
There are different types of complexity bounds:

� amortized complexity:

The average cost of data structure operations over a worst

case sequence of operations.

� randomized complexity:

The algorithm may use random bits. Expected running time

(over all possible choices of random bits) for a fixed input

x. Then take the worst-case over all x with |x| = n.

4 Modelling Issues 21. Oct. 2019

Ernst Mayr, Harald Räcke 27/119

5 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymptotic classification of the running time, that ignores

constant factors and constant additive offsets.

� We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

� An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to

more precise results as the computational model is already

quite a distance from reality.

� A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

� Running time should be expressed by simple functions.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 28/119

5 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymptotic classification of the running time, that ignores

constant factors and constant additive offsets.

� We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

� An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to

more precise results as the computational model is already

quite a distance from reality.

� A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

� Running time should be expressed by simple functions.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 28/119

5 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymptotic classification of the running time, that ignores

constant factors and constant additive offsets.

� We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

� An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to

more precise results as the computational model is already

quite a distance from reality.

� A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

� Running time should be expressed by simple functions.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 28/119

5 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymptotic classification of the running time, that ignores

constant factors and constant additive offsets.

� We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

� An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to

more precise results as the computational model is already

quite a distance from reality.

� A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

� Running time should be expressed by simple functions.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 28/119

5 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymptotic classification of the running time, that ignores

constant factors and constant additive offsets.

� We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

� An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to

more precise results as the computational model is already

quite a distance from reality.

� A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

� Running time should be expressed by simple functions.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 28/119

Asymptotic Notation

Formal Definition

Let f , g denote functions from N to R+.

� O(f) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f)

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 29/119

Asymptotic Notation

Formal Definition

Let f , g denote functions from N to R+.

� O(f) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f)

� Ω(f) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f)

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 29/119

Asymptotic Notation

Formal Definition

Let f , g denote functions from N to R+.

� O(f) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f)

� Ω(f) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f)

� Θ(f) = Ω(f)∩O(f)
(functions that asymptotically have the same growth as f)

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 29/119

Asymptotic Notation

Formal Definition

Let f , g denote functions from N to R+.

� O(f) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f)

� Ω(f) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f)

� Θ(f) = Ω(f)∩O(f)
(functions that asymptotically have the same growth as f)

� o(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow slower than f)

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 29/119

Asymptotic Notation

Formal Definition

Let f , g denote functions from N to R+.

� O(f) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f)

� Ω(f) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f)

� Θ(f) = Ω(f)∩O(f)
(functions that asymptotically have the same growth as f)

� o(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow slower than f)

� ω(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow faster than f)

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 29/119

Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N0

to R+0 .

� g ∈ O(f): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 30/119

Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N0

to R+0 .

� g ∈ O(f): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

� g ∈ Ω(f): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 30/119

Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N0

to R+0 .

� g ∈ O(f): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

� g ∈ Ω(f): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

� g ∈ Θ(f): 0 < lim
n→∞

g(n)
f(n)

<∞

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 30/119

Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N0

to R+0 .

� g ∈ O(f): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

� g ∈ Ω(f): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

� g ∈ Θ(f): 0 < lim
n→∞

g(n)
f(n)

<∞

� g ∈ o(f): lim
n→∞

g(n)
f(n)

= 0

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 30/119

Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N0

to R+0 .

� g ∈ O(f): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

� g ∈ Ω(f): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

� g ∈ Θ(f): 0 < lim
n→∞

g(n)
f(n)

<∞

� g ∈ o(f): lim
n→∞

g(n)
f(n)

= 0

� g ∈ω(f): lim
n→∞

g(n)
f(n)

=∞

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 30/119

Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f ∈ O(g). This is

not an equality (how could a function be equal to a set of

functions).

2. People write f(n) = O(g(n)), when they mean f ∈ O(g),
with f : N→ R+, n� f(n), and g : N→ R+, n� g(n).

3. People write e.g. h(n) = f(n)+ o(g(n)) when they mean

that there exists a function z : N→ R+, n� z(n), z ∈ o(g)
such that h(n) = f(n)+ z(n).

