Splay Trees

Disadvantage of balanced search trees:

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 162/222



Splay Trees

Disadvantage of balanced search trees:

— worst case; no advantage for easy inputs

%/i O\[ET;) + OVTM)
iy

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 162/222



Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs

— additional memory required

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 162/222



Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs
— additional memory required

— complicated implementation

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 162/222



Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs
— additional memory required

— complicated implementation

Splay Trees:

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 162/222



Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs
— additional memory required

— complicated implementation

Splay Trees:

+ after access, an element is moved to the root; splay(x)
repeated accesses are faster

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 162/222



Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs
— additional memory required

— complicated implementation

Splay Trees:

+ after access, an element is moved to the root; splay(x)
repeated accesses are faster

— only amortized guarantee

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 162/222



Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs
— additional memory required

— complicated implementation

Splay Trees:

+ after access, an element is moved to the root; splay(x)
repeated accesses are faster

— only amortized guarantee

— read-operations change the tree

m 7.3 Splay Trees
Ernst Mayr, Harald Racke

162/222



Splay Trees

find(x)
> search for x according to a search tree
> |et X be last element on search-path
> splay(x)

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 163/222



Splay Trees

insert(x)

> search for x; x is last visited element during search
(successer or predecessor of x)

> splay(Xx) moves X to the root

> insert x as new root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 164/222



Splay Trees

delete(x)

| 2

>
>
>

search for x; splay(x); remove x
search largest element X in A
splay(x) (on subtree A)

connect root of B as right child of x

AL = A= AA

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 165/222



Move to Root

How to bring element to root?

> one (bad) option: moveToRoot(x)
> iteratively do rotation around parent of x until x is root

> if x is left child do right rotation otw. left rotation

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 166/222



Splay: Zig Case

better option splay(x):

> zig case: if x is child of root do left rotation or right
rotation around parent

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 167/222



Splay: Zigzag Case

better option splay(x):

» zigzag case: if x is right child and parent of x is left child
(or x left child parent of x right child)

» do double right rotation around grand-parent (resp. double
left rotation)

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 168/222



Double Rotations




Splay: Zigzig Case

better option splay(x):
p play(x) A A A
> zigzig case: if x is 1&ftichild and parent of x is left child (or
x right child, parent of x right child)
» do right roation around grand-parent followed by right

rotation around parent (resp. left rotations)

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 170/222



Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 171/222



Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 171/222



Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 171/222



Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 171/222



Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 171/222



Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 171/222



Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 171/222



Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 172/222



Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 172/222



Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 172/222



Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 172/222



Static Optimality

Suppose we have a sequence of m find-operations. find(x)
appears h, times in this sequence.

The cost of a static search tree T is:

cost(T) =m + Z hy depthr(x)
X

The total cost for processing the sequence on a splay-tree is
O(cost(Tmin)), where Thin is an optimal static search tree.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 173/222



T
NV
=
£
N~
v
— .
~J X
~J —<
o Il
S ~J %
S
(Y
= e
< o =L
| L, O
< . _ =
oS /A S o ©
D nv/.rnn
<




Dynamic Optimality

Let S be a sequence with m find-operations.

Let A be a data-structure based on a search tree:
> the cost for accessing element x is 1 + depth(x);

> after accessing x the tree may be re-arranged through
rotations;

Conjecture:
A splay tree that only contains elements from S has cost
O(cost(A, S)), for processing S.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 174/222



Lemma 16
Splay Trees have an amortized running time of O (logn) for all
operations.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 175/222



Amortized Analysis

Definition 17

A data structure with operations op; (), ...,0pk() has amortized
running times ty, ..., ty for these operations if the following
holds.

Suppose you are given a sequence of operations (starting with
an empty data-structure) that operate on at most n elements,
and let k; denote the number of occurences of op;() within this
sequence. Then the actual running time must be at most
iki-ti(n).

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 176/222



Potential Method

Introduce a potential for the data structure.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 177/222



Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 177/222



Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is

@Q ®(D;) — ®(D; 1) .
\

Vfwl (od'&

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 177/222



Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is

Ci=¢i+®(D;) —®(Dj-1) .

» Show that ®(D;) > ®(Dy).
0

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 177/222



Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is

Ci=¢i+®(D;) —®(Dj-1) .

» Show that ®(D;) > ®(Dy).

Then

k
> e
i=1

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 177/222



Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is

Ci=¢i+®(D;) —®(Dj-1) .

» Show that ®(D;) > ®(Dy).
2o
Then .
D> < Z ¢i + ®(Dy) — ®(Do)
- La RGBT

L>D

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 177/222



Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is

Ci=¢i+®(D;) —®(Dj-1) .

» Show that ®(D;) > ®(Dy).

Then

2. €i

k
i=1

k k
< > ci+®(Dy) - Z
i=1 i=1

This means the amortized costs can be used to derive a bound
on the total cost.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 177/222



Example: Stack

Stack
> S.push()
> S.pop()
> S.multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the
stack.

» |The user has to ensure that pop and multipop do not
generate an underflow.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 178/222



Example: Stack

Stack
> S.push()
> S.pop()
> S.multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the
stack.

» The user has to ensure that pop and multipop do not
generate an underflow.

Actual cost:
> S.push(): cost 1.
> S.pop(): cost 1.
> S. multipop(k): cost min{size, k} = k.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 178/222



Example: Stack

Use potential function ®(S) = number of elements on the stack.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 179/222



Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 179/222



Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

> S.pop(): cost

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 179/222



Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

> S.pop(): cost

> S. multipop(k): cost

o I
Cmp = Cmp + AP = min{size, k} — min{size, k} s@.

N

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 179/222



Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 180/222



Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.

Incrementing an n-bit binary counter may require to examine
n-bits, and maybe change them.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 180/222



Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.

Incrementing an n-bit binary counter may require to examine
n-bits, and maybe change them.

Actual cost:
» Changing bit from 0 to 1: cost 1.
» Changing bit from 1 to 0: cost 1.

> Increment: costis k + 1, where k is the number of
consecutive ones in the least significant bit-positions (e.g,
001101 has k = 1).

f

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 180/222



Example: Binary Counter



Example: Binary Counter
Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:



Example: Binary Counter
Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:
» Changing bit from 0 to 1:

Coo1=Co1+ADP=1+1<2.

;,:—4%’\47&



Example: Binary Counter
Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:
» Changing bit from 0 to 1:

Coo1=Co1+ADP=1+1<2.

» Changing bit from 1 to 0:

él_.():Cl_.o-f—A(I):l—lSO.



Example: Binary Counter
Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

?/'
Amortized cost:
. . o (11
» Changing bit from 0 to 1: (R
De 00

Coo1=Co1+ADP=1+1<2.

» Changing bit from 1 to O:

Cioo=Cilo0+Ad=1-1<0.

> |Increment: Let k denotes the number of consecutive ones in
the least significant bit-positions. An increment involves k
(1 — 0)-operations, and one (0 — 1)-operation.

Hence, the amortized cost is kCi_o + Co_1 < 2.



