16 Gomory Hu Trees

Given an undirected, weighted graph G = (V,E,c) a cut-tree
T = (V,F,w) is a tree with edge-set F and capacities w that
fulfills the following properties.
1. Equivalent Flow Tree: For any pair of vertices s,t € V,
f‘;(s, t) in G is equal to fr(s,t).
2. Cut Property: A minimum s-t cut in T is also a minimum
cutin G.
Here, f(s,t) is the value of a maximum s-t flow in G, and
fr(s,t) is the corresponding value in T.

m 16 Gomory Hu Trees
Ernst Mayr, Harald Racke 489/504



D

_

N v

TN
~. f.\! /,\
N \\hv

Do LIS

Il E= i
AN o T
‘/72




Overview of the Algorithm

The algorithm maintains a partition of V, (sets Si,...,5;), and a
spanning tree T on the vertex set {S1,...,5:}.
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The algorithm maintains a partition of V, (sets Si,...,5;), and a
spanning tree T on the vertex set {S1,...,5:}.

Initially, there exists only the set S| = V.

Then the algorithm performs n — 1 split-operations:

> |n each such split-operation it chooses a set S; with |S;| > 2
and splits this set into two non-empty parts X and Y.

> S;is then removed from T and replaced by X and Y.

» X and Y are connected by an edge, and the edges that
before the split were incident to S; are attached to either X
orY.
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Overview of the Algorithm

The algorithm maintains a partition of V, (sets Si,...,5;), and a
spanning tree T on the vertex set {S1,...,5:}.

Initially, there exists only the set S| = V.

Then the algorithm performs n — 1 split-operations:

> |n each such split-operation it chooses a set S; with |S;| > 2
and splits this set into two non-empty parts X and Y.

> S;is then removed from T and replaced by X and Y.

» X and Y are connected by an edge, and the edges that
before the split were incident to S; are attached to either X
orY.

In the end this gives a tree on the vertex set V.
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Details of the Split-operation

> Select S; that contains at least two nodes a and b.
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» Compute the connected components of the forest obtained
from the current tree T after deleting S;. Each of these
components corresponds to a set of vertices from V.
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Details of the Split-operation

> Select S; that contains at least two nodes a and b.

» Compute the connected components of the forest obtained
from the current tree T after deleting S;. Each of these
components corresponds to a set of vertices from V.

» Consider the graph H obtained from G by contracting these
connected components into single nodes.

m 16 Gomory Hu Trees
Ernst Mayr, Harald Racke 491/504



Details of the Split-operation

> Select S; that contains at least two nodes a and b.

» Compute the connected components of the forest obtained
from the current tree T after deleting S;. Each of these
components corresponds to a set of vertices from V.

» Consider the graph H obtained from G by contracting these
connected components into single nodes.

» Compute a minimum a-b cut in H. Let A, and B denote the
two sides of this cut.

m 16 Gomory Hu Trees
Ernst Mayr, Harald Racke 491/504



Details of the Split-operation

> Select S; that contains at least two nodes a and b.

» Compute the connected components of the forest obtained
from the current tree T after deleting S;. Each of these
components corresponds to a set of vertices from V.

» Consider the graph H obtained from G by contracting these
connected components into single nodes.

» Compute a minimum a-b cut in H. Let A, and B denote the
two sides of this cut.

> Split S; in T into two sets/nodes S{* = S; N A and Sib =S5;NB
and add edge {S%,S?} with capacity fu(a,b).

m 16 Gomory Hu Trees
Ernst Mayr, Harald Racke 491/504



Details of the Split-operation

> Select S; that contains at least two nodes a and b.

» Compute the connected components of the forest obtained
from the current tree T after deleting S;. Each of these
components corresponds to a set of vertices from V.

» Consider the graph H obtained from G by contracting these
connected components into single nodes.

» Compute a minimum a-b cut in H. Let A, and B denote the

two sides of this cut.

> Split S; in T into two sets/nodes S{* = S; N A and Sib =S5;NB
and add edge {S%,S?} with capacity fu(a,b).

> Replace an edge {S;, Sx} by {S7,Sx} if Sx € A and by
{SY, Sy} if Sy C B.
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Analysis

Lemma 89
For nodes s,t,x € V we have f(s,t) > min{f(s,x), f(x,t)}
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Analysis

Lemma 89
For nodes s,t,x € V we have f(s,t) > min{f(s,x), f(x,t)}

Lemma 90
For nodes s,t,x1,...,xx €V we have
S(s,8) =2min{ f(s,x1), f(x1,x2),..., f(Xk-1,Xk), f (XK, 1)}
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Lemma 91
Let S be some minimum v-s cut for some nodesr,s €V (s € S),
and let v,w € S. Then there is a minimum v-w-cut T with
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Lemma 91

Let S be some minimum v -s cut for some nodesr,s €V (s € 5),
and let v,w € S. Then there is a minimum v -w-cut T with
TcCS.

