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» Delete minimum; add child-trees to heap;
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» Update min-pointer; time: (t + D(min)) - O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)
» Delete minimum; add child-trees to heap;
time: D(min) - O(1).
» Update min-pointer; time: (t + D(min)) - O(1).

» Consolidate root-list so that no roots have the same degree.
Time t - O(1) (see next slide).
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8.3 Fibonacci Heaps

Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.
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8.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most Dy, + t elements in root-list before consolidate.
> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢ s.t. actual costis at most ¢y - (Dy +1).
Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
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> Actual cost for a delete-min is at most O(1) - (D, + t).
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most Dy, + t elements in root-list before consolidate.
> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢ s.t. actual costis at most ¢y - (Dy +1).
Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;

» We can pay c - (t — D, — 1) from the potential decrease.
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8.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — D, — 1) from the potential decrease.
>

The amortized cost is
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> At most@ elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).

Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — D, — 1) from the potential decrease.

» The amortized cost is
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8.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — D, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—Dyp—-1)
<(c1+c)Dy+(c1—c)t+c
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Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).
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8.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — D, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—Dyp—-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)
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8.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, + ).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — D, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—Dyp—-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)

forc>cy .
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8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will
be a set of distinct binomial trees, and, hence, the Fibonacci
heap will be (more or less) a Binomial heap right after the
consolidation.
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8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will
be a set of distinct binomial trees, and, hence, the Fibonacci
heap will be (more or less) a Binomial heap right after the
consolidation.

If we do not have delete or decrease-key operations then
Dy <logn.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
Nothing else to do.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).
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Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.
> Execute the following:

p — parent[x];

while (p is marked)
pp — parent[p];
cut of p; make it into a root; unmark it;
p < pp,

if p@s/uﬁmapked)and) not a root mark it;
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
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Actual cost:
» Constant cost for decreasing the value.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

oY)
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:

> t' =t +{, as every cut creates one new root.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 342/377



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.
> m' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.
>» Ad <l +2(—0+2)=4-7
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.
> m' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.
>» Ad <l +2(—0+2)=4-7

» Amortized cost is at most
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A< +2(—€+2)=4-¢
» Amortized cost is at most

col+1)+c(4-10)
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A< +2(—€+2)=4-¢
» Amortized cost is at most

cl+1)+c(4-"0) < (cop—c)l+4c+co
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A < +2(—0+2)=4-Y¢
» Amortized cost is at most
o+ +cd-1) < (cr—c)l+4c+cr = O(1),

if c > co.
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Delete node

H. delete(x):
» decrease value of x to —co.

> delete-min.

Amortized cost: @ (D)
> O(1) for decrease-key.
> O(Dy) for delete-min.
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8.3 Fibonacci Heaps

Lemma 32
Let x be a node with degree k and let y1,..., vy denote the
children of x in the order that they were linked to x. Then

0 ifi=1

degree(y) Z{ i-2 ifi>1
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8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,..., yi—1 were already

linked to x.
v, m
/%ﬁg(z !
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8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,..., yi—1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.
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8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,y;_1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

> Since, then y; has lost at most one child.
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8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,y;_1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

> Since, then y; has lost at most one child.
» Therefore, degree(y;) =1 — 2.
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8.3 Fibonacci Heaps

> Let sp be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.
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8.3 Fibonacci Heaps

> Let sp be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

> so=1ands; = 2.
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8.3 Fibonacci Heaps
> Let sp be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.
> s, monotonically increases with k
> so=1ands; = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.

k
Sk=2+ > size(y;)

=2 vl /v
! ¥
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8.3 Fibonacci Heaps
> Let sp be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.
> s, monotonically increases with k
> so=1and sy = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.

k

sk=2+ > size(y;)
i=2
k
>2+ > Sio
i=2
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8.3 Fibonacci Heaps

> Let sp be the minimum possible size of a sub-tree rooted at

a node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

> so=1and sy = 2.

Let x be a degree k node of size s, and let yq,...

children.

Sk

k
2+ > size(y;)
i=2
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8.3 Fibonacci Heaps

Definition 33
Consider the following non-standard Fibonacci type sequence:

1 ifk=0
F,=14 2 ifk=1
Fy_q1 + Fx» if k=2
Facts:
1. Fx = ¢k,

2. Fork>2: Fy=2+Y"2F,.
The above facts can be easily proved by induction. From this it

follows that s > Fy > ¢X, which gives that the maximum degree
in a Fibonacci heap is logarithmic.
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