
Case 2. Now suppose that f(n) ≤ cnlogb a.

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 57/120

Case 2. Now suppose that f(n) ≤ cnlogb a.

T(n)−nlogb a

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 57/120

Case 2. Now suppose that f(n) ≤ cnlogb a.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 57/120

Case 2. Now suppose that f(n) ≤ cnlogb a.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤ c
logb n−1�

i=0

ai
�
n
bi

�logb a

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 57/120

Case 2. Now suppose that f(n) ≤ cnlogb a.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤ c
logb n−1�

i=0

ai
�
n
bi

�logb a

= cnlogb a
logb n−1�

i=0

1

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 57/120

Case 2. Now suppose that f(n) ≤ cnlogb a.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤ c
logb n−1�

i=0

ai
�
n
bi

�logb a

= cnlogb a
logb n−1�

i=0

1

= cnlogb a logb n

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 57/120

Case 2. Now suppose that f(n) ≤ cnlogb a.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤ c
logb n−1�

i=0

ai
�
n
bi

�logb a

= cnlogb a
logb n−1�

i=0

1

= cnlogb a logb n

Hence,

T(n) = O(nlogb a logb n)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 57/120

Case 2. Now suppose that f(n) ≤ cnlogb a.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤ c
logb n−1�

i=0

ai
�
n
bi

�logb a

= cnlogb a
logb n−1�

i=0

1

= cnlogb a logb n

Hence,

T(n) = O(nlogb a logb n) ⇒ T(n) = O(nlogb a logn).

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 57/120

Case 2. Now suppose that f(n)≥ cnlogb a.

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 58/120

Case 2. Now suppose that f(n)≥ cnlogb a.

T(n)−nlogb a

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 58/120

Case 2. Now suppose that f(n)≥ cnlogb a.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 58/120

Case 2. Now suppose that f(n)≥ cnlogb a.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≥ c
logb n−1�

i=0

ai
�
n
bi

�logb a

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 58/120

Case 2. Now suppose that f(n)≥ cnlogb a.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≥ c
logb n−1�

i=0

ai
�
n
bi

�logb a

= cnlogb a
logb n−1�

i=0

1

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 58/120

Case 2. Now suppose that f(n)≥ cnlogb a.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≥ c
logb n−1�

i=0

ai
�
n
bi

�logb a

= cnlogb a
logb n−1�

i=0

1

= cnlogb a logb n

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 58/120

Case 2. Now suppose that f(n)≥ cnlogb a.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≥ c
logb n−1�

i=0

ai
�
n
bi

�logb a

= cnlogb a
logb n−1�

i=0

1

= cnlogb a logb n

Hence,

T(n) = Ω(nlogb a logb n)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 58/120

Case 2. Now suppose that f(n)≥ cnlogb a.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≥ c
logb n−1�

i=0

ai
�
n
bi

�logb a

= cnlogb a
logb n−1�

i=0

1

= cnlogb a logb n

Hence,

T(n) = Ω(nlogb a logb n) ⇒ T(n) = Ω(nlogb a logn).