Proof: Let X be a minimum v-w cut with X NS +# @ and
XN (V\S) = @.
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Analysis

Lemma 91 tells us that if we have a graph G = (V,E) and we
contract a subset X C V that corresponds to some mincut, then
the value of f(s,t) does not change for two nodes s,t ¢ X.

We will show (later) that the connected components that we
contract during a split-operation each correspond to some
mincut and, hence, fy(s,t) = f(s,t), where fy(s,t) is the value
of a minimum s-t mincut in graph H.
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Analysis

Invariant [existence of representatives]:

For any edge {S;,S;} in T, there are verticesa € S;and b € §
such that w(S;,Sj) = f(a,b) and the cut defined by edge
{Si,S;} is a minimum a-b cut in G.
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Analysis
We first show that the invariant implies that at the end of the
algorithm T is indeed a cut-tree.
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» Lets =x0,X1,...,Xk_1,Xk = t be the unique simple path
from s to t in the final tree T. From the invariant we get that
Sf(xi,xiv1) = w(xi, xi41) forall j.
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from s to t in the final tree T. From the invariant we get that
Sf(xi,xiv1) = w(xi, xi41) forall j.

» Then

Sr(s,t) = min
e

yarey

{w(xi, xi1)}
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Analysis
We first show that the invariant implies that at the end of the
algorithm T is indeed a cut-tree.

» Lets =x0,X1,...,Xk_1,Xk = t be the unique simple path
from s to t in the final tree T. From the invariant we get that
Sf(xi,xiv1) = w(xi, xi41) forall j.

» Then

s, t) = min w(xi, Xi
fT( ) ie{O,...,k—l}{ (l 1+1)}

min Xi, Xi
ie{O,...,k—l}{f( i l+1)}
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We first show that the invariant implies that at the end of the
algorithm T is indeed a cut-tree.

» Lets =x0,X1,...,Xk_1,Xk = t be the unique simple path
from s to t in the final tree T. From the invariant we get that
Sf(xi,xiv1) = w(xi, xi41) forall j.

» Then
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Analysis
We first show that the invariant implies that at the end of the
algorithm T is indeed a cut-tree.

» Lets =x0,X1,...,Xk_1,Xk = t be the unique simple path
from s to t in the final tree T. From the invariant we get that
Sf(xi,xiv1) = w(xi, xi41) forall j.

» Then

Sr(s,t) = min {w(xi,Xi+1)}
i€{0,....k—1}

ie{g}%}g_l}{f(xl’,xi+1)} < f(s,t) .

> Let {xj,xj1} be the edge with minimum weight on the
path.
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We first show that the invariant implies that at the end of the
algorithm T is indeed a cut-tree.

» Lets =x0,X1,...,Xk_1,Xk = t be the unique simple path
from s to t in the final tree T. From the invariant we get that
Sf(xi,xiv1) = w(xi, xi41) forall j.

» Then

Sr(s,t) = min {w(xi,Xi+1)}
i€{0,....k—1}

ie{g}%}%_l}{f(xl’,xi+1)} < f(s,t) .

> Let {xj,xj1} be the edge with minimum weight on the
path.

» Since by the invariant this edge induces an s-t cut with
capacity f(xj,x;.1) we get f(s,t) < f(xj,xj.1) = fr(s,t).
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Analysis

> Hence, fr(s,t) = f(s,t) (flow equivalence).
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Analysis

> Hence, fr(s,t) = f(s,t) (flow equivalence).

> The edge {x;,x;;1} is a mincut between s and ¢ in T.
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Analysis
> Hence, fr(s,t) = f(s,t) (flow equivalence).
> The edge {x;,x;;1} is a mincut between s and ¢ in T.

> By invariant, it forms a cut with capacity f(x;,x;j.1) in G
(which separates s and t).
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Analysis

> Hence, fr(s,t) = f(s,t) (flow equivalence).

v

The edge {x;,x;,1} is a mincut between s and t in T

> By invariant, it forms a cut with capacity f(x;,x;j.1) in G
(which separates s and t).

v

Since, we can send a flow of value f(x;,x;;1) btw. s and ,
this is an s-t mincut (cut property).
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Proof of Invariant
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Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.
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Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that
it was true before the operation.
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Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that
it was true before the operation.

