
13.2 Relabel to Front

Algorithm 17 relabel-to-front(G, s, t)
1: initialize preflow

2: initialize node list L containing V \ {s, t} in any order

3: foreach u ∈ V \ {s, t} do

4: u.current-neighbour ← u.neighbour-list-head

5: u← L.head

6: while u ≠ null do

7: old-height ← �(u)
8: discharge(u)
9: if �(u) > old-height then // relabel happened

10: move u to the front of L
11: u← u.next

13.2 Relabel to Front 27. Jan. 2020

Ernst Mayr, Harald Räcke 457/493



13.2 Relabel to Front

Lemma 76 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant

holds.

1. The sequence L is topologically sorted w.r.t. the set of

admissible edges; this means for an admissible edge (x,y)
the node x appears before y in sequence L.

2. No node before u in the list L is active.

13.2 Relabel to Front 27. Jan. 2020

Ernst Mayr, Harald Räcke 458/493



Proof:

� Initialization:

1. In the beginning s has label n ≥ 2, and all other nodes have
label 0. Hence, no edge is admissible, which means that any
ordering L is permitted.

2. We start with u being the head of the list; hence no node
before u can be active

� Maintenance:
1. � Pushes do no create any new admissible edges. Therefore, if

discharge() does not relabel u, L is still topologically sorted.
� After relabeling, u cannot have admissible incoming edges

as such an edge (x,u) would have had a difference
�(x)− �(u) ≥ 2 before the re-labeling (such edges do not
exist in the residual graph).
Hence, moving u to the front does not violate the sorting
property for any edge; however it fixes this property for all
admissible edges leaving u that were generated by the
relabeling.



13.2 Relabel to Front

Proof:

� Maintenance:

2. If we do a relabel there is nothing to prove because the only
node before u� (u in the next iteration) will be the current
u; the discharge(u) operation only terminates when u is
not active anymore.

For the case that we do not relabel, observe that the only
way a predecessor could be active is that we push flow to it
via an admissible arc. However, all admissible arc point to
successors of u.

Note that the invariant means that for u = null we have a

preflow with a valid labelling that does not have active nodes.

This means we have a maximum flow.

13.2 Relabel to Front 27. Jan. 2020

Ernst Mayr, Harald Räcke 460/493



13.2 Relabel to Front

Lemma 77

There are at most O(n3) calls to discharge(u).

Every discharge operation without a relabel advances u (the

current node within list L). Hence, if we have n discharge

operations without a relabel we have u = null and the algorithm

terminates.

Therefore, the number of calls to discharge is at most

n(#relabels + 1) = O(n3).

13.2 Relabel to Front 27. Jan. 2020

Ernst Mayr, Harald Räcke 461/493



13.2 Relabel to Front

Lemma 78

The cost for all relabel-operations is only O(n2).

A relabel-operation at a node is constant time (increasing the

label and resetting u.current-neighbour). In total we have O(n2)
relabel-operations.

13.2 Relabel to Front 27. Jan. 2020

Ernst Mayr, Harald Räcke 462/493



13.2 Relabel to Front

Recall that a saturating push operation

(min{cf (e), f (u)} = cf (e)) can also be a deactivating push

operation (min{cf (e), f (u)} = f(u)).
Lemma 79

The cost for all saturating push-operations that are not

deactivating is only O(mn).

Note that such a push-operation leaves the node u active but

makes the edge e disappear from the residual graph. Therefore

the push-operation is immediately followed by an increase of the

pointer u.current-neighbour.

This pointer can traverse the neighbour-list at most O(n) times

(upper bound on number of relabels) and the neighbour-list has

only degree(u)+ 1 many entries (+1 for null-entry).

13.2 Relabel to Front 27. Jan. 2020

Ernst Mayr, Harald Räcke 463/493



13.2 Relabel to Front

Lemma 80

The cost for all deactivating push-operations is only O(n3).

A deactivating push-operation takes constant time and ends the

current call to discharge(). Hence, there are only O(n3) such

operations.

Theorem 81

The push-relabel algorithm with the rule relabel-to-front takes

time O(n3).

13.2 Relabel to Front 27. Jan. 2020

Ernst Mayr, Harald Räcke 464/493



13.3 Highest Label

Algorithm 18 highest-label(G, s, t)
1: initialize preflow

2: foreach u ∈ V \ {s, t} do

3: u.current-neighbour ← u.neighbour-list-head

4: while ∃ active node u do

5: select active node u with highest label

6: discharge(u)

13.3 Highest Label 27. Jan. 2020

Ernst Mayr, Harald Räcke 465/493



13.3 Highest Label

Lemma 82

When using highest label the number of deactivating pushes is

only O(n3).

