WS 2019/20

Efficient Algorithms
and Data Structures

Harald Racke

Fakultat fur Informatik
TU Miinchen

http://wwwl4.in.tum.de/Tehre/2019WS/ea/

Winter Term 2019/20

m Ernst Mayr, Harald Racke 1/117

Part |

Organizational Matters

m Ernst Mayr, Harald Racke 2/117

Part |

Organizational Matters

> Modul: IN2003

Part |

Organizational Matters

> Modul: IN2003

> Name: “Efficient Algorithms and Data Structures”
“Effiziente Algorithmen und Datenstrukturen”

Part |

Organizational Matters

> Modul: IN2003

> Name: “Efficient Algorithms and Data Structures”
“Effiziente Algorithmen und Datenstrukturen”

» ECTS: 8 Credit points

v

v

Part |

Organizational Matters

Modul: IN2003

Name: “Efficient Algorithms and Data Structures”
“Effiziente Algorithmen und Datenstrukturen”

» ECTS: 8 Credit points

v

Lectures:
> 4 SWS
Mon 10:00-12:00 (Room Interim2)
Fri 10:00-12:00 (Room Interim?2)

v

v

Part |

Organizational Matters

Modul: IN2003

Name: “Efficient Algorithms and Data Structures”
“Effiziente Algorithmen und Datenstrukturen”

» ECTS: 8 Credit points

v

Lectures:
> 4 SWS
Mon 10:00-12:00 (Room Interim2)
Fri 10:00-12:00 (Room Interim?2)

Webpage: http://wwwl4.in.tum.de/lehre/2019WS/ea/

» Required knowledge:

m Ernst Mayr, Harald Racke 4/117

» Required knowledge:

> INOOO1, INOOO3
“Introduction to Informatics 1/2”
“Einfuhrung in die Informatik 1/2”

m Ernst Mayr, Harald Racke 4/117

» Required knowledge:
> INO0OT, INO0O03
“Introduction to Informatics 1/2”
“Einfuhrung in die Informatik 1/2”
> INO007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)

m Ernst Mayr, Harald Racke 4/117

» Required knowledge:
> INOOOT1, INO0O3
“Introduction to Informatics 1/2”
“Einfuhrung in die Informatik 1/2”
> INO007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)
> INOOT1
“Basic Theoretic Informatics”
“Einfiihrung in die Theoretische Informatik” (THEO)

m Ernst Mayr, Harald Racke 4/117

» Required knowledge:
> INO0OT, INO0O03
“Introduction to Informatics 1/2”
“Einfuhrung in die Informatik 1/2”
> INO007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)
> INOOT1
“Basic Theoretic Informatics”
“Einfiihrung in die Theoretische Informatik” (THEO)
> INOO15
“Discrete Structures”
“Diskrete Strukturen” (DS)

m Ernst Mayr, Harald Racke 4/117

» Required knowledge:

>

INOOOT, INOOO3

“Introduction to Informatics 1/2”

“Einfuhrung in die Informatik 1/2”

INOOO7

“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)
INOO11

“Basic Theoretic Informatics”

“Einfiihrung in die Theoretische Informatik” (THEO)
INOO15

“Discrete Structures”

“Diskrete Strukturen” (DS)

INOO18

“Discrete Probability Theory”

“Diskrete Wahrscheinlichkeitstheorie” (DWT)

m Ernst Mayr,

Harald Racke

4/117

The Lecturer

Harald Racke

Email: raecke@in.tum.de
Room: 03.09.044

Office hours: (by appointment)

vV v.v VY

m Ernst Mayr, Harald Racke 5/117

Tutorials

AO1 Monday, 12:00-14:00, 00.08.038 (Stotz)
A02 Monday, 12:00-14:00, 00.09.038 (Guan)
A03 Monday, 14:00-16:00, 02.09.023 (Stotz)

B04 Tuesday, 10:00-12:00, 00.08.053 (Czerner)
BO5 Tuesday, 14:00-16:00, 00.08.038 (Czerner)

C06 Wednesday, 10:00-12:00, 03.11.018 (Guan)

EO7 Friday, 12:00-14:00, 00.13.009 (Stotz)

m Ernst Mayr, Harald Racke

6/117

Assignment sheets

In order to pass the module you need to pass an exam.

m Ernst Mayr, Harald Racke 7117

Assessment

Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

m Ernst Mayr, Harald Racke 8/117

Assessment

Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

> Solutions have to be handed in in the following week before
the lecture on Monday.

m Ernst Mayr, Harald Racke

8/117

Assessment

Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

> Solutions have to be handed in in the following week before
the lecture on Monday.

