
8.3 Fibonacci Heaps

S. delete-min(x)

7 24

4626

35

23 17

30

3

5241

44

18

39

min

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 336/377



8.3 Fibonacci Heaps

S. delete-min(x)
� Delete minimum; add child-trees to heap;

time: D(min) · O(1).

7 24

4626

35

23 17

30

3

5241

44

18

39

min

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 336/377



8.3 Fibonacci Heaps

S. delete-min(x)
� Delete minimum; add child-trees to heap;

time: D(min) · O(1).
� Update min-pointer; time: (t +D(min)) · O(1).

7 24

4626

35

23 17

30

18

39

41

44

52

min

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 336/377



8.3 Fibonacci Heaps

S. delete-min(x)
� Delete minimum; add child-trees to heap;

time: D(min) · O(1).
� Update min-pointer; time: (t +D(min)) · O(1).

7 24

4626

35

23 17

30

18

39

41

44

52

min

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 336/377



8.3 Fibonacci Heaps

S. delete-min(x)
� Delete minimum; add child-trees to heap;

time: D(min) · O(1).
� Update min-pointer; time: (t +D(min)) · O(1).

7 24

4626

35

23 17

30

18

39

41

44

52

min

� Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 336/377



8.3 Fibonacci Heaps

Consolidate:

7 24

4626

35

23 17

30

18

39

41

44

52min

0 1 2 3

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7 24

4626

35

23 17

30

18

39

41

44

52min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7 24

4626

35

23 17

30

18

39

41

44

52min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7 24

4626

35

23 17

30

18

39

41

44

52min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7 24

4626

35

23 17

30

18

39

41

44

52min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7 24

4626

35

23 17

30

18

39

41

44

52min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7 24

4626

35

23 17

30

5218

3941

44

min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7 24

4626

35

23 17

30

5218

3941

44

min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7 24

4626

35

23 17

30

5218

3941

44

min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7

52

24

4626

35

23 17

30

18

3941

44

min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7

52

24

4626

35

23 17

30

18

3941

44

min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7

52

24

4626

35

23 17

30

18

3941

44

min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7

52

24

4626

35

23 17

30

18

3941

44

min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7

52

24

4626

35

23 17

30

18

3941

44

min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7

52

23 17

30

18

3941

44

24

4626

35

min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7

52

23 17

30

18

3941

44

24

4626

35

min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7

52

23 17

30

18

3941

44

24

4626

35

min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7

52

2318

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7

52

2318

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

current

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Consolidate:

7

52

2318

3941

44

24

4626

35

7

5217

30

min

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 337/377



8.3 Fibonacci Heaps

Actual cost for delete-min()
� At most Dn + t elements in root-list before consolidate.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 338/377



8.3 Fibonacci Heaps

Actual cost for delete-min()
� At most Dn + t elements in root-list before consolidate.

� Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn+ t).

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 338/377



8.3 Fibonacci Heaps

Actual cost for delete-min()
� At most Dn + t elements in root-list before consolidate.

� Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn+ t).

Amortized cost for delete-min()
� t� ≤ Dn + 1 as degrees are different after consolidating.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 338/377



8.3 Fibonacci Heaps

Actual cost for delete-min()
� At most Dn + t elements in root-list before consolidate.

� Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn+ t).

Amortized cost for delete-min()
� t� ≤ Dn + 1 as degrees are different after consolidating.

� Therefore ΔΦ ≤ Dn + 1− t;

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 338/377



8.3 Fibonacci Heaps

Actual cost for delete-min()
� At most Dn + t elements in root-list before consolidate.

� Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn+ t).

Amortized cost for delete-min()
� t� ≤ Dn + 1 as degrees are different after consolidating.

� Therefore ΔΦ ≤ Dn + 1− t;
� We can pay c · (t −Dn − 1) from the potential decrease.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 338/377



8.3 Fibonacci Heaps

Actual cost for delete-min()
� At most Dn + t elements in root-list before consolidate.

� Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn+ t).

Amortized cost for delete-min()
� t� ≤ Dn + 1 as degrees are different after consolidating.

� Therefore ΔΦ ≤ Dn + 1− t;
� We can pay c · (t −Dn − 1) from the potential decrease.