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 58/120

Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 59/120

Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 59/120

Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 59/120

Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤ c
logb n−1�

i=0

ai
�
n
bi

�logb a
·
�

logb

�
n
bi

��k

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 59/120

Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤ c
logb n−1�

i=0

ai
�
n
bi

�logb a
·
�

logb

�
n
bi

��k

n = b� ⇒ � = logb n

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 59/120

Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤ c
logb n−1�

i=0

ai
�
n
bi

�logb a
·
�

logb

�
n
bi

��k

= cnlogb a
�−1�

i=0

�
logb

�
b�

bi

��k
n = b� ⇒ � = logb n

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 59/120

Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤ c
logb n−1�

i=0

ai
�
n
bi

�logb a
·
�

logb

�
n
bi

��k

= cnlogb a
�−1�

i=0

�
logb

�
b�

bi

��k

= cnlogb a
�−1�

i=0

(� − i)k

n = b� ⇒ � = logb n

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 59/120

Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤ c
logb n−1�

i=0

ai
�
n
bi

�logb a
·
�

logb

�
n
bi

��k

= cnlogb a
�−1�

i=0

�
logb

�
b�

bi

��k

= cnlogb a
�−1�

i=0

(� − i)k

= cnlogb a
��

i=1

ik

n = b� ⇒ � = logb n

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 59/120

Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤ c
logb n−1�

i=0

ai
�
n
bi

�logb a
·
�

logb

�
n
bi

��k

= cnlogb a
�−1�

i=0

�
logb

�
b�

bi

��k

= cnlogb a
�−1�

i=0

(� − i)k

= cnlogb a
��

i=1

ik

n = b� ⇒ � = logb n

��

i=1

ik ≈ 1
k�

k+1

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 59/120

Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤ c
logb n−1�

i=0

ai
�
n
bi

�logb a
·
�

logb

�
n
bi

��k

= cnlogb a
�−1�

i=0

�
logb

�
b�

bi

��k

= cnlogb a
�−1�

i=0

(� − i)k

= cnlogb a
��

i=1

ik

≈ c
k
nlogb a�k+1

n = b� ⇒ � = logb n

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 59/120

Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤ c
logb n−1�

i=0

ai
�
n
bi

�logb a
·
�

logb

�
n
bi

��k

= cnlogb a
�−1�

i=0

�
logb

�
b�

bi

��k

= cnlogb a
�−1�

i=0

(� − i)k

= cnlogb a
��

i=1

ik

≈ c
k
nlogb a�k+1

n = b� ⇒ � = logb n

⇒ T(n) = O(nlogb a logk+1n).

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 59/120

Case 3. Now suppose that f(n) ≥ dnlogb a+�, and that for

sufficiently large n: af(n/b) ≤ cf(n), for c < 1.

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 60/120

Case 3. Now suppose that f(n) ≥ dnlogb a+�, and that for

sufficiently large n: af(n/b) ≤ cf(n), for c < 1.

From this we get aif(n/bi) ≤ cif (n), where we assume that

n/bi−1 ≥ n0 is still sufficiently large.

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 60/120

Case 3. Now suppose that f(n) ≥ dnlogb a+�, and that for

sufficiently large n: af(n/b) ≤ cf(n), for c < 1.

From this we get aif(n/bi) ≤ cif (n), where we assume that

n/bi−1 ≥ n0 is still sufficiently large.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 60/120

Case 3. Now suppose that f(n) ≥ dnlogb a+�, and that for

sufficiently large n: af(n/b) ≤ cf(n), for c < 1.

From this we get aif(n/bi) ≤ cif (n), where we assume that

n/bi−1 ≥ n0 is still sufficiently large.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤
logb n−1�

i=0

cif (n)+O(nlogb a)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 60/120

Case 3. Now suppose that f(n) ≥ dnlogb a+�, and that for

sufficiently large n: af(n/b) ≤ cf(n), for c < 1.

From this we get aif(n/bi) ≤ cif (n), where we assume that

n/bi−1 ≥ n0 is still sufficiently large.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤
logb n−1�

i=0

cif (n)+O(nlogb a)

q < 1 :
�n
i=0 qi = 1−qn+1

1−q ≤ 1
1−q

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 60/120

Case 3. Now suppose that f(n) ≥ dnlogb a+�, and that for

sufficiently large n: af(n/b) ≤ cf(n), for c < 1.

From this we get aif(n/bi) ≤ cif (n), where we assume that

n/bi−1 ≥ n0 is still sufficiently large.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤
logb n−1�

i=0

cif (n)+O(nlogb a)

≤ 1
1− c f(n)+O(n

logb a)q < 1 :
�n
i=0 qi = 1−qn+1

1−q ≤ 1
1−q

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 60/120

Case 3. Now suppose that f(n) ≥ dnlogb a+�, and that for

sufficiently large n: af(n/b) ≤ cf(n), for c < 1.

