]

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 202/291

High Probability

Suppose there are polynomially many events E1, E2, . . . , E�,
� = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probability that all Ei hold is at least

Pr[E1 ∧ · · ·∧ E�] = 1− Pr[Ē1 ∨ · · ·∨ Ē�]
≥ 1−nc ·n−α

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 202/291

High Probability

Suppose there are polynomially many events E1, E2, . . . , E�,
� = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probability that all Ei hold is at least

Pr[E1 ∧ · · ·∧ E�] = 1− Pr[Ē1 ∨ · · ·∨ Ē�]
≥ 1−nc ·n−α
= 1−nc−α .

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 202/291

High Probability

Suppose there are polynomially many events E1, E2, . . . , E�,
� = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probability that all Ei hold is at least

Pr[E1 ∧ · · ·∧ E�] = 1− Pr[Ē1 ∨ · · ·∨ Ē�]
≥ 1−nc ·n−α
= 1−nc−α .

This means Pr[E1 ∧ · · ·∧ E�] holds with high probability.

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 202/291

7.5 Skip Lists

Lemma 19

A search (and, hence, also insert and delete) in a skip list with n
elements takes time O(logn) with high probability (w. h. p.).

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 203/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

28

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

28

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

23 28

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

23 28

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

23 28

23

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

23 28

23

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

23 28

23

At each point the path goes up with probability 1/2 and left with

probability 1/2.

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

23 28

23

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

� A “long” search path must also go very high.

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

23 28

23

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

� A “long” search path must also go very high.

� There are no elements in high lists.

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

23 28

23

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

� A “long” search path must also go very high.

� There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 204/291

7.5 Skip Lists

Estimation for Binomial Coefficients

�
n
k

�k
≤
�
n
k

�
≤
�
en
k

�k

7.5 Skip Lists

Estimation for Binomial Coefficients

�
n
k

�k
≤
�
n
k

�
≤
�
en
k

�k

�
n
k

�

7.5 Skip Lists

Estimation for Binomial Coefficients

�
n
k

�k
≤
�
n
k

�
≤
�
en
k

�k

�
n
k

�
= n!
k! · (n− k)!

7.5 Skip Lists

Estimation for Binomial Coefficients

�
n
k

�k
≤
�
n
k

�
≤
�
en
k

�k

�
n
k

�
= n!
k! · (n− k)! =

n · . . . · (n− k+ 1)
k · . . . · 1

7.5 Skip Lists

Estimation for Binomial Coefficients

�
n
k

�k
≤
�
n
k

�
≤
�
en
k

�k

�
n
k

�
= n!
k! · (n− k)! =

n · . . . · (n− k+ 1)
k · . . . · 1

≥
�
n
k

�k

7.5 Skip Lists

Estimation for Binomial Coefficients

�
n
k

�k
≤
�
n
k

�
≤
�
en
k

�k

�
n
k

�
= n!
k! · (n− k)! =

n · . . . · (n− k+ 1)
k · . . . · 1

≥
�
n
k

�k

�
n
k

�

7.5 Skip Lists

Estimation for Binomial Coefficients

�
n
k

�k
≤
�
n
k

�
≤
�
en
k

�k

�
n
k

�
= n!
k! · (n− k)! =

n · . . . · (n− k+ 1)
k · . . . · 1

≥
�
n
k

�k

�
n
k

�
= n · . . . · (n− k+ 1)

k!

7.5 Skip Lists

Estimation for Binomial Coefficients

�
n
k

�k
≤
�
n
k

�
≤
�
en
k

�k

�
n
k

�
= n!
k! · (n− k)! =

n · . . . · (n− k+ 1)
k · . . . · 1

≥
�
n
k

�k

�
n
k

�
= n · . . . · (n− k+ 1)

k!
≤ nk

k!

7.5 Skip Lists

Estimation for Binomial Coefficients

�
n
k

�k
≤
�
n
k

�
≤
�
en
k

�k

�
n
k

�
= n!
k! · (n− k)! =

n · . . . · (n− k+ 1)
k · . . . · 1

≥
�
n
k

�k

�
n
k

�
= n · . . . · (n− k+ 1)

k!
≤ nk

k!
= nk · kk
kk · k!

7.5 Skip Lists

Estimation for Binomial Coefficients

�
n
k

�k
≤
�
n
k

�
≤
�
en
k

�k

�
n
k

�
= n!
k! · (n− k)! =

n · . . . · (n− k+ 1)
k · . . . · 1

≥
�
n
k

�k

�
n
k

�
= n · . . . · (n− k+ 1)

k!
≤ nk

k!
= nk · kk
kk · k!

=
�
n
k

�k
· k

k

k!

7.5 Skip Lists

Estimation for Binomial Coefficients

�
n
k

�k
≤
�
n
k

�
≤
�
en
k

�k

�
n
k

�
= n!
k! · (n− k)! =

n · . . . · (n− k+ 1)
k · . . . · 1

≥
�
n
k

�k

�
n
k

�
= n · . . . · (n− k+ 1)

k!
≤ nk

k!
= nk · kk
kk · k!