� The amortized cost is

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 338/377



8.3 Fibonacci Heaps

Actual cost for delete-min()
� At most Dn + t elements in root-list before consolidate.

� Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn+ t).

Amortized cost for delete-min()
� t� ≤ Dn + 1 as degrees are different after consolidating.

� Therefore ΔΦ ≤ Dn + 1− t;
� We can pay c · (t −Dn − 1) from the potential decrease.

� The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 338/377



8.3 Fibonacci Heaps

Actual cost for delete-min()
� At most Dn + t elements in root-list before consolidate.

� Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn+ t).

Amortized cost for delete-min()
� t� ≤ Dn + 1 as degrees are different after consolidating.

� Therefore ΔΦ ≤ Dn + 1− t;
� We can pay c · (t −Dn − 1) from the potential decrease.

� The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 338/377



8.3 Fibonacci Heaps

Actual cost for delete-min()
� At most Dn + t elements in root-list before consolidate.

� Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn+ t).

Amortized cost for delete-min()
� t� ≤ Dn + 1 as degrees are different after consolidating.

� Therefore ΔΦ ≤ Dn + 1− t;
� We can pay c · (t −Dn − 1) from the potential decrease.

� The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1)

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 338/377



8.3 Fibonacci Heaps

Actual cost for delete-min()
� At most Dn + t elements in root-list before consolidate.

� Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn+ t).

Amortized cost for delete-min()
� t� ≤ Dn + 1 as degrees are different after consolidating.

� Therefore ΔΦ ≤ Dn + 1− t;
� We can pay c · (t −Dn − 1) from the potential decrease.

� The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1) ≤ O(Dn)

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 338/377



8.3 Fibonacci Heaps

Actual cost for delete-min()
� At most Dn + t elements in root-list before consolidate.

� Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn+ t).

Amortized cost for delete-min()
� t� ≤ Dn + 1 as degrees are different after consolidating.

� Therefore ΔΦ ≤ Dn + 1− t;
� We can pay c · (t −Dn − 1) from the potential decrease.

� The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1) ≤ O(Dn)
for c ≥ c1 .

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 338/377



8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial

trees (for example only singleton vertices) then the output will

be a set of distinct binomial trees, and, hence, the Fibonacci

heap will be (more or less) a Binomial heap right after the

consolidation.

If we do not have delete or decrease-key operations then

Dn ≤ logn.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 339/377



8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial

trees (for example only singleton vertices) then the output will

be a set of distinct binomial trees, and, hence, the Fibonacci

heap will be (more or less) a Binomial heap right after the

consolidation.

If we do not have delete or decrease-key operations then

Dn ≤ logn.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 339/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

min

Case 1: decrease-key does not violate heap-property

� Just decrease the key-value of element referenced by h.

Nothing else to do.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

min

Case 1: decrease-key does not violate heap-property

� Just decrease the key-value of element referenced by h.

Nothing else to do.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

30

2312

min

Case 1: decrease-key does not violate heap-property

� Just decrease the key-value of element referenced by h.

Nothing else to do.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

30

2312

min

Case 1: decrease-key does not violate heap-property

� Just decrease the key-value of element referenced by h.

Nothing else to do.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

30

2312

min

Case 2: heap-property is violated, but parent is not marked

� Decrease key-value of element x reference by h.

� If the heap-property is violated, cut the parent edge of x,

and make x into a root.

� Adjust min-pointers, if necessary.

� Mark the (previous) parent of x (unless it’s a root).

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

30

2312

19

min

Case 2: heap-property is violated, but parent is not marked

� Decrease key-value of element x reference by h.

� If the heap-property is violated, cut the parent edge of x,

and make x into a root.

� Adjust min-pointers, if necessary.

� Mark the (previous) parent of x (unless it’s a root).

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

30

2312

19

min

Case 2: heap-property is violated, but parent is not marked

� Decrease key-value of element x reference by h.

� If the heap-property is violated, cut the parent edge of x,

and make x into a root.

� Adjust min-pointers, if necessary.

� Mark the (previous) parent of x (unless it’s a root).