From this we get aif(n/bi) ≤ cif (n), where we assume that

n/bi−1 ≥ n0 is still sufficiently large.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤
logb n−1�

i=0

cif (n)+O(nlogb a)

≤ 1
1− c f(n)+O(n

logb a)

Hence,

T(n) ≤ O(f (n))

q < 1 :
�n
i=0 qi = 1−qn+1

1−q ≤ 1
1−q

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 60/120

Case 3. Now suppose that f(n) ≥ dnlogb a+�, and that for

sufficiently large n: af(n/b) ≤ cf(n), for c < 1.

From this we get aif(n/bi) ≤ cif (n), where we assume that

n/bi−1 ≥ n0 is still sufficiently large.

T(n)−nlogb a =
logb n−1�

i=0

aif
�
n
bi

�

≤
logb n−1�

i=0

cif (n)+O(nlogb a)

≤ 1
1− c f(n)+O(n

logb a)

Hence,

T(n) ≤ O(f (n))

q < 1 :
�n
i=0 qi = 1−qn+1

1−q ≤ 1
1−q

⇒ T(n) = Θ(f (n)).

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 60/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

0

1

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

0

1

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

00

11

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

00

11

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

000

111

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

000

111

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

0001

1110

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

0001

1110

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

00010

11101

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

00010

11101

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

000100

111011

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

000100

111011

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

0001001

1110110

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

0001001

1110110

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

00010011

11101100

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

00010011

11101100

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

000100110

111011001

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

000100110

111011001

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

0001001101

111011001

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

0001001101

111011001

This gives that two n-bit integers can be added in time O(n).

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 61/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

0

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

00

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

0000000

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

0000000

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

0000000

000

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

0000000

00010001

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

0000000

00010001

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

0000000

00010001

11011101

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

0000000

00010001

11011101

Time requirement:

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

0000000

00010001

11011101

Time requirement:

� Computing intermediate results: O(nm).

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

0000000

00010001

11011101

Time requirement:

� Computing intermediate results: O(nm).
� Adding m numbers of length ≤ 2n:

O((m+n)m) = O(nm).
6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 62/120

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 63/120

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.

AB ×

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 63/120

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.

× a0an−1b0bn−1

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 63/120

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.

× a0an−1b0bn−1 an
2−1an

2
bn

2−1bn
2

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 63/120

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.

×B0B1 A0A1

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 63/120

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.

×B0B1 A0A1

Then it holds that

A = A1 · 2
n
2 +A0 and B = B1 · 2

n
2 + B0

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 63/120

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.

×B0B1 A0A1

Then it holds that

A = A1 · 2
n
2 +A0 and B = B1 · 2

n
2 + B0

Hence,

A · B = A1B1 · 2n + (A1B0 +A0B1) · 2
n
2 +A0B0

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 63/120

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z1 ← mult(A1, B0)+mult(A0, B1)
7: Z0 ← mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 64/120

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z1 ← mult(A1, B0)+mult(A0, B1)
7: Z0 ← mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 64/120

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z1 ← mult(A1, B0)+mult(A0, B1)
7: Z0 ← mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)
O(1)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 64/120

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z1 ← mult(A1, B0)+mult(A0, B1)
7: Z0 ← mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)
O(1)
O(n)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 64/120

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z1 ← mult(A1, B0)+mult(A0, B1)
7: Z0 ← mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)
O(1)
O(n)
O(n)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 64/120

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z1 ← mult(A1, B0)+mult(A0, B1)
7: Z0 ← mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 64/120

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z1 ← mult(A1, B0)+mult(A0, B1)
7: Z0 ← mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2)
2T(n2)+O(n)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 64/120

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z1 ← mult(A1, B0)+mult(A0, B1)
7: Z0 ← mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2)
2T(n2)+O(n)
T(n2)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 64/120

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z1 ← mult(A1, B0)+mult(A0, B1)
7: Z0 ← mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2)
2T(n2)+O(n)
T(n2)
O(n)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 64/120

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z1 ← mult(A1, B0)+mult(A0, B1)
7: Z0 ← mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2)
2T(n2)+O(n)
T(n2)
O(n)

We get the following recurrence:

T(n) = 4T
�n

2

�
+O(n) .