4. People write O(f (n)) = O(g(n)), when they mean

O(f (n)) ⊆ O(g(n)). Again this is not an equality.

Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f ∈ O(g). This is

not an equality (how could a function be equal to a set of

functions).

2. People write f(n) = O(g(n)), when they mean f ∈ O(g),
with f : N→ R+, n� f(n), and g : N→ R+, n� g(n).

3. People write e.g. h(n) = f(n)+ o(g(n)) when they mean

that there exists a function z : N→ R+, n� z(n), z ∈ o(g)
such that h(n) = f(n)+ z(n).

4. People write O(f (n)) = O(g(n)), when they mean

O(f (n)) ⊆ O(g(n)). Again this is not an equality.

Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f ∈ O(g). This is

not an equality (how could a function be equal to a set of

functions).

2. People write f(n) = O(g(n)), when they mean f ∈ O(g),
with f : N→ R+, n� f(n), and g : N→ R+, n� g(n).

3. People write e.g. h(n) = f(n)+ o(g(n)) when they mean

that there exists a function z : N→ R+, n� z(n), z ∈ o(g)
such that h(n) = f(n)+ z(n).

4. People write O(f (n)) = O(g(n)), when they mean

O(f (n)) ⊆ O(g(n)). Again this is not an equality.

Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f ∈ O(g). This is

not an equality (how could a function be equal to a set of

functions).

2. People write f(n) = O(g(n)), when they mean f ∈ O(g),
with f : N→ R+, n� f(n), and g : N→ R+, n� g(n).

3. People write e.g. h(n) = f(n)+ o(g(n)) when they mean

that there exists a function z : N→ R+, n� z(n), z ∈ o(g)
such that h(n) = f(n)+ z(n).

4. People write O(f (n)) = O(g(n)), when they mean

O(f (n)) ⊆ O(g(n)). Again this is not an equality.

Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 + 3n+ 1 = 2n2 +Θ(n)

Here, Θ(n) stands for an anonymous function in the set Θ(n)
that makes the expression true.

Note that Θ(n) is on the right hand side, otw. this interpretation

is wrong.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 32/119

Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 + 3n+ 1 = 2n2 +Θ(n)

Here, Θ(n) stands for an anonymous function in the set Θ(n)
that makes the expression true.

Note that Θ(n) is on the right hand side, otw. this interpretation

is wrong.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 32/119

Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 + 3n+ 1 = 2n2 +Θ(n)

Here, Θ(n) stands for an anonymous function in the set Θ(n)
that makes the expression true.

Note that Θ(n) is on the right hand side, otw. this interpretation

is wrong.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 32/119

Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +O(n) = Θ(n2)

Regardless of how we choose the anonymous function

f(n) ∈ O(n) there is an anonymous function g(n) ∈ Θ(n2)
that makes the expression true.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 33/119

Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +O(n) = Θ(n2)

Regardless of how we choose the anonymous function

f(n) ∈ O(n) there is an anonymous function g(n) ∈ Θ(n2)
that makes the expression true.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 33/119

Asymptotic Notation in Equations

How do we interpret an expression like:

n�

i=1

Θ(i) = Θ(n2)

Careful!

“It is understood” that every occurence of an O-symbol (or

Θ,Ω, o,ω) on the left represents one anonymous function.

Hence, the left side is not equal to

Θ(1)+Θ(2)+ · · · +Θ(n− 1)+Θ(n)

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 34/119

Asymptotic Notation in Equations

How do we interpret an expression like:

n�

i=1

Θ(i) = Θ(n2)

Careful!

“It is understood” that every occurence of an O-symbol (or

Θ,Ω, o,ω) on the left represents one anonymous function.

Hence, the left side is not equal to

Θ(1)+Θ(2)+ · · · +Θ(n− 1)+Θ(n)

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 34/119

Asymptotic Notation in Equations

How do we interpret an expression like:

n�

i=1

Θ(i) = Θ(n2)

Careful!

“It is understood” that every occurence of an O-symbol (or

Θ,Ω, o,ω) on the left represents one anonymous function.

