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» ECTS: 8 Credit points

v

Lectures:
> 4 SWS
Mon 10:00-12:00 (Room Interim2)
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» Required knowledge:

>

INOOOT, INOOO3

“Introduction to Informatics 1/2”

“Einfuhrung in die Informatik 1/2”

INOOO7

“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)
INOO11

“Basic Theoretic Informatics”

“Einfiihrung in die Theoretische Informatik” (THEO)
INOO15

“Discrete Structures”

“Diskrete Strukturen” (DS)

INOO18

“Discrete Probability Theory”

“Diskrete Wahrscheinlichkeitstheorie” (DWT)
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The Lecturer

Harald Racke

Email: raecke@in.tum.de
Room: 03.09.044

Office hours: (by appointment)

vV v.v VY
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Tutorials

AO1 Monday, 12:00-14:00, 00.08.038 (Stotz)
A02 Monday, 12:00-14:00, 00.09.038 (Guan)
A03 Monday, 14:00-16:00, 02.09.023 (Stotz)

B04 Tuesday, 10:00-12:00, 00.08.053 (Czerner)
BO5 Tuesday, 14:00-16:00, 00.08.038 (Czerner)

C06 Wednesday, 10:00-12:00, 03.11.018 (Guan)

EO7 Friday, 12:00-14:00, 00.13.009 (Stotz)
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Assignment sheets

In order to pass the module you need to pass an exam.
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Assessment

Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.
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on the module webpage.

Solutions have to be handed in in the following week before
the lecture on Monday.

You can hand in your solutions by putting them in the
mailbox "Efficient Algorithms" on the basement floor in the
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Solutions have to be given in English.

Solutions will be discussed in the tutorial of the week when

the sheet has been handed in, i.e, sheet may not be
corrected by this time.
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Assessment

Assignment Sheets:

>

An assignment sheet is usually made available on Monday
on the module webpage.

Solutions have to be handed in in the following week before
the lecture on Monday.

You can hand in your solutions by putting them in the
mailbox "Efficient Algorithms" on the basement floor in the
MI-building.

Solutions have to be given in English.

Solutions will be discussed in the tutorial of the week when

the sheet has been handed in, i.e, sheet may not be
corrected by this time.

You should submit solutions in groups of up to 2 people.
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Assessment

Assignment Sheets:

» Submissions must be handwritten by a member of the
group. Please indicate who wrote the submission.
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Assessment

Assignment Sheets:

» Submissions must be handwritten by a member of the
group. Please indicate who wrote the submission.

> Don’t forget name and student id number for each group
member.
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Assessment

Assignment can be used to improve you grade

Requirements for Bonus
> 50% of the points are achieved on submissions 2-8,
» 50% of the points are achieved on submissions 9-14,
> each group member has written at least 4 solutions.
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1 Contents

» Foundations
> Machine models
> Efficiency measures
> Asymptotic notation
> Recursion
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1 Contents

» Foundations
> Machine models
> Efficiency measures
> Asymptotic notation
> Recursion
» Higher Data Structures
> Search trees
» Hashing
> Priority queues
» Union/Find data structures

» Cuts/Flows

» Matchings
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2 Literatur
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Part I

Foundations
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3 Goals

> Gain knowledge about efficient algorithms for important
problems, i.e., learn how to solve certain types of problems
efficiently.

T
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3 Goals

> Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems
efficiently.

> Learn how to analyze and judge the efficiency of algorithms.

> Learn how to design efficient algorithms.

T
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4 Modelling Issues

What do you measure?

» Memory requirement
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4 Modelling Issues

How do you measure?

> Implementing and testing on representative inputs

| 2

>
|
>

How do you choose your inputs?

May be very time-consuming.

Very reliable results if done correctly.

Results only hold for a specific machine and for a specific
set of inputs.
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4 Modelling Issues

How do you measure?

> Implementing and testing on representative inputs
» How do you choose your inputs?
> May be very time-consuming.
> Very reliable results if done correctly.
» Results only hold for a specific machine and for a specific
set of inputs.

» Theoretical analysis in a specific model of computation.
> Gives asymptotic bounds like “this algorithm always runs in
time O(n?)”.
» Typically focuses on the worst case.
> Can give lower bounds like “any comparison-based sorting
algorithm needs at least Q(nlogn) comparisons in the
worst case”.
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4 Modelling Issues

Input length
The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage

space, comparisons, multiplications, program size etc.).
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4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage
space, comparisons, multiplications, program size etc.).

The input length may e.g. be
> the size of the input (humber of bits)

> the number of arguments

Example 1

Suppose n numbers from the interval {1,...,N} have to be
sorted. In this case we usually say that the input length is n
instead of e.g. nlog N, which would be the number of bits
required to encode the input.
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Access Machine (RAM), Turing Machine (TM), ...
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How to measure performance

1. Calculate running time and storage space etc. on a
simplified, idealized model of computation, e.g. Random
Access Machine (RAM), Turing Machine (TM), ...
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Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a
simplified, idealized model of computation, e.g. Random
Access Machine (RAM), Turing Machine (TM), ...

2. Calculate number of certain basic operations: comparisons,
multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation
makes it more difficult to obtain meaningful results.
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Turing Machine

» Very simple model of computation.

~)[1]o[o])1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

.

state holds program and can
act as constant size memory
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Turing Machine
» Very simple model of computation.
» Only the “current” memory location can be altered.

> Very good model for discussing computabiliy, or polynomial
vs. exponential time.
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Turing Machine

>

>

>

Very simple model of computation.
Only the “current” memory location can be altered.

Very good model for discussing computabiliy, or polynomial
vs. exponential time.