Let S; denote our selected cluster with nodes a and b. Because

of the invariant all edges leaving {S;} in T correspond to some
mincuts.
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Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that
it was true before the operation.

Let S; denote our selected cluster with nodes a and b. Because
of the invariant all edges leaving {S;} in T correspond to some
mincuts.

Therefore, contracting the connected components does not
change the mincut btw. a and b due to Lemma 91.
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Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that
it was true before the operation.

Let S; denote our selected cluster with nodes a and b. Because
of the invariant all edges leaving {S;} in T correspond to some
mincuts.

Therefore, contracting the connected components does not
change the mincut btw. a and b due to Lemma 91.

After the split we have to choose representatives for all edges.
For the new edge {S%, S?} with capacity w(S%,S?) = fu(a,b) we
can simply choose a and b as representatives.
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Proof of Invariant
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Proof of Invariant

For edges that are not incident to S; we do not need to change
representatives as the neighbouring sets do not change.
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Proof of Invariant

For edges that are not incident to S; we do not need to change
representatives as the neighbouring sets do not change.

Consider an edge {X, Si}, and suppose that before the split it
used representatives x € X, and s € S;. Assume that this edge is
replaced by {X, S{'} in the new tree (the case when it is replaced
by {X,Sib} is analogous).
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Proof of Invariant

For edges that are not incident to S; we do not need to change
representatives as the neighbouring sets do not change.

Consider an edge {X, Si}, and suppose that before the split it
used representatives x € X, and s € S;. Assume that this edge is
replaced by {X, S{'} in the new tree (the case when it is replaced
by {X,Sib} is analogous).

If s € S{" we can keep x and s as representatives.
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Proof of Invariant

For edges that are not incident to S; we do not need to change
representatives as the neighbouring sets do not change.

Consider an edge {X, Si}, and suppose that before the split it
used representatives x € X, and s € S;. Assume that this edge is
replaced by {X,Sia} in the new tree (the case when it is replaced
by {X,Sib} is analogous).

If s € S{" we can keep x and s as representatives.

Otherwise, we choose x and a as representatives. We need to
show that f(x,a) = f(x,s).
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Proof of Invariant
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Proof of Invariant

Because the invariant was true before the split we know that the
edge {X, S;} induces a cut in G of capacity f(x,s). Since, x and
a are on opposite sides of this cut, we know that

f(x,a) < f(x,s).
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Proof of Invariant

Because the invariant was true before the split we know that the
edge {X, S;} induces a cut in G of capacity f(x,s). Since, x and
a are on opposite sides of this cut, we know that

f(x,a) < f(x,s).

The set B forms a mincut separating a from b. Contracting all
nodes in this set gives a new graph G’ where the set B is
represented by node vg. Because of Lemma 91 we know that
f'(x,a) = f(x,a) as x,a ¢ B.
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Proof of Invariant

Because the invariant was true before the split we know that the
edge {X, S;} induces a cut in G of capacity f(x,s). Since, x and
a are on opposite sides of this cut, we know that

f(x,a) < f(x,s).

The set B forms a mincut separating a from b. Contracting all
nodes in this set gives a new graph G’ where the set B is
represented by node vg. Because of Lemma 91 we know that
f'(x,a) = f(x,a) as x,a ¢ B.

We further have f'(x,a) = min{f’(x,vp), f'(vp,a)}.
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Proof of Invariant

Because the invariant was true before the split we know that the
edge {X, S;} induces a cut in G of capacity f(x,s). Since, x and
a are on opposite sides of this cut, we know that

f(x,a) < f(x,s).

The set B forms a mincut separating a from b. Contracting all
nodes in this set gives a new graph G’ where the set B is
represented by node vg. Because of Lemma 91 we know that
f'(x,a) = f(x,a) as x,a ¢ B.

We further have f'(x,a) = min{f’(x,vp), f'(vp,a)}.

Since s € B we have f'(vp,x) = f(s,x).
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Proof of Invariant

Because the invariant was true before the split we know that the
edge {X, S;} induces a cut in G of capacity f(x,s). Since, x and
a are on opposite sides of this cut, we know that

f(x,a) < f(x,s).

The set B forms a mincut separating a from b. Contracting all
nodes in this set gives a new graph G’ where the set B is
represented by node vg. Because of Lemma 91 we know that
f'(x,a) = f(x,a) as x,a ¢ B.

We further have f'(x,a) = min{f’(x,vp), f'(vp,a)}.
Since s € B we have f'(vp,x) = f(s,x).

Also, f'(a,vp) = f(a,b) = f(x,s) since the a-b cut that splits
Si into S and S? also separates s and x.
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Analysis
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Analysis 5 -F (X, ;)
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