Hence, the left side is not equal to

Θ(1)+Θ(2)+ · · · +Θ(n− 1)+Θ(n)

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 34/119

Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as

generating a set:

n2 · O(n)+O(logn)

represents

�
f : N→ R+ | f(n) = n2 · g(n)+ h(n)

with g(n) ∈ O(n) and h(n) ∈ O(logn)
�

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 35/119

Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as

containement btw. two sets:

n2 · O(n)+O(logn) = Θ(n2)

represents

n2 · O(n)+O(logn) ⊆ Θ(n2)

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 36/119

Asymptotic Notation

Lemma 3

Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

� c · f(n) ∈ Θ(f (n)) for any constant c
� O(f (n))+O(g(n)) = O(f (n)+ g(n))
� O(f (n)) · O(g(n)) = O(f (n) · g(n))
� O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 37/119

Asymptotic Notation

Lemma 3

Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

� c · f(n) ∈ Θ(f (n)) for any constant c
� O(f (n))+O(g(n)) = O(f (n)+ g(n))
� O(f (n)) · O(g(n)) = O(f (n) · g(n))
� O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 37/119

Asymptotic Notation

Lemma 3

Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

� c · f(n) ∈ Θ(f (n)) for any constant c
� O(f (n))+O(g(n)) = O(f (n)+ g(n))
� O(f (n)) · O(g(n)) = O(f (n) · g(n))
� O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 37/119

Asymptotic Notation

Lemma 3

Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

� c · f(n) ∈ Θ(f (n)) for any constant c
� O(f (n))+O(g(n)) = O(f (n)+ g(n))
� O(f (n)) · O(g(n)) = O(f (n) · g(n))
� O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 37/119

Asymptotic Notation

Lemma 3

Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

� c · f(n) ∈ Θ(f (n)) for any constant c
� O(f (n))+O(g(n)) = O(f (n)+ g(n))
� O(f (n)) · O(g(n)) = O(f (n) · g(n))
� O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 37/119

Asymptotic Notation

Comments

� Do not use asymptotic notation within induction proofs.

� For any constants a,b we have loga n = Θ(logb n).
Therefore, we will usually ignore the base of a logarithm

within asymptotic notation.

� In general logn = log2n, i.e., we use 2 as the default base

for the logarithm.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 38/119

Asymptotic Notation

Comments

� Do not use asymptotic notation within induction proofs.

� For any constants a,b we have loga n = Θ(logb n).
Therefore, we will usually ignore the base of a logarithm

within asymptotic notation.

� In general logn = log2n, i.e., we use 2 as the default base

for the logarithm.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 38/119

Asymptotic Notation

Comments

� Do not use asymptotic notation within induction proofs.

� For any constants a,b we have loga n = Θ(logb n).
Therefore, we will usually ignore the base of a logarithm

within asymptotic notation.

� In general logn = log2n, i.e., we use 2 as the default base

for the logarithm.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 38/119

Asymptotic Notation

In general asymptotic classification of running times is a good

measure for comparing algorithms:

� If the running time analysis is tight and actually occurs in

practise (i.e., the asymptotic bound is not a purely

theoretical worst-case bound), then the algorithm that has

better asymptotic running time will always outperform a

weaker algorithm for large enough values of n.

� However, suppose that I have two algorithms:
� Algorithm A. Running time f(n) = 1000 logn = O(logn).
� Algorithm B. Running time g(n) = log2n.

Clearly f = o(g). However, as long as logn ≤ 1000

Algorithm B will be more efficient.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 39/119

Asymptotic Notation

In general asymptotic classification of running times is a good

measure for comparing algorithms:

� If the running time analysis is tight and actually occurs in

practise (i.e., the asymptotic bound is not a purely

theoretical worst-case bound), then the algorithm that has

better asymptotic running time will always outperform a

weaker algorithm for large enough values of n.

� However, suppose that I have two algorithms:
� Algorithm A. Running time f(n) = 1000 logn = O(logn).
� Algorithm B. Running time g(n) = log2n.