Some simple problems like recognizing whether input is of
the form xx, where x is a string, have quadratic lower

bound. w
y o

~)[1]o[o])1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

state holds program and can
state a
act as constant size memory
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Turing Machine

2

>

>

Very simple model of computation.
Only the “current” memory location can be altered.

Very good model for discussing computabiliy, or polynomial
vs. exponential time.
Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower
bound.

=> Not a good model for developing efficient algorithms.

~)[1]o[o])1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

state holds program and can
state a
act as constant size memory
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Random Access Machine (RAM)

> Input tape and output tape (sequences of zeros and ones;

unbounded length).

input tape — memory
R[1]
R[2]
control |, N
unit [} 7l R[3]
R[4]
~ R[5]
SICIIE L[ [-
output tape —>
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Random Access Machine (RAM)

> Input tape and output tape (sequences of zeros and ones;

unbounded length).

» Memory unit: infinite but countable number of registers

R[O],R[1],R[2],....

input tape —

memory

R[1]

R[2]

control |, N

unit [} 7l R[3]

R[4]

~ R[5]

ST 1]
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Random Access Machine (RAM)

> Input tape and output tape (sequences of zeros and ones;

unbounded length).

» Memory unit: infinite but countable number of registers

R[O],R[1],R[2],....

input tape

—

memory
> Registers hold integers. “)|1]0 11001 [T [ g
R[1]
R[2]
control |, N
unit [} 7l R[3]
R[4]
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IO [T
output tape —>
‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 22/117



Random Access Machine (RAM)

> Input tape and output tape (sequences of zeros and ones;

unbounded length).

» Memory unit: infinite but countable number of registers

R[O],R[1],R[2],....

input tape

—

memory
> Registers hold integers. “)|1]0 11001 [T [ g
> Indirect addressing. R[1)
R[2]
control |, N
unit [} 7l R[3]
R[4]
~ R[5]
ST T L
output tape —
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Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
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‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/117



Random Access Machine (RAM)

Operations
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Random Access Machine (RAM)

Operations

> input operations (input tape — R[1i])
> READ i

> output operations (R[i] — output tape)
> WRITE i

> register-register transfers
> R[j] := R[i]
> R[j] =4

> indirect addressing
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Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i
> output operations (R[i] — output tape)
> WRITE 1
> register-register transfers
> R[j] := R[i]
> R[j] := 4
» indirect addressing
> R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th
register
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Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i
> output operations (R[i] — output tape)
> WRITE 1
> register-register transfers
> R[j] := R[i]
> R[j] =4
» indirect addressing
> R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th
register
> R[R[i]]:=R[j]
loads the content of the j-th into the R[i]-th register
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Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
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Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]
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Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x

jumps to position x in the program;
sets instruction counter to x;

reads the next operation to perform from register R[x]
> jumpz x R[i]

jump to x if R[i] =0

if not the instruction counter is increased by 1;
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jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]
> jumpz x R[i]
jump to x if R[i] =0
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‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 24/117



Random Access Machine (RAM)

Operations

» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]
> jumpz x R[i]
jump to x if R[i] =0
if not the instruction counter is increased by 1;
> jumpi i
jump to R[1i] (indirect jump);
» arithmetic instructions: +, —, X, /
> R[i] := RI[j] + R[k];
R[i] := -R[k];
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Model of Computation

» uniform cost model
Every operation takes time 1.
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Model of Computation

» uniform cost model
Every operation takes time 1.
> logarithmic cost model
The cost depends on the content of memory cells:

> The time for a step is equal to the largest operand involved;
> The storage space of a register is equal to the length (in
bits) of the largest value ever stored in it.
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Model of Computation

» uniform cost model
Every operation takes time 1.
> logarithmic cost model
The cost depends on the content of memory cells:

> The time for a step is equal to the largest operand involved;
> The storage space of a register is equal to the length (in
bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest
value stored in a register may not exceed 2%, where usually
w = log, n.
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4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: v — 712

4: return v
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4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: v — 72

4: return v

> running time:
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4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: v — 72

4: return v

»> running time:
» uniform model: n steps
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4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: v — 72

4: return v

»> running time:
» uniform model: n steps
> logarithmic model: 1 +2 +4 + ... + 2" =2n%1 1 = @(2")
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4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: v — 72

4: return v

»> running time:

» uniform model: n steps

> logarithmic model: 1 +2 +4 + ... + 2" =2n%1 1 = @(2")
> space requirement:
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4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: v — 72

4: return v

»> running time:

» uniform model: n steps

> logarithmic model: 1 +2 +4 + .-+ 2" =21+l _ 1 = @(2")
> space requirement:

> uniform model: O(1)
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4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: v — 72

4: return v

»> running time:

» uniform model: n steps

> logarithmic model: 1 +2 +4 + ... + 2" =2n%1 1 = @(2")
> space requirement:

> uniform model: O(1)
> logarithmic model: O(2")
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There are different types of complexity bounds:
> best-case complexity:

Coc(n) :=min{C(x) | [x| =n}

Usually easy to analyze, but not very meaningful.
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There are different types of complexity bounds:
> best-case complexity:

Coc(n) :=min{C(x) | [x| =n}

Usually easy to analyze, but not very meaningful.
> worst-case complexity:

Cwe(n) = max{C(x) | x| = n}

Usually moderately easy to analyze; sometimes too
pessimistic.
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There are different types of complexity bounds:
> best-case complexity:

Che(n) :=min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.
> worst-case complexity:
Cwe(n) :=max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
> average case complexity:

Cagm) = 1 3 C(x)
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There are different types of complexity bounds:
> best-case complexity:

Che(n) :=min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.
> worst-case complexity:
Cwe(n) :=max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
> average case complexity:

Cagm) = 1 3 C(x)

| 'I’l| |X‘:7’L

more general: probability measure u
Cavg(n) == > p(x) - C(x)

x€ely
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