A push from a node on level � can only “activate” nodes on levels

strictly less than �.

This means, after a deactivating push from u a relabel is

required to make u active again.

Hence, after n deactivating pushes without an intermediate

relabel there are no active nodes left.

Therefore, the number of deactivating pushes is at most

n(#relabels + 1) = O(n3).



13.3 Highest Label

Since a discharge-operation is terminated by a deactivating push

this gives an upper bound of O(n3) on the number of

discharge-operations.

The cost for relabels and saturating pushes can be estimated in

exactly the same way as in the case of the generic push-relabel

algorithm.

Question:

How do we find the next node for a discharge operation?

13.3 Highest Label 27. Jan. 2020

Ernst Mayr, Harald Räcke 467/493



13.3 Highest Label

Maintain lists Li, i ∈ {0, . . . ,2n}, where list Li contains active

nodes with label i (maintaining these lists induces only constant

additional cost for every push-operation and for every

relabel-operation).

After a discharge operation terminated for a node u with label k,

traverse the lists Lk, Lk−1, . . . , L0, (in that order) until you find a

non-empty list.

Unless the last (deactivating) push was to s or t the list k− 1

must be non-empty (i.e., the search takes constant time).

13.3 Highest Label 27. Jan. 2020

Ernst Mayr, Harald Räcke 468/493



13.3 Highest Label

Hence, the total time required for searching for active nodes is

at most

O(n3)+n(#deactivating-pushes-to-s-or-t)

Lemma 83

The number of deactivating pushes to s or t is at most O(n2).

With this lemma we get

Theorem 84

The push-relabel algorithm with the rule highest-label takes time

O(n3).

13.3 Highest Label 27. Jan. 2020

Ernst Mayr, Harald Räcke 469/493



13.3 Highest Label

Proof of the Lemma.

� We only show that the number of pushes to the source is at

most O(n2). A similar argument holds for the target.

� After a node v (which must have �(v) = n+ 1) made a

deactivating push to the source there needs to be another

node whose label is increased from ≤ n+ 1 to n+ 2 before

v can become active again.

� This happens for every push that v makes to the source.

Since, every node can pass the threshold n+ 2 at most

once, v can make at most n pushes to the source.

� As this holds for every node the total number of pushes to

the source is at most O(n2).

13.3 Highest Label 27. Jan. 2020

Ernst Mayr, Harald Räcke 470/493



Mincost Flow

Problem Definition:

min
�
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 471/493



Mincost Flow

Problem Definition:

min
�
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

� G = (V , E) is a directed graph.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 471/493



Mincost Flow

Problem Definition:

min
�
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

� G = (V , E) is a directed graph.

� u : E → R+0 ∪ {∞} is the capacity function.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 471/493



Mincost Flow

Problem Definition:

min
�
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

� G = (V , E) is a directed graph.

� u : E → R+0 ∪ {∞} is the capacity function.

� c : E → R is the cost function

(note that c(e) may be negative).

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 471/493



Mincost Flow

Problem Definition:

min
�
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

� G = (V , E) is a directed graph.

� u : E → R+0 ∪ {∞} is the capacity function.

� c : E → R is the cost function

(note that c(e) may be negative).

� b : V → R,
�
v∈V b(v) = 0 is a demand function.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 471/493



Solve Maxflow Using Mincost Flow

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

1
5

1
5

10

10

10

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 472/493



Solve Maxflow Using Mincost Flow

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

1
5

1
5

10

10

10

� Given a flow network for a standard maxflow problem.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 472/493



Solve Maxflow Using Mincost Flow

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

1
5

1
5

10

10

10

� Given a flow network for a standard maxflow problem.

� Set b(v) = 0 for every node. Keep the capacity function u
for all edges. Set the cost c(e) for every edge to 0.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 472/493



Solve Maxflow Using Mincost Flow

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

1
5

1
5

10

10

10

� Given a flow network for a standard maxflow problem.

� Set b(v) = 0 for every node. Keep the capacity function u
for all edges. Set the cost c(e) for every edge to 0.

� Add an edge from t to s with infinite capacity and cost −1.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 472/493



Solve Maxflow Using Mincost Flow

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

1
5

1
5

10

10

10

� Given a flow network for a standard maxflow problem.

� Set b(v) = 0 for every node. Keep the capacity function u
for all edges. Set the cost c(e) for every edge to 0.