Clearly f = o(g). However, as long as logn ≤ 1000

Algorithm B will be more efficient.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 39/119

Asymptotic Notation

In general asymptotic classification of running times is a good

measure for comparing algorithms:

� If the running time analysis is tight and actually occurs in

practise (i.e., the asymptotic bound is not a purely

theoretical worst-case bound), then the algorithm that has

better asymptotic running time will always outperform a

weaker algorithm for large enough values of n.

� However, suppose that I have two algorithms:
� Algorithm A. Running time f(n) = 1000 logn = O(logn).
� Algorithm B. Running time g(n) = log2n.

Clearly f = o(g). However, as long as logn ≤ 1000

Algorithm B will be more efficient.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 39/119

Asymptotic Notation

In general asymptotic classification of running times is a good

measure for comparing algorithms:

� If the running time analysis is tight and actually occurs in

practise (i.e., the asymptotic bound is not a purely

theoretical worst-case bound), then the algorithm that has

better asymptotic running time will always outperform a

weaker algorithm for large enough values of n.

� However, suppose that I have two algorithms:
� Algorithm A. Running time f(n) = 1000 logn = O(logn).
� Algorithm B. Running time g(n) = log2n.

Clearly f = o(g). However, as long as logn ≤ 1000

Algorithm B will be more efficient.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 39/119

Asymptotic Notation

In general asymptotic classification of running times is a good

measure for comparing algorithms:

� If the running time analysis is tight and actually occurs in

practise (i.e., the asymptotic bound is not a purely

theoretical worst-case bound), then the algorithm that has

better asymptotic running time will always outperform a

weaker algorithm for large enough values of n.

� However, suppose that I have two algorithms:
� Algorithm A. Running time f(n) = 1000 logn = O(logn).
� Algorithm B. Running time g(n) = log2n.

Clearly f = o(g). However, as long as logn ≤ 1000

Algorithm B will be more efficient.

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 39/119

Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several

parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asympotic statements for n→∞ and m →∞
we have to extend the definition to multiple variables.

Formal Definition

Let f , g denote functions from Nd to R+0 .

� O(f) = {g | ∃c > 0 ∃N ∈ N0 ∀�n with ni ≥ N for some i :

[g(�n) ≤ c · f(�n)]}
(set of functions that asymptotically grow not faster than f)

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 40/119

Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several

parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asympotic statements for n→∞ and m →∞
we have to extend the definition to multiple variables.

Formal Definition

Let f , g denote functions from Nd to R+0 .

� O(f) = {g | ∃c > 0 ∃N ∈ N0 ∀�n with ni ≥ N for some i :

[g(�n) ≤ c · f(�n)]}
(set of functions that asymptotically grow not faster than f)

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 40/119

Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several

parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asympotic statements for n→∞ and m →∞
we have to extend the definition to multiple variables.

Formal Definition

Let f , g denote functions from Nd to R+0 .

� O(f) = {g | ∃c > 0 ∃N ∈ N0 ∀�n with ni ≥ N for some i :

[g(�n) ≤ c · f(�n)]}
(set of functions that asymptotically grow not faster than f)

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 40/119

Multiple Variables in Asymptotic Notation

Example 4

� f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n− 1

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 41/119

Multiple Variables in Asymptotic Notation

Example 4

� f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n− 1

then f = O(g) does not hold

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 41/119

Multiple Variables in Asymptotic Notation

Example 4

� f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n− 1

then f = O(g) does not hold

� f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 41/119

Multiple Variables in Asymptotic Notation

Example 4

� f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n− 1

then f = O(g) does not hold

� f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n
then: f = O(g)

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 41/119

Multiple Variables in Asymptotic Notation

Example 4

� f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n− 1

then f = O(g) does not hold

� f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n
then: f = O(g)

� f : N0 → R+0 , f(n,m) = 1 und g : N0 → R+0 , g(n,m) = n

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 41/119

Multiple Variables in Asymptotic Notation

Example 4

� f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n− 1

then f = O(g) does not hold

� f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n
then: f = O(g)

� f : N0 → R+0 , f(n,m) = 1 und g : N0 → R+0 , g(n,m) = n
then f = O(g) does not hold

5 Asymptotic Notation 21. Oct. 2019

Ernst Mayr, Harald Räcke 41/119

