8.3 Fibonacci Heaps

S. delete-min(x)

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 336/377



8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 336/377



8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;

time: D(min) - O(1). /4

» Update min-pointer; time: (t + D(min)) - O(1).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 336/377



8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 336/377



8.3 Fibonacci Heaps

S. delete-min(x)
» Delete minimum; add child-trees to heap;
time: D(min) - O(1).
» Update min-pointer; time: (t + D(min)) - O(1).

» Consolidate root-list so that no roots have the same degree.
Time t - O(1) (see next slide).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 336/377



8.3 Fibonacci Heaps

Consolidate:

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:

current

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
? OO | O
current -

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
? OO | O
current -

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:

?
current —

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:

?
current ] 2

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
? OO | O
current ] -

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
RIS
current - 7

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
RIS
current - 7

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
RIS
current - 7

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
O ? (o]
current I

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

ANESRASN bt e el

Consolidate:

€ o[1[2]3

current

aﬂm Jﬂlo,c wa‘k(@ vce

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
PIPLTIL®
current =2

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
PIPLTIL®
current =2

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:
01
PLPLC
current = l
min —>(7)* (18)«—>(23)<

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

337/377



8.3 Fibonacci Heaps

Consolidate:

current =

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:

current =

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:

? ?
current N

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:

e e
current \—/

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Consolidate:

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 337/377



8.3 Fibonacci Heaps

Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 338/377



8.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 338/377



8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most Dy, + t elements in root-list before consolidate.
> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢ s.t. actual costis at most ¢y - (Dy +1).
Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 338/377



8.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 338/377



8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most Dy, + t elements in root-list before consolidate.
> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢ s.t. actual costis at most ¢y - (Dy +1).
Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;

» We can pay c - (t — D, — 1) from the potential decrease.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 338/377



8.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — D, — 1) from the potential decrease.
>

The amortized cost is

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 338/377



8.3 Fibonacci Heaps Hhonke of olomnt tn L1
Actual cost for deleté-min() belye Aelcte —lnon
> At most@ elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).

Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — D, — 1) from the potential decrease.

» The amortized cost is

c1-Dp+t)—c-(t-Dp-1)

TI[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

338/377



8.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — D, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—Dyp—-1)
<(c1+c)Dy+(c1—c)t+c

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 338/377



8.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — D, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—Dyp—-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 338/377



8.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — D, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—Dyp—-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 338/377



8.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — D, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—Dyp—-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)

forc>cy .

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 338/377



8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will
be a set of distinct binomial trees, and, hence, the Fibonacci
heap will be (more or less) a Binomial heap right after the
consolidation.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 339/377



8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will
be a set of distinct binomial trees, and, hence, the Fibonacci
heap will be (more or less) a Binomial heap right after the
consolidation.

If we do not have delete or decrease-key operations then
Dy <logn.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 339/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
Nothing else to do.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
Nothing else to do.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
Nothing else to do.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
Nothing else to do.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377




Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377




Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377




Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377




Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377




Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/377



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.
> Execute the following:

p — parent[x];

while (p is marked)
pp — parent[p];
cut of p; make it into a root; unmark it;
p < pp,

if p@s/uﬁmapked)and) not a root mark it;

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

341/377



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 342/377



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 342/377



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 342/377



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

oY)

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 342/377



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:

> t' =t +{, as every cut creates one new root.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 342/377



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 342/377



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.
> m' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.
>» Ad <l +2(—0+2)=4-7

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

342/377



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.
> m' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.
>» Ad <l +2(—0+2)=4-7

» Amortized cost is at most

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

342/377



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A< +2(—€+2)=4-¢
» Amortized cost is at most

col+1)+c(4-10)

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 342/377



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A< +2(—€+2)=4-¢
» Amortized cost is at most

cl+1)+c(4-"0) < (cop—c)l+4c+co

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 342/377



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A < +2(—0+2)=4-Y¢
» Amortized cost is at most
o+ +cd-1) < (cr—c)l+4c+cr = O(1),

if c > co.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 342/377



Delete node

H. delete(x):
» decrease value of x to —co.

> delete-min.

Amortized cost: @ (D)
> O(1) for decrease-key.
> O(Dy) for delete-min.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 343/377



8.3 Fibonacci Heaps

Lemma 32
Let x be a node with degree k and let y1,..., vy denote the
children of x in the order that they were linked to x. Then

0 ifi=1

degree(y) Z{ i-2 ifi>1

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 344/377



8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,..., yi—1 were already

linked to x.
v, m
/%ﬁg(z !

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 345/377



8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,..., yi—1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

345/377



8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,y;_1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

> Since, then y; has lost at most one child.

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

345/377



8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,y;_1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

> Since, then y; has lost at most one child.
» Therefore, degree(y;) =1 — 2.

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

345/377



8.3 Fibonacci Heaps

> Let sp be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 346/377



8.3 Fibonacci Heaps

> Let sp be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 346/377



8.3 Fibonacci Heaps

> Let sp be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

> so=1ands; = 2.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 346/377



8.3 Fibonacci Heaps
> Let sp be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.
> s, monotonically increases with k
> so=1ands; = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.

k
Sk=2+ > size(y;)

=2 vl /v
! ¥

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 346/377



8.3 Fibonacci Heaps
> Let sp be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.
> s, monotonically increases with k
> so=1and sy = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.

k

sk=2+ > size(y;)
i=2
k
>2+ > Sio
i=2

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 346/377



8.3 Fibonacci Heaps

> Let sp be the minimum possible size of a sub-tree rooted at

a node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

> so=1and sy = 2.

Let x be a degree k node of size s, and let yq,...

children.

Sk

k
2+ > size(y;)
i=2

m Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

346/377



8.3 Fibonacci Heaps

Definition 33
Consider the following non-standard Fibonacci type sequence:

1 ifk=0
F,=14 2 ifk=1
Fy_q1 + Fx» if k=2
Facts:
1. Fx = ¢k,

2. Fork>2: Fy=2+Y"2F,.
The above facts can be easily proved by induction. From this it

follows that s > Fy > ¢X, which gives that the maximum degree
in a Fibonacci heap is logarithmic.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/377



O=161 .
1t = p°

k=0: D= Fo =00 =0 v

1 (DZ
<l ®:FI>¢~161|/1<1 k-2 _ @k-2 k
k-2,k-1- k: @Fk1+Fk 2,2 QKL ok %= 9 2P + 1) = @
k=2: GrFR=2+1=2+F v
k-1— k: Fy = +F =2+ 5K+ R, =2+ 32 F

N

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 348/377