� Add an edge from t to s with infinite capacity and cost −1.

� Then, val(f∗) = − cost(fmin), where f∗ is a maxflow, and

fmin is a mincost-flow.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 472/493



Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

� Given a flow network for a standard maxflow problem, and

a value k.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 473/493



Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

� Given a flow network for a standard maxflow problem, and

a value k.

� Set b(v) = 0 for every node apart from s or t. Set b(s) = −k
and b(t) = k.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 473/493



Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

� Given a flow network for a standard maxflow problem, and

a value k.

� Set b(v) = 0 for every node apart from s or t. Set b(s) = −k
and b(t) = k.

� Set edge-costs to zero, and keep the capacities.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 473/493



Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

� Given a flow network for a standard maxflow problem, and

a value k.

� Set b(v) = 0 for every node apart from s or t. Set b(s) = −k
and b(t) = k.

� Set edge-costs to zero, and keep the capacities.

� There exists a maxflow of value at least k if and only if the

mincost-flow problem is feasible.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 473/493



Generalization

Our model:

min
�
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

where b : V → R,
�
v b(v) = 0; u : E → R+0 ∪ {∞}; c : E → R;

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 474/493



Generalization

Our model:

min
�
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

where b : V → R,
�
v b(v) = 0; u : E → R+0 ∪ {∞}; c : E → R;

A more general model?

min
�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

where a : V → R, b : V → R; � : E → R∪ {−∞}, u : E → R∪ {∞}
c : E → R;

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 474/493



Generalization

Differences

� Flow along an edge e may have non-zero lower bound �(e).
� Flow along e may have negative upper bound u(e).
� The demand at a node v may have lower bound a(v) and

upper bound b(v) instead of just lower bound = upper

bound = b(v).

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 475/493



Reduction I
min

�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)



Reduction I
min

�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

We can assume that a(v) = b(v):



Reduction I
min

�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

We can assume that a(v) = b(v):

v

r

u(e
) = b

(v)
− a(

v)

�(e
) = 0

c(e
) = 0



Reduction I
min

�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

We can assume that a(v) = b(v):
Add new node r .

v

r

u(e
) = b

(v)
− a(

v)

�(e
) = 0

c(e
) = 0



Reduction I
min

�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

We can assume that a(v) = b(v):
Add new node r .

Add edge (r , v) for all v ∈ V .

v

r

u(e
) = b

(v)
− a(

v)

�(e
) = 0

c(e
) = 0



Reduction I
min

�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

We can assume that a(v) = b(v):
Add new node r .

Add edge (r , v) for all v ∈ V .

Set �(e) = c(e) = 0 for these
edges.

v

r

u(e
) = b

(v)
− a(

v)

�(e
) = 0

c(e
) = 0



Reduction I
min

�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

We can assume that a(v) = b(v):
Add new node r .

Add edge (r , v) for all v ∈ V .

Set �(e) = c(e) = 0 for these
edges.

Set u(e) = b(v)− a(v) for
edge (r , v).

v

r

u(e
) = b

(v)
− a(

v)

�(e
) = 0

c(e
) = 0



Reduction I
min

�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

We can assume that a(v) = b(v):
Add new node r .

Add edge (r , v) for all v ∈ V .

Set �(e) = c(e) = 0 for these
edges.

Set u(e) = b(v)− a(v) for
edge (r , v).

Set a(v) = b(v) for all v ∈ V . v

r

u(e
) = b

(v)
− a(

v)

�(e
) = 0

c(e
) = 0



Reduction I
min

�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

We can assume that a(v) = b(v):
Add new node r .

Add edge (r , v) for all v ∈ V .

Set �(e) = c(e) = 0 for these
edges.

Set u(e) = b(v)− a(v) for
edge (r , v).

Set a(v) = b(v) for all v ∈ V .

Set b(r) = −�v∈V b(v).
v

r

u(e
) = b

(v)
− a(

v)

�(e
) = 0

c(e
) = 0



Reduction I
min

�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

We can assume that a(v) = b(v):
Add new node r .

Add edge (r , v) for all v ∈ V .

Set �(e) = c(e) = 0 for these
edges.

Set u(e) = b(v)− a(v) for
edge (r , v).

Set a(v) = b(v) for all v ∈ V .