> You can hand in your solutions by putting them in the
mailbox "Efficient Algorithms" on the basement floor in the
MI-building.

m Ernst Mayr, Harald Racke 8/117

Assessment

Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

> Solutions have to be handed in in the following week before
the lecture on Monday.

> You can hand in your solutions by putting them in the
mailbox "Efficient Algorithms" on the basement floor in the
MI-building.

» Solutions have to be given in English.

m Ernst Mayr, Harald Racke 8/117

Assessment

Assignment Sheets:

>

An assignment sheet is usually made available on Monday
on the module webpage.

Solutions have to be handed in in the following week before
the lecture on Monday.

You can hand in your solutions by putting them in the
mailbox "Efficient Algorithms" on the basement floor in the
MI-building.

Solutions have to be given in English.

Solutions will be discussed in the tutorial of the week when

the sheet has been handed in, i.e, sheet may not be
corrected by this time.

m Ernst Mayr, Harald Racke

8/117

Assessment

Assignment Sheets:

>

An assignment sheet is usually made available on Monday
on the module webpage.

Solutions have to be handed in in the following week before
the lecture on Monday.

You can hand in your solutions by putting them in the
mailbox "Efficient Algorithms" on the basement floor in the
MI-building.

Solutions have to be given in English.

Solutions will be discussed in the tutorial of the week when

the sheet has been handed in, i.e, sheet may not be
corrected by this time.

You should submit solutions in groups of up to 2 people.

m Ernst Mayr, Harald Racke

8/117

Assessment

Assignment Sheets:

» Submissions must be handwritten by a member of the
group. Please indicate who wrote the submission.

m Ernst Mayr, Harald Racke 9/117

Assessment

Assignment Sheets:

» Submissions must be handwritten by a member of the
group. Please indicate who wrote the submission.

> Don’t forget name and student id number for each group
member.

m Ernst Mayr, Harald Racke

9/117

Assessment

Assignment can be used to improve you grade

Requirements for Bonus
> 50% of the points are achieved on submissions 2-8,
» 50% of the points are achieved on submissions 9-14,
> each group member has written at least 4 solutions.

m Ernst Mayr, Harald Racke 10/117

1 Contents

» Foundations
> Machine models
> Efficiency measures
> Asymptotic notation
> Recursion

‘m 1 Contents
Ernst Mayr, Harald Racke 11/117

1 Contents

» Foundations
> Machine models
> Efficiency measures
> Asymptotic notation
> Recursion

» Higher Data Structures

> Search trees

» Hashing

> Priority queues

» Union/Find data structures

‘m 1 Contents
Ernst Mayr, Harald Racke 11/117

1 Contents

» Foundations
> Machine models
> Efficiency measures
> Asymptotic notation
> Recursion
» Higher Data Structures
> Search trees
» Hashing
> Priority queues
» Union/Find data structures

» Cuts/Flows

‘m 1 Contents
Ernst Mayr, Harald Racke 11/117

1 Contents

» Foundations
> Machine models
> Efficiency measures
> Asymptotic notation
> Recursion
» Higher Data Structures
> Search trees
» Hashing
> Priority queues
» Union/Find data structures

» Cuts/Flows

» Matchings

‘m 1 Contents
Ernst Mayr, Harald Racke 11/117

2 Literatur

[4 Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman:
The design and analysis of computer algorithmes,
Addison-Wesley Publishing Company: Reading (MA), 1974

[4 Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest,
Clifford Stein:
Introduction to algorithms,
McGraw-Hill, 1990

[4 Michael T. Goodrich, Roberto Tamassia:
Algorithm design: Foundations, analysis, and internet
examples,
John Wiley & Sons, 2002

‘m 2 Literatur
Ernst Mayr, Harald Racke 12/117

2 Literatur

ﬁ Ronald L. Graham, Donald E. Knuth, Oren Patashnik:
Concrete Mathematics,
2. Auflage, Addison-Wesley, 1994

@ Volker Heun:
Grundlegende Algorithmen: Einftihrung in den Entwurf und
die Analyse effizienter Algorithmen,
2. Auflage, Vieweg, 2003

@ Jon Kleinberg, Eva Tardos:
Algorithm Design,
Addison-Wesley, 2005
[4 Donald E. Knuth:
The art of computer programming. Vol. 1: Fundamental

Algorithms,
3. Auflage, Addison-Wesley, 1997

‘m 2 Literatur
Ernst Mayr, Harald Racke 13/117

2 Literatur

[4 Donald E. Knuth:

The art of computer programming. Vol. 3: Sorting and
Searching,
3. Auflage, Addison-Wesley, 1997

Christos H. Papadimitriou, Kenneth Steiglitz:
Combinatorial Optimization: Algorithms and Complexity,
Prentice Hall, 1982

Uwe Schoning:

Algorithmik,

Spektrum Akademischer Verlag, 2001
Steven S. Skiena:

The Algorithm Design Manual,
Springer, 1998

‘m 2 Literatur
Ernst Mayr, Harald Racke

14/117

Part I

Foundations

m Ernst Mayr, Harald Racke 15/117

3 Goals

> Gain knowledge about efficient algorithms for important
problems, i.e., learn how to solve certain types of problems
efficiently.

T
Ernst Mayr, Harald Racke 16/117

3 Goals

> Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems
efficiently.

> Learn how to analyze and judge the efficiency of algorithms.

T
Ernst Mayr, Harald Racke

16/117

3 Goals

> Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems
efficiently.

> Learn how to analyze and judge the efficiency of algorithms.

> Learn how to design efficient algorithms.

T
Ernst Mayr, Harald Racke

16/117

Tuput
Py Dutpudt
T &
\: T -
‘A L 5 é Ln,/lj oA Cvlrv & :L
={e

Peob

T~

4 Modelling Issues

What do you measure?

» Memory requirement

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 17/117

4 Modelling Issues

What do you measure?
» Memory requirement

» Running time

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 17/117

4 Modelling Issues

What do you measure?
> Memory requirement
» Running time

» Number of comparisons

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 17/117

4 Modelling Issues

What do you measure?
> Memory requirement
» Running time
» Number of comparisons
>

Number of multiplications

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 17/117

4 Modelling Issues

What do you measure?

|

vV v.v .Yy

Memory requirement
Running time

Number of comparisons
Number of multiplications

Number of hard-disc accesses

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

17/117

4 Modelling Issues

What do you measure?

|

vV v.v. v Vv

Memory requirement
Running time

Number of comparisons
Number of multiplications
Number of hard-disc accesses

Program size

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

17/117

4 Modelling Issues

What do you measure?

|

vV v.v. v v Y

Memory requirement
Running time

Number of comparisons
Number of multiplications
Number of hard-disc accesses
Program size

Power consumption

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

17/117

4 Modelling Issues

What do you measure?

|

vV vV vV v v Vv Y

Memory requirement
Running time

Number of comparisons
Number of multiplications
Number of hard-disc accesses
Program size

Power consumption

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

17/117

4 Modelling Issues

How do you measure?

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 18/117

4 Modelling Issues

How do you measure?

> Implementing and testing on representative inputs

| 2

>
|
>

How do you choose your inputs?

May be very time-consuming.

Very reliable results if done correctly.

Results only hold for a specific machine and for a specific
set of inputs.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

18/117

4 Modelling Issues

How do you measure?

> Implementing and testing on representative inputs
» How do you choose your inputs?
> May be very time-consuming.
> Very reliable results if done correctly.
» Results only hold for a specific machine and for a specific
set of inputs.

» Theoretical analysis in a specific model of computation.
> Gives asymptotic bounds like “this algorithm always runs in
time O(n?)”.
» Typically focuses on the worst case.
> Can give lower bounds like “any comparison-based sorting
algorithm needs at least Q(nlogn) comparisons in the
worst case”.

m 4 Modelling Issues
Ernst Mayr, Harald Racke 18/117

4 Modelling Issues

Input length
The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage

space, comparisons, multiplications, program size etc.).

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 19/117

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage
space, comparisons, multiplications, program size etc.).

The input length may e.g. be

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 19/117

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage
space, comparisons, multiplications, program size etc.).

The input length may e.g. be
> the size of the input (humber of bits)

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 19/117

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage
space, comparisons, multiplications, program size etc.).

The input length may e.g. be
> the size of the input (humber of bits)

> the number of arguments

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 19/117

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage
space, comparisons, multiplications, program size etc.).

The input length may e.g. be
> the size of the input (humber of bits)

> the number of arguments

Example 1

Suppose n numbers from the interval {1,...,N} have to be
sorted. In this case we usually say that the input length is n
instead of e.g. nlog N, which would be the number of bits
required to encode the input.

m 4 Modelling Issues
Ernst Mayr, Harald Racke 19/117

Model of Computation

How to measure performance

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 20/117

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a
simplified, idealized model of computation, e.g. Random
Access Machine (RAM), Turing Machine (TM), ...