=
�
n
k

�k
· k

k

k!
≤
�
n
k

�k
·
�

i≥0

ki

i!

7.5 Skip Lists

Estimation for Binomial Coefficients

�
n
k

�k
≤
�
n
k

�
≤
�
en
k

�k

�
n
k

�
= n!
k! · (n− k)! =

n · . . . · (n− k+ 1)
k · . . . · 1

≥
�
n
k

�k

�
n
k

�
= n · . . . · (n− k+ 1)

k!
≤ nk

k!
= nk · kk
kk · k!

=
�
n
k

�k
· k

k

k!
≤
�
n
k

�k
·
�

i≥0

ki

i!
=
�
en
k

�k

7.5 Skip Lists

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 206/291

7.5 Skip Lists

Let Ez,k denote the event that a search path is of length z
(number of edges) but does not visit a list above Lk.

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 206/291

7.5 Skip Lists

Let Ez,k denote the event that a search path is of length z
(number of edges) but does not visit a list above Lk.

In particular, this means that during the construction in the

backward analysis we see at most k heads (i.e., coin flips that

tell you to go up) in z trials.

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 206/291

7.5 Skip Lists

Pr[Ez,k]

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 207/291

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 207/291

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
�
z
k

�
2−(z−k)

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 207/291

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
�
z
k

�
2−(z−k) ≤

�
ez
k

�k
2−(z−k)

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 207/291

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
�
z
k

�
2−(z−k) ≤

�
ez
k

�k
2−(z−k) ≤

�
2ez
k

�k
2−z

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 207/291

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
�
z
k

�
2−(z−k) ≤

�
ez
k

�k
2−(z−k) ≤

�
2ez
k

�k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 207/291

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
�
z
k

�
2−(z−k) ≤

�
ez
k

�k
2−(z−k) ≤

�
2ez
k

�k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
�

2ez
k

�k
2−βk ·n−γα

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 207/291

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
�
z
k

�
2−(z−k) ≤

�
ez
k

�k
2−(z−k) ≤

�
2ez
k

�k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
�

2ez
k

�k
2−βk ·n−γα ≤

�
2ez
2βk

�k
·n−α

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 207/291

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
�
z
k

�
2−(z−k) ≤

�
ez
k

�k
2−(z−k) ≤

�
2ez
k

�k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
�

2ez
k

�k
2−βk ·n−γα ≤

�
2ez
2βk

�k
·n−α

≤
�

2e(β+α)
2β

�k
n−α

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 207/291

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
�
z
k

�
2−(z−k) ≤

�
ez
k

�k
2−(z−k) ≤

�
2ez
k

�k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
�

2ez
k

�k
2−βk ·n−γα ≤

�
2ez
2βk

�k
·n−α

≤
�

2e(β+α)
2β

�k
n−α

now choosing β = 6α gives

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 207/291

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
�
z
k

�
2−(z−k) ≤

�
ez
k

�k
2−(z−k) ≤

�
2ez
k

�k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
�

2ez
k

�k
2−βk ·n−γα ≤

�
2ez
2βk

�k
·n−α

≤
�

2e(β+α)
2β

�k
n−α

now choosing β = 6α gives

≤
�

42α
64α

�k
n−α

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 207/291

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
�
z
k

�
2−(z−k) ≤

�
ez
k

�k
2−(z−k) ≤

�
2ez
k

�k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
�

2ez
k

�k
2−βk ·n−γα ≤

�
2ez
2βk

�k
·n−α

≤
�

2e(β+α)
2β

�k
n−α

now choosing β = 6α gives

≤
�

42α
64α

�k
n−α ≤ n−α

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 207/291

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
�
z
k

�
2−(z−k) ≤

�
ez
k

�k
2−(z−k) ≤

�
2ez
k

�k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
�

2ez
k

�k
2−βk ·n−γα ≤

�
2ez
2βk

�k
·n−α

≤
�

2e(β+α)
2β

�k
n−α

now choosing β = 6α gives

≤
�

42α
64α

�k
n−α ≤ n−α

for α ≥ 1.

7.5 Skip Lists 29. Nov. 2019

Ernst Mayr, Harald Räcke 207/291

7.5 Skip Lists

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the event Ak+1 must hold.

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the event Ak+1 must hold.

Hence,

Pr[search requires z steps]

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the event Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the event Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the event Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

7.6 Hashing

Dictionary:

� S. insert(x): Insert an element x.

� S. delete(x): Delete the element pointed to by x.

� S. search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is

determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 209/291

7.6 Hashing

Dictionary:

� S. insert(x): Insert an element x.

� S. delete(x): Delete the element pointed to by x.

� S. search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is

determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 209/291

7.6 Hashing

Dictionary:

� S. insert(x): Insert an element x.

� S. delete(x): Delete the element pointed to by x.

� S. search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is

determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 209/291

7.6 Hashing

Dictionary:

� S. insert(x): Insert an element x.

� S. delete(x): Delete the element pointed to by x.