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

30

23

19

72 12

min

Case 2: heap-property is violated, but parent is not marked

� Decrease key-value of element x reference by h.

� If the heap-property is violated, cut the parent edge of x,

and make x into a root.

� Adjust min-pointers, if necessary.

� Mark the (previous) parent of x (unless it’s a root).

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

30

23

19

72 12

min

Case 2: heap-property is violated, but parent is not marked

� Decrease key-value of element x reference by h.

� If the heap-property is violated, cut the parent edge of x,

and make x into a root.

� Adjust min-pointers, if necessary.

� Mark the (previous) parent of x (unless it’s a root).

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

30

23

19

72 12

min

Case 3: heap-property is violated, and parent is marked

� Decrease key-value of element x reference by h.

� Cut the parent edge of x, and make x into a root.

� Adjust min-pointers, if necessary.

� Continue cutting the parent until you arrive at an unmarked

node.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

30

23

19

72 12

4

min

Case 3: heap-property is violated, and parent is marked

� Decrease key-value of element x reference by h.

� Cut the parent edge of x, and make x into a root.

� Adjust min-pointers, if necessary.

� Continue cutting the parent until you arrive at an unmarked

node.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

30

23

19

72 12

4

min

Case 3: heap-property is violated, and parent is marked

� Decrease key-value of element x reference by h.

� Cut the parent edge of x, and make x into a root.

� Adjust min-pointers, if necessary.

� Continue cutting the parent until you arrive at an unmarked

node.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

74

30

23

19

72

4

40 12

min

Case 3: heap-property is violated, and parent is marked

� Decrease key-value of element x reference by h.

� Cut the parent edge of x, and make x into a root.

� Adjust min-pointers, if necessary.

� Continue cutting the parent until you arrive at an unmarked

node.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

74

30

23

19

72

4

40 12

min

Case 3: heap-property is violated, and parent is marked

� Decrease key-value of element x reference by h.

� Cut the parent edge of x, and make x into a root.

� Adjust min-pointers, if necessary.

� Continue cutting the parent until you arrive at an unmarked

node.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

74

30

23

19

72

4

40 12

min

Case 3: heap-property is violated, and parent is marked

� Decrease key-value of element x reference by h.

� Cut the parent edge of x, and make x into a root.

� Adjust min-pointers, if necessary.

� Continue cutting the parent until you arrive at an unmarked

node.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

30

23

19

72

4

40

26

74 12

min

Case 3: heap-property is violated, and parent is marked

� Decrease key-value of element x reference by h.

� Cut the parent edge of x, and make x into a root.

� Adjust min-pointers, if necessary.

� Continue cutting the parent until you arrive at an unmarked

node.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

30

23

19

72

4

40

26

74 12

min

Case 3: heap-property is violated, and parent is marked

� Decrease key-value of element x reference by h.

� Cut the parent edge of x, and make x into a root.

� Adjust min-pointers, if necessary.

� Continue cutting the parent until you arrive at an unmarked

node.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

30

23

19

72

4

40

26

74

24

12

min

Case 3: heap-property is violated, and parent is marked

� Decrease key-value of element x reference by h.

� Cut the parent edge of x, and make x into a root.

� Adjust min-pointers, if necessary.

� Continue cutting the parent until you arrive at an unmarked

node.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

� Decrease key-value of element x reference by h.

� Cut the parent edge of x, and make x into a root.

� Adjust min-pointers, if necessary.

� Execute the following:

p ← parent[x];
while (p is marked)

pp ← parent[p];
cut of p; make it into a root; unmark it;

p ← pp;

if p is unmarked and not a root mark it;

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 341/377



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

� Constant cost for decreasing the value.

� Constant cost for each of � cuts.

� Hence, cost is at most c2 · (� + 1), for some constant c2.

Amortized cost:

� t� = t + �, as every cut creates one new root.

� m� ≤m− (� − 1)+ 1 =m− � + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

� ΔΦ ≤ � + 2(−� + 2) = 4− �
� Amortized cost is at most

c2(�+1)+c(4−�) ≤ (c2−c)�+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 342/377



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

� Constant cost for decreasing the value.

� Constant cost for each of � cuts.

� Hence, cost is at most c2 · (� + 1), for some constant c2.