Set b(r) = −�v∈V b(v).
−�v b(v) is negative; hence r is only sending flow.

v

r

u(e
) = b

(v)
− a(

v)

�(e
) = 0

c(e
) = 0



Reduction II

min
�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that either �(e) ≠ −∞ or u(e) ≠ ∞:

u v

u(e)= ∞
�(e) = −∞
c(e) = 0

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 477/493



Reduction II

min
�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that either �(e) ≠ −∞ or u(e) ≠ ∞:

u v

u(e)= ∞
�(e) = −∞
c(e) = 0

If c(e) = 0 we can contract the edge/identify nodes u and v.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 477/493



Reduction II

min
�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that either �(e) ≠ −∞ or u(e) ≠ ∞:

u v

u(e)= ∞
�(e) = −∞
c(e) = 0

If c(e) = 0 we can contract the edge/identify nodes u and v.

If c(e) ≠ 0 we can transform the graph so that c(e) = 0.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 477/493



Reduction II

We can transform any network so that a particular edge has

cost c(e) = 0:

u v

u(e)= ∞
�(e) = −∞
c(e) = δ ≠ 0

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 478/493



Reduction II

We can transform any network so that a particular edge has

cost c(e) = 0:

u v

+
δ−
δ

+δ

−δ
−δ +δ

u(e)= ∞
�(e) = −∞
c(e) = δ ≠ 0

−δ

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 478/493



Reduction II

We can transform any network so that a particular edge has

cost c(e) = 0:

x

b(x) = b(u)
u v

+
δ−
δ

+δ
δ

−δ
−δ +δ

u(e)= ∞
�(e) = −∞
c(e) = δ ≠ 0

−δ

Additionally we set b(u) = 0.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 478/493



Reduction III

min
�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that �(e) ≠ −∞:

u v

u v

u(e) = d ≠∞
�(e) = −∞
c(e) = a

u(e) =∞
�(e) = −d
c(e) = −a

Replace the edge by an edge in opposite direction.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 479/493



Reduction IV
min

�
e c(e)f (e)

s.t. ∀e ∈ E : �(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that �(e) = 0:

u v

u v

u(e)
�(e) = d ≠ −∞
c(e)

u(e)− d
�(e) = 0

c(e)

ū v̄
b(ū) = d b(v̄) = −d

The added edges have infinite capacity and cost c(e)/2.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 480/493



Applications

Caterer Problem

� She needs to supply ri napkins on N successive days.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 481/493



Applications

Caterer Problem

� She needs to supply ri napkins on N successive days.

� She can buy new napkins at p cents each.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 481/493



Applications

Caterer Problem

� She needs to supply ri napkins on N successive days.

� She can buy new napkins at p cents each.

� She can launder them at a fast laundry that takes m days

and cost f cents a napkin.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 481/493



Applications

Caterer Problem

� She needs to supply ri napkins on N successive days.

� She can buy new napkins at p cents each.

� She can launder them at a fast laundry that takes m days

and cost f cents a napkin.

� She can use a slow laundry that takes k > m days and costs

s cents each.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 481/493



Applications

Caterer Problem

� She needs to supply ri napkins on N successive days.

� She can buy new napkins at p cents each.

� She can launder them at a fast laundry that takes m days

and cost f cents a napkin.

� She can use a slow laundry that takes k > m days and costs

s cents each.

� At the end of each day she should determine how many to

send to each laundry and how many to buy in order to fulfill

demand.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 481/493



Applications

Caterer Problem

� She needs to supply ri napkins on N successive days.

� She can buy new napkins at p cents each.

� She can launder them at a fast laundry that takes m days

and cost f cents a napkin.

� She can use a slow laundry that takes k > m days and costs

s cents each.

� At the end of each day she should determine how many to

send to each laundry and how many to buy in order to fulfill

demand.

� Minimize cost.

14 Mincost Flow 27. Jan. 2020

Ernst Mayr, Harald Räcke 481/493





10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

day edges:
upper bound: u(ei) =∞;
lower bound: �(ei) = ri;
cost: c(e) = 0



reservoir

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

buy edges:
upper bound: u(ei) =∞;
lower bound: �(ei) = 0;
cost: c(e) = p



reservoir

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

forward edges:
upper bound: u(ei) =∞;
lower bound: �(ei) = 0;
cost: c(e) = 0



reservoir

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

slow edges:
upper bound: u(ei) =∞;
lower bound: �(ei) = 0;
cost: c(e) = s



reservoir

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

fast edges:
upper bound: u(ei) =∞;
lower bound: �(ei) = 0;
cost: c(e) = f



reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

trash edges:
upper bound: u(ei) =∞;
lower bound: �(ei) = 0;
cost: c(e) = 0



reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash


