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Case 2. Now suppose that f(n) = cnlog» 4,
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Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.
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Case 3. Now suppose that f(1n) = dn'°%»2+€ and that for
sufficiently large n: af(n/b) < cf(n), for c < 1.
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Case 3. Now suppose that f(1n) = dn'°%»2+€ and that for
sufficiently large n: af(n/b) < cf(n), for c < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T011T0101 A
100010011 B
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
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For this we first need to be able to add two integers A and B:
11T011T0101] A
100010011 B
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T011T0101] A
1000100 ]] 11 B
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T01101[0/1T A
1000100 ]] 1 B
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T01101[0/1T A
100010 O] ]] 1 B

0/0
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
1101101101 A
100010 O] ]] 1 B
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
1101101101 A
IOOOIOIO]]]] B

0/0 0
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11011100101 A
IOOOIOIO]]]] B

" Jooo
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11011100101 A
IOOOIOOIO]]]] B

1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
1101110101 A
IOOOIOOIO]]]] B

1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
1101110101 A
IOOOIIOOIO]]]] B

0/1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
1101 11T0101 A
IOOOIIOOIO]]]] B

" jo1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
1101 11T0101 A
]00101100101]1] B

001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11001 1T0101 A
]00101100101]1] B

" Joo1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11001 1T0101 A
]000101100101]1] B

11001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
1f101 10101 A
]000101100101]1] B

/1001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
1f101 10101 A
10000] 0] 100] O] ]]] B
11001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11MTo0O110101 A
10000] 0] 100] O] ]]] B
/11001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11MTo0O110101 A
110000101100101]1] B
011001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T011T0101 A
110000101100101]1] B
Jo11001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T011T0101 A
110000101100101]1] B
11011001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T011T0101 A
110000101100101]1] B
1T011001000O0

This gives that two n-bit integers can be added in time O(n).
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 x101()
10001
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 x10(1J)1
10001
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 x10(1J)1
10001
0
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 x10(1J)1
10001
100010
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1(011
10001
100010
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).
10001 XxX1(011
10001
100010
00
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1(011
10001
100010
000O0O0OO0O
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X011
10001
100010
000O0O0OO0O
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 xXOJ011
10001
100010
000O0O0OO0O
000
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 xXOJ011
10001
100010
000O0O0OO0O
1T00010O00O
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010
000O0O0OO0O
1T00010O00O
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

000O0O0OO0O
1T00010O00O
10111011
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

000O0O0OO0O
1T00010O00O
10111011

Time requirement:

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 62/120



Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

000O0O0OO0O
1T00010O00O
10111011

Time requirement:
» Computing intermediate results: O(nm).

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 62/120



Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

000O0O0OO0O
1T00010O00O
10111011

Time requirement:
» Computing intermediate results: O(nm).

» Adding m numbers of length < 2n:
O((m+n)m) = O(nm).
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B By ‘ X ‘ Aq Ap

Then it holds that

A=A, -27 + Agand B=B; - 27 + By

Hence,

A-B=AB;-2"+ (A1By + AoBy) - 27 + AoBo

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 63/120



Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
if |[A| = |B| =1 then
return ag - bg
split A into Ag and A;
split B into By and B;
Z» — mult(Aq,By)
Z1 — mult(Aq, Bg) + mult(Ag, By)
Zo — mult(Ap, Bo)
return Zo - 2" + 71 - 22 + Z

CONN IO
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B| =1 then O(1)

2: return ag - bg O(1)

3: split A into Ag and A, O(n)

4: split B into By and B; O(n)

5. Z» — mult(Aq,B;) T(%)
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B| =1 then O(1)

2: return ag - bg O(1)

3: split A into Ag and A, O(n)

4: split B into By and B; O(n)

5. Z» — mult(Aq,B;) T(%)

6: Z1 — mult(A;, Bg) + mult(Ag, By) ZT(%) +O(n)
7: Zo — mult(Ag, Bo) T(%)

8 return Z - 2" + 71 - 22 + 7 O(n)

We get the following recurrence:
n

T(n) = 4T<2

)+0(n).

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 64/120



Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
> Case 1: f(n) = O(nlogra—c) T(n) = O(nlogr a)
> Case 2: f(n) = O(nl%2loghkn) T(n) = @M% alogh*! n)
> Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).

> Case 1: f(n) = O(nlogra—c) T(n) = 0(nl°8r4)
> Case 2: f(n) = O(n'°gralogkn) T(n) = OB 210g" ! n)
> Case 3: f(n) = Q(nlogra+e) T(n) =0(f(n))

Inourcase a =4, b =2, and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n?=¢) = O(n'o8ra=c),

We get a running time of ©®(n?) for our algorithm.

=> Not better then the “school method”.
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Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .
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We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT(}) + f(n).
> Case 1: f( n) = O(nlosra-¢) T(n) = O(nlosr 9)
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T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT(}) + f(n).
> Case 1: f( n) = O(nlosra-¢) T(n) = O(nlosr 9)
> Case 2: f(n) = 0(n°®alogkn) T(n) = O(nloga1ogk*! n)
> Case 3: f(n) = Q(nlogb are) T(n) =0(f(n)

Again we are in Case 1. We get a running time of
O(n'°g23) ~ @(n'9).
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Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT(%) + f(n).

> Case 1: f( n) = O(n'ogra-c) T(n) = ©(n'osr @)

> Case 2: f(n) = O(n'°ealogkn) T(n) = O(n'o8r 4 1ogk™!

> Case 3: f(n) = Q(nlogb a+te) T(n) =0(f(n))

Again we are in Case 1. We get a running time of
O(n'°g23) ~ @(n'9).

A huge improvement over the “school method”.

n)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

67/120