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 20/117

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a
simplified, idealized model of computation, e.g. Random
Access Machine (RAM), Turing Machine (TM), ...

2. Calculate number of certain basic operations: comparisons,
multiplications, harddisc accesses, ...

m 4 Modelling Issues
Ernst Mayr, Harald Racke 20/117

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a
simplified, idealized model of computation, e.g. Random
Access Machine (RAM), Turing Machine (TM), ...

2. Calculate number of certain basic operations: comparisons,
multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation
makes it more difficult to obtain meaningful results.

m 4 Modelling Issues
Ernst Mayr, Harald Racke 20/117

Turing Machine

» Very simple model of computation.

~)[1]o[o])1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

.

state holds program and can
act as constant size memory

m Ernst Mayr, Harald Racke

4 Modelling Issues

21/117

Turing Machine

» Very simple model of computation.

» Only the “current” memory location can be altered.

~)[1]o[o])1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

.

state holds program and can
act as constant size memory

m Ernst Mayr, Harald Racke

4 Modelling Issues

21/117

Turing Machine
» Very simple model of computation.
» Only the “current” memory location can be altered.

> Very good model for discussing computabiliy, or polynomial
vs. exponential time.

~)[1]o[o])1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

state holds program and can
state a
act as constant size memory

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 21/117

Turing Machine

>

>

>

Very simple model of computation.
Only the “current” memory location can be altered.

Very good model for discussing computabiliy, or polynomial
vs. exponential time.

Some simple problems like recognizing whether input is of
the form xx, where x is a string, have quadratic lower

bound. w
y o

~)[1]o[o])1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

state holds program and can
state a
act as constant size memory

m 4 Modelling Issues
Ernst Mayr, Harald Racke

21/117

Turing Machine

2

>

>

Very simple model of computation.
Only the “current” memory location can be altered.

Very good model for discussing computabiliy, or polynomial
vs. exponential time.
Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower
bound.

=> Not a good model for developing efficient algorithms.

~)[1]o[o])1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

state holds program and can
state a
act as constant size memory

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

21/117

Random Access Machine (RAM)

> Input tape and output tape (sequences of zeros and ones;

unbounded length).

input tape — memory
R[1]
R[2]
control |, N
unit [} 7l R[3]
R[4]
~ R[5]
SICIIE L[[-
output tape —>
‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 22/117

Random Access Machine (RAM)

> Input tape and output tape (sequences of zeros and ones;

unbounded length).

» Memory unit: infinite but countable number of registers

R[O],R[1],R[2],....

input tape —

memory

R[1]

R[2]

control |, N

unit [} 7l R[3]

R[4]

~ R[5]

ST 1]
output tape —>
‘m 4 Modelling Issues

Ernst Mayr, Harald Racke 22/117

Random Access Machine (RAM)

> Input tape and output tape (sequences of zeros and ones;

unbounded length).

» Memory unit: infinite but countable number of registers

R[O],R[1],R[2],....

input tape

—

memory
> Registers hold integers. “)|1]0 11001 [T [g
R[1]
R[2]
control |, N
unit [} 7l R[3]
R[4]
~ R[5]
IO [T
output tape —>
‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 22/117

Random Access Machine (RAM)

> Input tape and output tape (sequences of zeros and ones;

unbounded length).

» Memory unit: infinite but countable number of registers

R[O],R[1],R[2],....

input tape

—

memory
> Registers hold integers. “)|1]0 11001 [T [g
> Indirect addressing. R[1)
R[2]
control |, N
unit [} 7l R[3]
R[4]
~ R[5]
ST T L
output tape —
‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 22/117

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/117

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/117

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i
> output operations (R[i] — output tape)

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/117

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i
> output operations (R[i] — output tape)
> WRITE i

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/117

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i
> output operations (R[i] — output tape)
> WRITE i
> register-register transfers

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/117

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i
> output operations (R[i] — output tape)
> WRITE i

> register-register transfers
> R[j] := R[i]

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/117

Random Access Machine (RAM)

Operations

> input operations (input tape — R[1i])
> READ i

> output operations (R[i] — output tape)
> WRITE i

> register-register transfers
> R[j] := R[i]
> R[j] := 4

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/117

Random Access Machine (RAM)

Operations

> input operations (input tape — R[1i])
> READ i

> output operations (R[i] — output tape)
> WRITE i

> register-register transfers
> R[j] := R[i]
> R[j] =4

> indirect addressing

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/117

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i
> output operations (R[i] — output tape)
> WRITE 1
> register-register transfers
> R[j] := R[i]
> R[j] := 4
» indirect addressing
> R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th
register