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 64/120

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(nb)+ f(n).
� Case 1: f(n) = O(nlogb a−�) T(n) = Θ(nlogb a)
� Case 2: f(n) = Θ(nlogb a logk n) T(n) = Θ(nlogb a logk+1n)
� Case 3: f(n) = Ω(nlogb a+�) T(n) = Θ(f (n))

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 65/120

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(nb)+ f(n).
� Case 1: f(n) = O(nlogb a−�) T(n) = Θ(nlogb a)
� Case 2: f(n) = Θ(nlogb a logk n) T(n) = Θ(nlogb a logk+1n)
� Case 3: f(n) = Ω(nlogb a+�) T(n) = Θ(f (n))

In our case a = 4, b = 2, and f(n) = Θ(n). Hence, we are in

Case 1, since n = O(n2−�) = O(nlogb a−�).

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 65/120

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(nb)+ f(n).
� Case 1: f(n) = O(nlogb a−�) T(n) = Θ(nlogb a)
� Case 2: f(n) = Θ(nlogb a logk n) T(n) = Θ(nlogb a logk+1n)
� Case 3: f(n) = Ω(nlogb a+�) T(n) = Θ(f (n))

In our case a = 4, b = 2, and f(n) = Θ(n). Hence, we are in

Case 1, since n = O(n2−�) = O(nlogb a−�).

We get a running time of O(n2) for our algorithm.

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 65/120

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(nb)+ f(n).
� Case 1: f(n) = O(nlogb a−�) T(n) = Θ(nlogb a)
� Case 2: f(n) = Θ(nlogb a logk n) T(n) = Θ(nlogb a logk+1n)
� Case 3: f(n) = Ω(nlogb a+�) T(n) = Θ(f (n))

In our case a = 4, b = 2, and f(n) = Θ(n). Hence, we are in

Case 1, since n = O(n2−�) = O(nlogb a−�).

We get a running time of O(n2) for our algorithm.

�⇒ Not better then the “school method”.

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 65/120

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 66/120

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 66/120

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)−A1B1 −A0B0

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 66/120

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)− −
= Z2� �� �
A1B1

= Z0� �� �
A0B0

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 66/120

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)− −
= Z2� �� �
A1B1

= Z0� �� �
A0B0

Hence,

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 66/120

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)− −
= Z2� �� �
A1B1

= Z0� �� �
A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z0 ← mult(A0, B0)
7: Z1 ← mult(A0+A1, B0+B1)−Z2−Z0

8: return Z2 · 2n + Z1 · 2
n
2 + Z0

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 66/120

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)− −
= Z2� �� �
A1B1

= Z0� �� �
A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z0 ← mult(A0, B0)
7: Z1 ← mult(A0+A1, B0+B1)−Z2−Z0

8: return Z2 · 2n + Z1 · 2
n
2 + Z0

O(1)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 66/120

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)− −
= Z2� �� �
A1B1

= Z0� �� �
A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z0 ← mult(A0, B0)
7: Z1 ← mult(A0+A1, B0+B1)−Z2−Z0

8: return Z2 · 2n + Z1 · 2
n
2 + Z0

O(1)
O(1)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 66/120

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)− −
= Z2� �� �
A1B1

= Z0� �� �
A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z0 ← mult(A0, B0)
7: Z1 ← mult(A0+A1, B0+B1)−Z2−Z0