Amortized cost:

� t� = t + �, as every cut creates one new root.

� m� ≤m− (� − 1)+ 1 =m− � + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

� ΔΦ ≤ � + 2(−� + 2) = 4− �
� Amortized cost is at most

c2(�+1)+c(4−�) ≤ (c2−c)�+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 342/377



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

� Constant cost for decreasing the value.

� Constant cost for each of � cuts.

� Hence, cost is at most c2 · (� + 1), for some constant c2.

Amortized cost:

� t� = t + �, as every cut creates one new root.

� m� ≤m− (� − 1)+ 1 =m− � + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

� ΔΦ ≤ � + 2(−� + 2) = 4− �
� Amortized cost is at most

c2(�+1)+c(4−�) ≤ (c2−c)�+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 342/377



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

� Constant cost for decreasing the value.

� Constant cost for each of � cuts.

� Hence, cost is at most c2 · (� + 1), for some constant c2.

Amortized cost:

� t� = t + �, as every cut creates one new root.

� m� ≤m− (� − 1)+ 1 =m− � + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

� ΔΦ ≤ � + 2(−� + 2) = 4− �
� Amortized cost is at most

c2(�+1)+c(4−�) ≤ (c2−c)�+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 342/377



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

� Constant cost for decreasing the value.

� Constant cost for each of � cuts.

� Hence, cost is at most c2 · (� + 1), for some constant c2.

Amortized cost:

� t� = t + �, as every cut creates one new root.

� m� ≤m− (� − 1)+ 1 =m− � + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

� ΔΦ ≤ � + 2(−� + 2) = 4− �
� Amortized cost is at most

c2(�+1)+c(4−�) ≤ (c2−c)�+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 342/377



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

� Constant cost for decreasing the value.

� Constant cost for each of � cuts.

� Hence, cost is at most c2 · (� + 1), for some constant c2.

Amortized cost:

� t� = t + �, as every cut creates one new root.

� m� ≤m− (� − 1)+ 1 =m− � + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

� ΔΦ ≤ � + 2(−� + 2) = 4− �
� Amortized cost is at most

c2(�+1)+c(4−�) ≤ (c2−c)�+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 342/377



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

� Constant cost for decreasing the value.

� Constant cost for each of � cuts.

� Hence, cost is at most c2 · (� + 1), for some constant c2.

Amortized cost:

� t� = t + �, as every cut creates one new root.

� m� ≤m− (� − 1)+ 1 =m− � + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

� ΔΦ ≤ � + 2(−� + 2) = 4− �
� Amortized cost is at most

c2(�+1)+c(4−�) ≤ (c2−c)�+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 342/377



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

� Constant cost for decreasing the value.

� Constant cost for each of � cuts.

� Hence, cost is at most c2 · (� + 1), for some constant c2.

Amortized cost:

� t� = t + �, as every cut creates one new root.

� m� ≤m− (� − 1)+ 1 =m− � + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

� ΔΦ ≤ � + 2(−� + 2) = 4− �
� Amortized cost is at most

c2(�+1)+c(4−�) ≤ (c2−c)�+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 342/377



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

� Constant cost for decreasing the value.

� Constant cost for each of � cuts.

� Hence, cost is at most c2 · (� + 1), for some constant c2.

Amortized cost:

� t� = t + �, as every cut creates one new root.

� m� ≤m− (� − 1)+ 1 =m− � + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

� ΔΦ ≤ � + 2(−� + 2) = 4− �
� Amortized cost is at most

c2(�+1)+c(4−�) ≤ (c2−c)�+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 342/377



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

� Constant cost for decreasing the value.

� Constant cost for each of � cuts.

� Hence, cost is at most c2 · (� + 1), for some constant c2.

Amortized cost:

� t� = t + �, as every cut creates one new root.

� m� ≤m− (� − 1)+ 1 =m− � + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

� ΔΦ ≤ � + 2(−� + 2) = 4− �
� Amortized cost is at most

c2(�+1)+c(4−�) ≤ (c2−c)�+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 342/377



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

� Constant cost for decreasing the value.

� Constant cost for each of � cuts.

