Amortized Analysis

é-;‘? Ly of benle

What is the total charge made to nodes?

> The total charge is at most

> n(g) - tow(g) ,
g
L—)f\i Vot g e Grouf! o

where n(g) is the number of nodes in group g.

m 9 Union Find
Ernst Mayr, Harald Racke 373/418

Amortized Analysis

For g = 1 we have

n(g)

m 9 Union Find
Ernst Mayr, Harald Racke 374/418

Amortized Analysis

For g = 1 we have

fowi@)
L
s=tow(g—-1)+1

m 9 Union Find
Ernst Mayr, Harald Racke 374/418

Amortized Analysis

For g = 1 we have

tow(g) n © n
s=tow(g—-1)+1 s=tow(g—-1)+1

m 9 Union Find
Ernst Mayr, Harald Racke

374/418

Amortized Analysis

For g = 1 we have

tow(g)

n(g) < >y 2

28
s=tow(g—-1)+1 s=tow(g—1)+1
n N\
= = 00
2tow(g—-1)+1 '1 Z—(_Z_WT:TT
5= A ’
-0

m Ernst Mayr, Harald Racke

9 Union Find

374/418

Amortized Analysis

For g = 1 we have

tow(g)

n > n
n(g) < > o5 > >
s=tow(g—-1)+1 s=tow(g—-1)+1
n 21 n
= 2tow(g-1)+1 Z ? 2tow(g—1)+1 -2

m 9 Union Find
Ernst Mayr, Harald Racke 374/418

Amortized Analysis

For g = 1 we have

tow(g) © n
2. = 2. o5

s=tow(g—-1)+1 s=tow(g—-1)+1

IA

n(g)

=

n

T otow(g-1)+1 -2

1
? 2tow(g—1)+1

|
uMg

_ n
© 2tow(g-1)

m 9 Union Find
Ernst Mayr, Harald Racke 374/418

Amortized Analysis

For g = 1 we have

tow(g) n o0 n
n(g) < > o5 > >
s=tow(g—-1)+1 s=tow(g—-1)+1
B n o1 n)
T otow(g-1)+1 Z ? 2tow(g—1)+1 ’
n 1’L

m 9 Union Find
Ernst Mayr, Harald Racke 374/418

Amortized Analysis

Forzg >1 Pve have

tow(g) n © n
s=tow(g—-1)+1 s=tow(g—-1)+1
B n o1 n)
T otow(g-1)+1 Z ? 2tow(g—1)+1 ’
n 1’L

Hence,

Zn(g)tow(g)
g

m 9 Union Find
Ernst Mayr, Harald Racke 374/418

Amortized Analysis

For g = 1 we have

tow(g) n © n
s=tow(g—-1)+1 s=tow(g—-1)+1

[ee]

n 1 n
= 2tow(g-1)+1 %? - 2tow(g—1)+1 -2
S=

_ n _ n

Hence,

Zn(g)tow(g) < n(0) tow(0) + Z n(g) tow(g)

=

m 9 Union Find
Ernst Mayr, Harald Racke 374/418

Amortized Analysis

For g = 1 we have

tow(g)

(o]
n n
s=tow(g—-1)+1 s=tow(g—-1)+1
B n o1 n)
T otow(g-1)+1 Z ? 2tow(g—1)+1 ’
n 1’L

Hence,

Zn(g)tow(g) < n(0) tow(0) + Z n(g) tow(g) < nlog*(n)
g g=1

m 9 Union Find
Ernst Mayr, Harald Racke 374/418

Amortized Analysis

Without loss of generality we can assume that all
makeset-operations occur at the start.

m 9 Union Find
Ernst Mayr, Harald Racke 375/418

Amortized Analysis

Without loss of generality we can assume that all
makeset-operations occur at the start.

This means if we inflate the cost of makeset to log™ n and add
this to the node account of v then the balances of all node
accounts will sum up to a positive value (this is sufficient to
obtain an amortized bound).

m 9 Union Find
Ernst Mayr, Harald Racke 375/418

Amortized Analysis

m 9 Union Find
Ernst Mayr, Harald Racke 376/418

Amortized Analysis

The analysis is not tight. In fact it has been shown that the
amortized time for the union-find data structure with path
compression is O(x(m,n)), where x(m, n) is the inverse
Ackermann function which grows a lot lot slower than log™ n.
(Here, we consider the average running time of m operations on
at most n elements).

m 9 Union Find
Ernst Mayr, Harald Racke 376/418

Amortized Analysis

The analysis is not tight. In fact it has been shown that the
amortized time for the union-find data structure with path
compression is O(x(m,n)), where x(m, n) is the inverse
Ackermann function which grows a lot lot slower than log™ n.
(Here, we consider the average running time of m operations on
at most n elements).

There is also a lower bound of Q(x(m,n)).

m 9 Union Find
Ernst Mayr, Harald Racke

376/418

Amortized Analysis

yv+1 ifx=0
Alx,y) =41 Alx—-1,1) if y=0
Alx—-1,A(x,y —1)) otw.

a(m,n) =min{i>1:A(i,|m/n]) = logn}

m 9 Union Find
Ernst Mayr, Harald Racke 377/418

Amortized Analysis
y+1 ifx=0

Alx,y) =41 Alx—-1,1) if y=0
Alx—-1,A(x,y —1)) otw.

a(m,n) =min{i>1:A(i,|m/n]) = logn}

» A0,y) =y +1
» A(l,y) =y +2
> ARQ,y)=2y+3
> A(3,y) =2Y*3 -3
2
> A(4,y) = 32; -3
y+3 times

m 9 Union Find
Ernst Mayr, Harald Racke 377/418

Part IV

Flows and Cuts

m Ernst Mayr, Harald Racke 378/418

The following slides are partially based on slides by Kevin Wayne.

m Ernst Mayr, Harald Racke 379/418

10 Introduction

Flow Network
» directed graph G = (V, E); edge capacities c(e)

%\ 9 6)\
\°/J> s o ‘0
l ~.
s 5 ? 8 &) 10 t
‘s A\s by O
@ 30 7

‘m 10 Introduction
Ernst Mayr, Harald Racke 380/418

10 Introduction

Flow Network
» directed graph G = (V, E); edge capacities c(e)
> two special nodes: source s; target t;

%\ 9 6)\
\°/J> s o ‘0
l ~.
s 5 ? 8 &) 10 t
‘s A\s by O
@ 30 7

m 10 Introduction
Ernst Mayr, Harald Racke 380/418

10 Introduction

Flow Network
» directed graph G = (V, E); edge capacities c(e)
> two special nodes: source s; target t;
> no edges entering s or leaving t;

%\ 9 6)\
\°/¥ s o ‘0
l ~.
s 5 ? 8 &) 10 t
‘s A\s by O
@ 30 7

m 10 Introduction
Ernst Mayr, Harald Racke 380/418

10 Introduction

Flow Network
» directed graph G = (V, E); edge capacities c(e)
> two special nodes: source s; target t;
> no edges entering s or leaving t;
> at least for now: no parallel edges;

%\ 9 6)\
\°/¥ s o ‘0
l ~.
s 5 ? 8 &) 10 t
‘s h\s by O
@ 30 7

m 10 Introduction
Ernst Mayr, Harald Racke 380/418

Cuts
Definition 40

An (s,f)-cut in the graph G is given by aset AC V withs € A
and t e V \ A.

‘m 10 Introduction
Ernst Mayr, Harald Racke 381/418

Cuts

Definition 40
An (s,f)-cut in the graph G is given by aset AC V withs € A

and t e V \ A.

Definition 41
The capacity of a cut A is defined as

cap(A,V\A) = > cle),

e € out(A)

where out(A) denotes the set of edges of the form A x V \ A
(i.e. edges leaving A).

‘m 10 Introduction
Ernst Mayr, Harald Racke 381/418

Cuts

Definition 40
An (s,f)-cut in the graph G is given by aset AC V withs € A
and t e V \ A.

Definition 41
The capacity of a cut A is defined as

cap(A,V\A) = > cle),

e € out(A)
where out(A) denotes the set of edges of the form A xV \ A
(i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum
capacity.

‘m 10 Introduction
Ernst Mayr, Harald Racke 381/418

Cuts

Example 42

The capacity of the cut is cap(A,V \ A) = 28.

‘m 10 Introduction
Ernst Mayr, Harald Racke 382/418

Flows

Definition 43
An (s,t)-flow is a function f : E — R* that satisfies

1. For each edge e
0< f(e)<cle) .

(capacity constraints)

‘m 10 Introduction
Ernst Mayr, Harald Racke 383/418

Flows

Definition 43
An (s,t)-flow is a function f : E — R* that satisfies

1. For each edge e
0< f(e)<cle) .

(capacity constraints)
2. Foreachv e V' \ {s,t}

> fle= > fle).

ecout(v) ecinto(v)

(flow conservation constraints)

‘m 10 Introduction
Ernst Mayr, Harald Racke 383/418

Flows

Definition 44
The value of an (s, t)-flow f is defined as

val(f) = > fle) .

ecout(s)

m 10 Introduction
Ernst Mayr, Harald Racke 384/418

Flows

Definition 44
The value of an (s, t)-flow f is defined as

val(f) = > fle) .

ecout(s)

Maximum Flow Problem: Find an (s, t)-flow with maximum
value.

‘m 10 Introduction
Ernst Mayr, Harald Racke 384/418

Flows

Example 45
/%\ N ?\
Q o
a £ 0 = 9
~S§ .T Aﬂg\\\\\\\\\\‘ i; /?b
s 315 ? 8/8 ? 8/10 t
/ \ Il .
7, =] 7 = N
/,S\T /6 T \0\
@ 11130 7

The value of the flow is val(f) = 24.

TT[U]TTH 10 Introduction
Ernst Mayr, Harald Racke

385/418

Flows

Lemma 46 (Flow value lemma)

Let f be a flow, and let A =V be an (s,t)-cut. Then the net-flow
across the cut is equal to the amount of flow leaving s, i.e.,

val(f) = > flee— > fle) .

ecout(A) ecinto(A)

‘m 10 Introduction
Ernst Mayr, Harald Racke 386/418

Proof.

val(f)

‘m 10 Introduction
Ernst Mayr, Harald Racke 387/418

Proof.

val(f) = > f(e)

ecout(s)

‘m 10 Introduction
Ernst Mayr, Harald Racke 387/418

Proof.

val(f) = > f(e)

ecout(s)
- S ger 3 (S g 3)
ecout(s) veA\{s} ‘ecout(v) ecin(v)

‘m 10 Introduction
Ernst Mayr, Harald Racke 387/418

Proof.

val(f) = > f(e)
ecout(s) =0
= > fl+ > (> fle- > f(e))
ecout(s) veA\{s] \eeout(v) ecin(v)

‘m 10 Introduction
Ernst Mayr, Harald Racke 387/418

Proof.

val(f) = > f(e)

ecout(s)
= > fl+ > (> fley- > f(e))
ecout(s) veA\{s} ‘ecout(v) i

= > flo- > fle

ecout(A) ecinto(A)

‘m 10 Introduction
Ernst Mayr, Harald Racke 387/418

Proof.

val(f) = > f(e)
ecout(s)
= > fle+ X (> fley- > f(e))
ecout(s) veA\{s} \eeout(v) ecin(v)
= > flo- > fle
ecout(A) ecinto(A)

The last equality holds since every edge with both end-points in
A contributes negatively as well as positively to the sum in

Line 2. The only edges whose contribution doesn’t cancel out
are edges leaving or entering A. O

‘m 10 Introduction
Ernst Mayr, Harald Racke 387/418

Example 47

2 " ?\
/ !
D

t

‘m 10 Introduction
Ernst Mayr, Harald Racke 388/418

Corollary 48
Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

val(f) = cap(A,V \ A).

Then f is a maximum flow.

‘m 10 Introduction
Ernst Mayr, Harald Racke 389/418

Corollary 48
Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

val(f) = cap(A,V \ A).
Then f is a maximum flow.

Proof.

‘m 10 Introduction
Ernst Mayr, Harald Racke

389/418

Corollary 48
Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

val(f) = cap(A,V \ A).
Then f is a maximum flow.

Proof.
Suppose that there is a flow [’ with larger value. Then

‘m 10 Introduction
Ernst Mayr, Harald Racke 389/418

Corollary 48
Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

val(f) = cap(A,V \ A).
Then f is a maximum flow.

Proof.
Suppose that there is a flow [’ with larger value. Then

cap(A,V \ A) <val(f")

‘m 10 Introduction
Ernst Mayr, Harald Racke 389/418

Corollary 48
Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

val(f) = cap(A,V \ A).
Then f is a maximum flow.

Proof.
Suppose that there is a flow [’ with larger value. Then

cap(A,V \ A) < val(f")
= > fllo- > flo
ecout(A) ecinto(A)
L

£ («F('A lV‘A)

‘m 10 Introduction
Ernst Mayr, Harald Racke 389/418

Corollary 48
Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

val(f) = cap(A,V \ A).
Then f is a maximum flow.

Proof.
Suppose that there is a flow [’ with larger value. Then

cap(A,V \ A) <val(f")
= 2 fllo- > fleo

ecout(A) ecinto(A)

< > fl

ecout(A)

‘m 10 Introduction
Ernst Mayr, Harald Racke 389/418

Corollary 48
Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

val(f) = cap(A,V \ A).
Then f is a maximum flow.

Proof.
Suppose that there is a flow [’ with larger value. Then

cap(A,V \ A) <val(f")
= 2 fllo- > fleo

ecout(A) ecinto(A)

< > fl

ecout(A)

<cap(A,V\A)

‘m 10 Introduction
Ernst Mayr, Harald Racke 389/418

11 Augmenting Path Algorithms

Greedy-algorithm:

> start with f(e) = 0 everywhere
> find an s-t path with f(e) < c(e) on every edge
> augment flow along the path
> repeat as long as possible
a
o %o
0130
%o o

b

flow value: 0

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 390/418

11 Augmenting Path Algorithms

Greedy-algorithm:
> start with f(e) = 0 everywhere
> find an s-t path with f(e) < c(e) on every edge
> augment flow along the path

> repeat as long as possible

Na %0

<3

9 N
o N\

flow value: 0

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 390/418

11 Augmenting Path Algorithms

Greedy-algorithm:

> start with f(e) = 0 everywhere

> find an s-t path with f(e) < c(e) on every edge

> augment flow along the path

> repeat as long as possible

"’%\7'0/ %o

P30 ®
%, 2%

b

flow value: 0

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 390/418

11 Augmenting Path Algorithms

Greedy-algorithm:
> start with f(e) = 0 everywhere
> find an s-t path with f(e) < c(e) on every edge
> augment flow along the path

> repeat as long as possible

flow value: 20

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 390/418

The Residual Graph

From the graph G = (V,E, c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 391/418

The Residual Graph

From the graph G = (V,E, c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey¢, cy) (the residual graph):

» Suppose the original graph has edges e; = (u,v), and
e» = (v,u) between u and v.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 391/418

The Residual Graph

From the graph G = (V,E, c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey¢, cy) (the residual graph):

» Suppose the original graph has edges e; = (u,v), and
e» = (v,u) between u and v.

> Gy has edge e} with capacity max{0,c(e;) — f(e1) + f(e2)}
and e), with with capacity max{0,c(ez) — f(e2) + f(e1)}.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 391/418

The Residual Graph

From the graph G = (V, E,c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey¢,cy) (the residual graph):
> Suppose the original graph has edges e; = (u,v), and
e» = (v,u) between 1 and v.
> Gy has edge e} with capacity max{0,c(e;) — f(e1) + f(e2)}
and e), with with capacity max{0,c(ez) — f(e2) + f(e1)}.

G ® sTo——20 ®

Gr @ 9 21 O]

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 391/418

Augmenting Path Algorithm

Definition 49

An augmenting path with respect to flow f, is a path from s to t
in the auxiliary graph G that contains only edges with non-zero
capacity.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 392/418

Augmenting Path Algorithm

Definition 49

An augmenting path with respect to flow f, is a path from s to t
in the auxiliary graph G that contains only edges with non-zero
capacity.

Algorithm 17 FordFulkerson(G = (V,E,c))

1: Initialize f(e) < O for all edges.

2: while 3 augmenting path p in Gy do

3: augment as much flow along p as possible.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 392/418

Augmenting Paths

o " .,
o 1~ T ~o

02 9 0|7

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 393/418

Augmenting Paths

oe®

\@ on2 d

flow value: 0

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 393/418

Augmenting Paths

\10 O\
?\ | ¢\3>®

0]2 0|7

9/10 l \é/
Q 2

flow value: 0

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 393/418

Augmenting Paths

o " .,
o 1~ T ~o

02 9 0|7

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 393/418

Augmenting Paths

N .,
o ?\ T >@

0[2 0|7

&
0\ (i} o1 \4)/

flow value: 8

jfﬂjﬂjﬂ 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

393/418

Augmenting Paths

2
0]2 217

®<0\10/?\ ®\§S>®
& &
io\é) o 2\<l>/ &

flow value: 8

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 393/418

Augmenting Paths

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 393/418

Augmenting Paths

L o,
?\ e

2|7

o4 2@
\@ 1012 d

flow value: 10

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 393/418

Augmenting Paths

A o ?\

3

®< o2 % 27 >®
011 l 2@
\@ 1012 d

3¢\’L° <5

flow value: 10

jfﬂjﬂjﬂ 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

393/418

Augmenting Paths

o &,
®<” ?\ T >®

0[2 517

011 l 2@
\@ 1012 d

flow value: 13

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 393/418

Augmenting Path Algorithm

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 394/418

Augmenting Path Algorithm

Theorem 50
A flow f is a maximum flow iff there are no augmenting paths.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 394/418

Augmenting Path Algorithm

Theorem 50
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum
cut.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 394/418

Augmenting Path Algorithm

Theorem 50
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \ A).

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 394/418

Augmenting Path Algorithm

Theorem 50
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \ A).
2. Flow f'is a maximum flow.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 394/418

Augmenting Path Algorithm

Theorem 50
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:
<<l. There exists a cut A such that val(f) = cap(A,V \ A).

g. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 394/418

Augmenting Path Algorithm

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 395/418

Augmenting Path Algorithm

1. = 2.
This we already showed.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 395/418

Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.

Contradiction.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 395/418

Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.

Contradiction.

3. = 1.
> Let f be a flow with no augmenting paths.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 395/418

Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.

Contradiction.

3. = 1.
> Let f be a flow with no augmenting paths.
> Let A be the set of vertices reachable from s in the residual
graph along non-zero capacity edges.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 395/418

Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.

Contradiction.

3. = 1.
> Let f be a flow with no augmenting paths.

> Let A be the set of vertices reachable from s in the residual
graph along non-zero capacity edges.
> Since there is no augmenting path we have s € A and t ¢ A.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 395/418

Augmenting Path Algorithm

val(f)

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 396/418

Augmenting Path Algorithm

val(f) = > fle)— > fle)

ecout(A) ecinto(A)

C (e) -~ (:(e)

v
[[f) - C(e)

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 396/418

Augmenting Path Algorithm

val(f) = > fle)— > fle)
ecout(A) ecinto(A)
= z c(e)
ecout(A)

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 396/418

Augmenting Path Algorithm

val(f) = > fle— > fle)
ecout(A) ecinto(A)
= z c(e)
ecout(A)
=cap(A,V\ A)

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 396/418

Augmenting Path Algorithm

val(f) = > fle— > fle)
ecout(A) ecinto(A)
= Z c(e)
ecout(A)
=cap(A,V\ A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the
second exploits the fact that the flow along incoming edges
must be 0 as the residual graph does not have edges leaving A.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 396/418

Analysis

Assumption:
All capacities are integers between 1 and C.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 397/418

Analysis

Assumption:
All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity cy(e) remains
integral troughout the algorithm.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 397/418

J§§
D
Lemma 52

The algorithm terminates in at most val(f*) < nC jterations,
where f* denotes the maximum flow. Each iteration can be
implemented in time ©(m). This gives a total running time of
O(mmC).

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 398/418

Lemma 52

The algorithm terminates in at most val(f*) < nC jterations,
where f* denotes the maximum flow. Each iteration can be
implemented in time ©(m). This gives a total running time of
O(mmC).

Theorem 53
If all capacities are integers, then there exists a maximum flow
for which every flow value f(e) is integral.

m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 398/418

A Bad Input

Problem: The running time may not be polynomial

/'@D\ Q/@V\
® %, o O\

o® \ A o ~€Qg\
on ® &~ ; ko

0 o
/‘900 o

flow value: O

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

flow value: O

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

flow value: O

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

/
\\c’00 %bo
m \@
(7) o/
/j‘o \c>0
0 A
AW

flow value: 1

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

o/ 1)
\\c’0 /‘900
m ©)
17 o
/500\ Nl

flow value: 1

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

/ /
Q Gy
&° /‘900
0
m 0
7
Gy Q
/500\ \\60

flow value: 1

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

flow value: 2

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

600/ 7, /$0
AN o\
o1 ©) 7
5 0/' AN
/j‘oo \\c>0
N\

flow value: 2

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

/
7«* \6,00 7, /$00
\
an © @//
y; 0/ N
/j‘oo '],*\60
N\

flow value: 2

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

800/0\ %00 ”9%/ \

N\
16 1 1:

sy, 0 v :
0 N o |
S \‘o/

flow value: 3

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

a

1\6,00/' O\%oo D‘q‘b/ I\’

//“?00 1,\6’00/ B |
Ny \@/

flow value: 3

¥o,)

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

¥o,)

/®\e ng/t\/
o :

/D\
X
©

7\

R

flow value: 3

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

2

flow value: 4

yd O\ 09%/ 5

0

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

399/418

A Bad Input

Problem: The running time may not be polynomial

o 9
m\°’° /$00\
v L
s, ®
% 2

flow value: 4

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

0/ 2
’51,\30 /6*00
1 \ /
an /@ N
e/f) 600
00 1,\

flow value: 4

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

800/0\9@00 5 7 ‘\

A) 1:

e/$00 ’5\600 < 790 5

flow value: 5

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

0/ O\ 5 »9"/ I\
’5\60 /3‘00 5
1:
1 ©) “ j
e N 0
e/$00 ’5\600 <o 79&
Ny \@/

flow value: 5

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

/®\e

Q <
’5\60 /3‘00
0
@< A ©
9
< Q
/500\ ’5\60

flow value: 5

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

s
\c,oo/ Vs, s : \qg
> 0\ s 0 2
on ® ; >
00 ”)\6 q"x : a,
AW ! Nt

flow value: 6

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Bad Input

Problem: The running time may not be polynomial

/O\%oo > 7 \

Q
A

‘?/J“oo ’5\600 3 79) 5

flow value: 6
Question:
Can we tweak the algorithm so that the running time is
polynomial in the input length?

m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 399/418

A Pathological Input

Letr = %(\/ﬁ_ 1). Then ¥"+2 =y — i+l

AN

A
8
8
) :
T o0
8
& 8
N,

flow value: O

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

400/418

