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Case 2. Now suppose that f(n)≥ cnlogb a.
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Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.
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Case 3. Now suppose that f(n) ≥ dnlogb a+�, and that for

sufficiently large n: af(n/b) ≤ cf(n), for c < 1.
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sufficiently large n: af(n/b) ≤ cf(n), for c < 1.

From this we get aif(n/bi) ≤ cif (n), where we assume that

n/bi−1 ≥ n0 is still sufficiently large.
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.
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Example: Multiplying Two Integers
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
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For this we first need to be able to add two integers A and B:
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

0001001101

111011001

This gives that two n-bit integers can be added in time O(n).
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).
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Example: Multiplying Two Integers
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Example: Multiplying Two Integers
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

0000000

00010001

11011101

Time requirement:

� Computing intermediate results: O(nm).
� Adding m numbers of length ≤ 2n:

O((m+n)m) = O(nm).
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Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.
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A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.
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Suppose that integers A and B are of length n = 2k, for some k.
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Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.

×B0B1 A0A1

Then it holds that

A = A1 · 2
n
2 +A0 and B = B1 · 2

n
2 + B0
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Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.

×B0B1 A0A1

Then it holds that

A = A1 · 2
n
2 +A0 and B = B1 · 2

n
2 + B0

Hence,

A · B = A1B1 · 2n + (A1B0 +A0B1) · 2
n
2 +A0B0
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z1 ← mult(A1, B0)+mult(A0, B1)
7: Z0 ← mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z1 ← mult(A1, B0)+mult(A0, B1)
7: Z0 ← mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2 )
2T(n2 )+O(n)
T(n2 )
O(n)

We get the following recurrence:

T(n) = 4T
�n

2

�
+O(n) .

6.2 Master Theorem 25. Oct. 2019

Ernst Mayr, Harald Räcke 64/120



Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(nb )+ f(n).
� Case 1: f(n) = O(nlogb a−�) T(n) = Θ(nlogb a)
� Case 2: f(n) = Θ(nlogb a logk n) T(n) = Θ(nlogb a logk+1n)
� Case 3: f(n) = Ω(nlogb a+�) T(n) = Θ(f (n))
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(nb )+ f(n).
� Case 1: f(n) = O(nlogb a−�) T(n) = Θ(nlogb a)
� Case 2: f(n) = Θ(nlogb a logk n) T(n) = Θ(nlogb a logk+1n)
� Case 3: f(n) = Ω(nlogb a+�) T(n) = Θ(f (n))

In our case a = 4, b = 2, and f(n) = Θ(n). Hence, we are in

Case 1, since n = O(n2−�) = O(nlogb a−�).
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Master Theorem: Recurrence: T[n] = aT(nb )+ f(n).
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In our case a = 4, b = 2, and f(n) = Θ(n). Hence, we are in

Case 1, since n = O(n2−�) = O(nlogb a−�).

We get a running time of O(n2) for our algorithm.
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(nb )+ f(n).
� Case 1: f(n) = O(nlogb a−�) T(n) = Θ(nlogb a)
� Case 2: f(n) = Θ(nlogb a logk n) T(n) = Θ(nlogb a logk+1n)
� Case 3: f(n) = Ω(nlogb a+�) T(n) = Θ(f (n))

In our case a = 4, b = 2, and f(n) = Θ(n). Hence, we are in

Case 1, since n = O(n2−�) = O(nlogb a−�).

We get a running time of O(n2) for our algorithm.

�⇒ Not better then the “school method”.
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Example: Multiplying Two Integers

We can use the following identity to compute Z1:
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We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1
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Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)−A1B1 −A0B0
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Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)− −
= Z2� �� �
A1B1

= Z0� �� �
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Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)− −
= Z2� �� �
A1B1
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A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0
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5: Z2 ← mult(A1, B1)
6: Z0 ← mult(A0, B0)
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8: return Z2 · 2n + Z1 · 2
n
2 + Z0
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Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T
�n

2

�
+O(n) .

Master Theorem: Recurrence: T[n] = aT(nb )+ f(n).
� Case 1: f(n) = O(nlogb a−�) T(n) = Θ(nlogb a)
� Case 2: f(n) = Θ(nlogb a logk n) T(n) = Θ(nlogb a logk+1n)
� Case 3: f(n) = Ω(nlogb a+�) T(n) = Θ(f (n))

Again we are in Case 1. We get a running time of

Θ(nlog2 3) ≈ Θ(n1.59).

A huge improvement over the “school method”.
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