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/117

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i
> output operations (R[i] — output tape)
> WRITE 1
> register-register transfers
> R[j] := R[i]
> R[j] =4
» indirect addressing
> R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th
register
> R[R[i]]:=R[j]
loads the content of the j-th into the R[i]-th register

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/117

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 24117

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 24/117

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x

jumps to position x in the program;
sets instruction counter to x;

reads the next operation to perform from register R[x]
> jumpz x R[i]

jump to x if R[i] =0

if not the instruction counter is increased by 1;

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

24/117

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]
> jumpz x R[i]
jump to x if R[i] =0
if not the instruction counter is increased by 1;
> jumpi i
jump to R[1i] (indirect jump);

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 24/117

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]
> jumpz x R[i]
jump to x if R[i] =0
if not the instruction counter is increased by 1;
> jumpi i
jump to R[1i] (indirect jump);
» arithmetic instructions: +, —, X, /

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 24/117

Random Access Machine (RAM)

Operations

» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]
> jumpz x R[i]
jump to x if R[i] =0
if not the instruction counter is increased by 1;
> jumpi i
jump to R[1i] (indirect jump);
» arithmetic instructions: +, —, X, /
> R[i] := RI[j] + R[k];
R[i] := -R[k];

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

24/117

Model of Computation

» uniform cost model
Every operation takes time 1.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 25/117

Model of Computation
» uniform cost model
Every operation takes time 1.

> logarithmic cost model
The cost depends on the content of memory cells:

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 25/117

Model of Computation

» uniform cost model
Every operation takes time 1.
> logarithmic cost model
The cost depends on the content of memory cells:
> The time for a step is equal to the largest operand involved;

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 25/117

Model of Computation

» uniform cost model
Every operation takes time 1.
> logarithmic cost model
The cost depends on the content of memory cells:

> The time for a step is equal to the largest operand involved;
> The storage space of a register is equal to the length (in
bits) of the largest value ever stored in it.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 25/117

Model of Computation

» uniform cost model
Every operation takes time 1.
> logarithmic cost model
The cost depends on the content of memory cells:

> The time for a step is equal to the largest operand involved;
> The storage space of a register is equal to the length (in
bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest
value stored in a register may not exceed 2%, where usually
w = log, n.

m 4 Modelling Issues
Ernst Mayr, Harald Racke 25/117

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: v — 712

4: return v

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 26/117

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: v — 72

4: return v

> running time:

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

26/117

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: v — 72

4: return v

»> running time:
» uniform model: n steps

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

26/117

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: v — 72

4: return v

»> running time:
» uniform model: n steps
> logarithmic model: 1 +2 +4 + ... + 2" =2n%1 1 = @(2")

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

26/117

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: v — 72

4: return v

»> running time:

» uniform model: n steps

> logarithmic model: 1 +2 +4 + ... + 2" =2n%1 1 = @(2")
> space requirement:

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

26/117

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: v — 72

4: return v

»> running time:

» uniform model: n steps

> logarithmic model: 1 +2 +4 + .-+ 2" =21+l _ 1 = @(2")
> space requirement:

> uniform model: O(1)

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

26/117

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: v — 72

4: return v

»> running time:

» uniform model: n steps

> logarithmic model: 1 +2 +4 + ... + 2" =2n%1 1 = @(2")
> space requirement:

> uniform model: O(1)
> logarithmic model: O(2")

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

26/117

There are different types of complexity bounds:
> best-case complexity:

Coc(n) :=min{C(x) | [x| =n}

Usually easy to analyze, but not very meaningful.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 27117

There are different types of complexity bounds:
> best-case complexity:

Coc(n) :=min{C(x) | [x| =n}

Usually easy to analyze, but not very meaningful.
> worst-case complexity:

Cwe(n) = max{C(x) | x| = n}

Usually moderately easy to analyze; sometimes too
pessimistic.

\b\euf Vha‘* Iy

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 27/117

There are different types of complexity bounds:
> best-case complexity:

Che(n) :=min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.
> worst-case complexity:
Cwe(n) :=max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
> average case complexity:

Cagm) = 1 3 C(x)

| 'I’l| |X‘:7’L

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 27/117

There are different types of complexity bounds:
> best-case complexity:

Che(n) :=min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.
> worst-case complexity:
Cwe(n) :=max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
> average case complexity:

Cagm) = 1 3 C(x)

| 'I’l| |X‘:7’L

more general: probability measure u
Cavg(n) == > p(x) - C(x)

x€ely

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 27/117