� Hence, cost is at most c2 · (� + 1), for some constant c2.

Amortized cost:

� t� = t + �, as every cut creates one new root.

� m� ≤m− (� − 1)+ 1 =m− � + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

� ΔΦ ≤ � + 2(−� + 2) = 4− �
� Amortized cost is at most

c2(�+1)+c(4−�) ≤ (c2−c)�+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 342/377



Delete node

H. delete(x):
� decrease value of x to −∞.

� delete-min.

Amortized cost: O(Dn)
� O(1) for decrease-key.

� O(Dn) for delete-min.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 343/377



8.3 Fibonacci Heaps

Lemma 32

Let x be a node with degree k and let y1, . . . , yk denote the

children of x in the order that they were linked to x. Then

degree(yi) ≥
�

0 if i = 1

i− 2 if i > 1

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 344/377



8.3 Fibonacci Heaps

Proof

� When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

� Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

� Since, then yi has lost at most one child.

� Therefore, degree(yi) ≥ i− 2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 345/377



8.3 Fibonacci Heaps

Proof

� When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

� Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

� Since, then yi has lost at most one child.

� Therefore, degree(yi) ≥ i− 2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 345/377



8.3 Fibonacci Heaps

Proof

� When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

� Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

� Since, then yi has lost at most one child.

� Therefore, degree(yi) ≥ i− 2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 345/377



8.3 Fibonacci Heaps

Proof

� When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

� Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

� Since, then yi has lost at most one child.

� Therefore, degree(yi) ≥ i− 2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 345/377



8.3 Fibonacci Heaps
� Let sk be the minimum possible size of a sub-tree rooted at

a node of degree k that can occur in a Fibonacci heap.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 346/377



8.3 Fibonacci Heaps
� Let sk be the minimum possible size of a sub-tree rooted at

a node of degree k that can occur in a Fibonacci heap.

� sk monotonically increases with k

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 346/377



8.3 Fibonacci Heaps
� Let sk be the minimum possible size of a sub-tree rooted at

a node of degree k that can occur in a Fibonacci heap.

� sk monotonically increases with k
� s0 = 1 and s1 = 2.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 346/377



8.3 Fibonacci Heaps
� Let sk be the minimum possible size of a sub-tree rooted at

a node of degree k that can occur in a Fibonacci heap.

� sk monotonically increases with k
� s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k�

i=2

size(yi)

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 346/377



8.3 Fibonacci Heaps
� Let sk be the minimum possible size of a sub-tree rooted at

a node of degree k that can occur in a Fibonacci heap.

� sk monotonically increases with k
� s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k�

i=2

size(yi)

≥ 2+
k�

i=2

si−2

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 346/377



8.3 Fibonacci Heaps
� Let sk be the minimum possible size of a sub-tree rooted at

a node of degree k that can occur in a Fibonacci heap.

� sk monotonically increases with k
� s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k�

i=2

size(yi)

≥ 2+
k�

i=2

si−2

= 2+
k−2�

i=0

si

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 346/377



8.3 Fibonacci Heaps

Definition 33

Consider the following non-standard Fibonacci type sequence:

Fk =




1 if k = 0

2 if k = 1

Fk−1 + Fk−2 if k ≥ 2

Facts:

1. Fk ≥ φk.
2. For k ≥ 2: Fk = 2+�k−2

i=0 Fi.

The above facts can be easily proved by induction. From this it

follows that sk ≥ Fk ≥ φk, which gives that the maximum degree

in a Fibonacci heap is logarithmic.

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 347/377



k=0: 1 = F0 ≥ Φ0 = 1

k=1: 2 = F1 ≥ Φ1 ≈ 1.61

k-2,k-1→ k: Fk = Fk−1+Fk−2 ≥ Φk−1+Φk−2 = Φk−2(Φ + 1) = Φk
Φ2� �� �

k=2: 3 = F2 = 2+ 1 = 2+ F0

k-1→ k: Fk = Fk−1 + Fk−2 = 2+�k−3
i=0 Fi + Fk−2 = 2+�k−2

i=0 Fi

8.3 Fibonacci Heaps 16. Dec. 2019

Ernst Mayr, Harald Räcke 348/377