8: return Z2 · 2n + Z1 · 2
n
2 + Z0

O(1)
O(1)
O(n)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 66/120

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)− −
= Z2� �� �
A1B1

= Z0� �� �
A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z0 ← mult(A0, B0)
7: Z1 ← mult(A0+A1, B0+B1)−Z2−Z0

8: return Z2 · 2n + Z1 · 2
n
2 + Z0

O(1)
O(1)
O(n)
O(n)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 66/120

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)− −
= Z2� �� �
A1B1

= Z0� �� �
A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z0 ← mult(A0, B0)
7: Z1 ← mult(A0+A1, B0+B1)−Z2−Z0

8: return Z2 · 2n + Z1 · 2
n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 66/120

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)− −
= Z2� �� �
A1B1

= Z0� �� �
A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z0 ← mult(A0, B0)
7: Z1 ← mult(A0+A1, B0+B1)−Z2−Z0

8: return Z2 · 2n + Z1 · 2
n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2)
T(n2)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 66/120

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)− −
= Z2� �� �
A1B1

= Z0� �� �
A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z0 ← mult(A0, B0)
7: Z1 ← mult(A0+A1, B0+B1)−Z2−Z0

8: return Z2 · 2n + Z1 · 2
n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2)
T(n2)
T(n2)+O(n)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 66/120

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)− −
= Z2� �� �
A1B1

= Z0� �� �
A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z0 ← mult(A0, B0)
7: Z1 ← mult(A0+A1, B0+B1)−Z2−Z0

8: return Z2 · 2n + Z1 · 2
n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2)
T(n2)
T(n2)+O(n)
O(n)

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 66/120

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T
�n

2

�
+O(n) .

Master Theorem: Recurrence: T[n] = aT(nb)+ f(n).
� Case 1: f(n) = O(nlogb a−�) T(n) = Θ(nlogb a)
� Case 2: f(n) = Θ(nlogb a logk n) T(n) = Θ(nlogb a logk+1n)
� Case 3: f(n) = Ω(nlogb a+�) T(n) = Θ(f (n))

Again we are in Case 1. We get a running time of

Θ(nlog2 3) ≈ Θ(n1.59).

A huge improvement over the “school method”.

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 67/120

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T
�n

2

�
+O(n) .

Master Theorem: Recurrence: T[n] = aT(nb)+ f(n).
� Case 1: f(n) = O(nlogb a−�) T(n) = Θ(nlogb a)
� Case 2: f(n) = Θ(nlogb a logk n) T(n) = Θ(nlogb a logk+1n)
� Case 3: f(n) = Ω(nlogb a+�) T(n) = Θ(f (n))

Again we are in Case 1. We get a running time of

Θ(nlog2 3) ≈ Θ(n1.59).

A huge improvement over the “school method”.

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 67/120

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T
�n

2

�
+O(n) .

Master Theorem: Recurrence: T[n] = aT(nb)+ f(n).
� Case 1: f(n) = O(nlogb a−�) T(n) = Θ(nlogb a)
� Case 2: f(n) = Θ(nlogb a logk n) T(n) = Θ(nlogb a logk+1n)
� Case 3: f(n) = Ω(nlogb a+�) T(n) = Θ(f (n))

Again we are in Case 1. We get a running time of

Θ(nlog2 3) ≈ Θ(n1.59).

A huge improvement over the “school method”.

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 67/120

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T
�n

2

�
+O(n) .

Master Theorem: Recurrence: T[n] = aT(nb)+ f(n).
� Case 1: f(n) = O(nlogb a−�) T(n) = Θ(nlogb a)
� Case 2: f(n) = Θ(nlogb a logk n) T(n) = Θ(nlogb a logk+1n)
� Case 3: f(n) = Ω(nlogb a+�) T(n) = Θ(f (n))

Again we are in Case 1. We get a running time of

Θ(nlog2 3) ≈ Θ(n1.59).

A huge improvement over the “school method”.

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 67/120