� S. search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is

determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 209/291

7.6 Hashing

Definitions:

� Universe U of keys, e.g., U ⊆ N0. U very large.

� Set S ⊆ U of keys, |S| =m ≤ |U|.
� Array T[0, . . . , n− 1] hash-table.

� Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

� Fast to evaluate.

� Small storage requirement.

� Good distribution of elements over the whole table.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 210/291

7.6 Hashing

Definitions:

� Universe U of keys, e.g., U ⊆ N0. U very large.

� Set S ⊆ U of keys, |S| =m ≤ |U|.
� Array T[0, . . . , n− 1] hash-table.

� Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

� Fast to evaluate.

� Small storage requirement.

� Good distribution of elements over the whole table.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 210/291

7.6 Hashing

Definitions:

� Universe U of keys, e.g., U ⊆ N0. U very large.

� Set S ⊆ U of keys, |S| =m ≤ |U|.
� Array T[0, . . . , n− 1] hash-table.

� Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

� Fast to evaluate.

� Small storage requirement.

� Good distribution of elements over the whole table.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 210/291

7.6 Hashing

Definitions:

� Universe U of keys, e.g., U ⊆ N0. U very large.

� Set S ⊆ U of keys, |S| =m ≤ |U|.
� Array T[0, . . . , n− 1] hash-table.

� Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

� Fast to evaluate.

� Small storage requirement.

� Good distribution of elements over the whole table.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 210/291

7.6 Hashing

Definitions:

� Universe U of keys, e.g., U ⊆ N0. U very large.

� Set S ⊆ U of keys, |S| =m ≤ |U|.
� Array T[0, . . . , n− 1] hash-table.

� Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

� Fast to evaluate.

� Small storage requirement.

� Good distribution of elements over the whole table.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 210/291

7.6 Hashing

Definitions:

� Universe U of keys, e.g., U ⊆ N0. U very large.

� Set S ⊆ U of keys, |S| =m ≤ |U|.
� Array T[0, . . . , n− 1] hash-table.

� Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

� Fast to evaluate.

� Small storage requirement.

� Good distribution of elements over the whole table.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 210/291

7.6 Hashing

Definitions:

� Universe U of keys, e.g., U ⊆ N0. U very large.

� Set S ⊆ U of keys, |S| =m ≤ |U|.
� Array T[0, . . . , n− 1] hash-table.

� Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

� Fast to evaluate.

� Small storage requirement.

� Good distribution of elements over the whole table.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 210/291

7.6 Hashing

Definitions:

� Universe U of keys, e.g., U ⊆ N0. U very large.

� Set S ⊆ U of keys, |S| =m ≤ |U|.
� Array T[0, . . . , n− 1] hash-table.

� Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

� Fast to evaluate.

� Small storage requirement.

� Good distribution of elements over the whole table.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 210/291

Direct Addressing

Ideally the hash function maps all keys to different memory

locations.

k1

k3k6

k7U
universe
of keys

∅

k6

k3

∅

∅

k7

∅

k1

This special case is known as Direct Addressing. It is usually

very unrealistic as the universe of keys typically is quite large,

and in particular larger than the available memory.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 211/291

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function

that maps all these keys to different memory locations.

k1

k3k6

k7

U
universe
of keys

S (actual keys)

∅

k6

k3

∅

∅

k7

∅

k1

Such a hash function h is called a perfect hash function for set S.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 212/291

Collisions

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that

map to the same memory location (i.e., h(k1) = h(k2)). This is

called a collision.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 213/291

Collisions

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that

map to the same memory location (i.e., h(k1) = h(k2)). This is

called a collision.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 213/291

Collisions

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that

map to the same memory location (i.e., h(k1) = h(k2)). This is

called a collision.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 213/291

Collisions

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already when |S| ≥ω(√n).
Lemma 20

The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2n ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 214/291

Collisions

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already when |S| ≥ω(√n).
Lemma 20

The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2n ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 214/291

Collisions

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already when |S| ≥ω(√n).
Lemma 20

The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2n ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 214/291

Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 215/291

Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 215/291

Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m�

�=1

n− � + 1
n

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 215/291

Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m�

�=1

n− � + 1
n

=
m−1�

j=0

�
1− j

n

�

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 215/291

Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m�

�=1

n− � + 1
n

=
m−1�

j=0

�
1− j

n

�

≤
m−1�

j=0

e−j/n

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 215/291

Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m�

�=1

n− � + 1
n

=
m−1�

j=0

�
1− j

n

�

≤
m−1�

j=0

e−j/n = e−
�m−1
j=0

j
n

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 215/291

Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m�

�=1

n− � + 1
n

=
m−1�

j=0

�
1− j

n

�

≤
m−1�

j=0

e−j/n = e−
�m−1
j=0

j
n = e−m(m−1)

2n .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 215/291

Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m�

�=1

n− � + 1
n

=
m−1�

j=0

�
1− j

n

�

≤
m−1�

j=0

e−j/n = e−
�m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the �-th element that is

hashed has a probability of n−�+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 215/291

