
Analysis of Idealized Open Address Hashing

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 235/291

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the

time that k is inserted.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 235/291

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the

time that k is inserted.

Let k be the i+ 1-st element. The expected time for a search for

k is at most 1
1−i/n = n

n−i .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 235/291

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the

time that k is inserted.

Let k be the i+ 1-st element. The expected time for a search for

k is at most 1
1−i/n = n

n−i .

1
m

m−1�

i=0

n
n− i

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 235/291

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the

time that k is inserted.

Let k be the i+ 1-st element. The expected time for a search for

k is at most 1
1−i/n = n

n−i .

1
m

m−1�

i=0

n
n− i =

n
m

m−1�

i=0

1
n− i

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 235/291

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the

time that k is inserted.

Let k be the i+ 1-st element. The expected time for a search for

k is at most 1
1−i/n = n

n−i .

1
m

m−1�

i=0

n
n− i =

n
m

m−1�

i=0

1
n− i =

1
α

n�

k=n−m+1

1
k

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 235/291

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the

time that k is inserted.

Let k be the i+ 1-st element. The expected time for a search for

k is at most 1
1−i/n = n

n−i .

1
m

m−1�

i=0

n
n− i =

n
m

m−1�

i=0

1
n− i =

1
α

n�

k=n−m+1

1
k

≤ 1
α

� n
n−m

1
x

dx

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 235/291

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the

time that k is inserted.

Let k be the i+ 1-st element. The expected time for a search for

k is at most 1
1−i/n = n

n−i .

1
m

m−1�

i=0

n
n− i =

n
m

m−1�

i=0

1
n− i =

1
α

n�

k=n−m+1

1
k

≤ 1
α

� n
n−m

1
x

dx = 1
α

ln
n

n−m

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 235/291

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the

time that k is inserted.

Let k be the i+ 1-st element. The expected time for a search for

k is at most 1
1−i/n = n

n−i .

1
m

m−1�

i=0

n
n− i =

n
m

m−1�

i=0

1
n− i =

1
α

n�

k=n−m+1

1
k

≤ 1
α

� n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 235/291

Analysis of Idealized Open Address Hashing

m−n m−n+ 1 n

1
m−n+1

1
m−n+2

1
n

f(x) = 1
x

x

f(x)

n�

k=m−n+1

1
k
≤
� n
m−n

1
x

dx
� n
m−n

1
x

dx
n�

k=m−n+1

1
k

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 236/291

Deletions in Hashtables

How do we delete in a hash-table?

� For hashing with chaining this is not a problem. Simply

search for the key, and delete the item in the corresponding

list.

� For open addressing this is difficult.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 237/291

Deletions in Hashtables

How do we delete in a hash-table?

� For hashing with chaining this is not a problem. Simply

search for the key, and delete the item in the corresponding

list.

� For open addressing this is difficult.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 237/291

Deletions in Hashtables

� Simply removing a key might interrupt the probe sequence

of other keys which then cannot be found anymore.

� One can delete an element by replacing it with a
deleted-marker.
� During an insertion if a deleted-marker is encountered an

element can be inserted there.
� During a search a deleted-marker must not be used to

terminate the probe sequence.

� The table could fill up with deleted-markers leading to bad

performance.

� If a table contains many deleted-markers (linear fraction of

the keys) one can rehash the whole table and amortize the

cost for this rehash against the cost for the deletions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 238/291

Deletions in Hashtables

� Simply removing a key might interrupt the probe sequence

of other keys which then cannot be found anymore.

� One can delete an element by replacing it with a
deleted-marker.
� During an insertion if a deleted-marker is encountered an

element can be inserted there.
� During a search a deleted-marker must not be used to

terminate the probe sequence.

� The table could fill up with deleted-markers leading to bad

performance.

� If a table contains many deleted-markers (linear fraction of

the keys) one can rehash the whole table and amortize the

cost for this rehash against the cost for the deletions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 238/291

Deletions in Hashtables

� Simply removing a key might interrupt the probe sequence

of other keys which then cannot be found anymore.

� One can delete an element by replacing it with a
deleted-marker.
� During an insertion if a deleted-marker is encountered an

element can be inserted there.
� During a search a deleted-marker must not be used to

terminate the probe sequence.

� The table could fill up with deleted-markers leading to bad

performance.

� If a table contains many deleted-markers (linear fraction of

the keys) one can rehash the whole table and amortize the

cost for this rehash against the cost for the deletions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 238/291

Deletions in Hashtables

� Simply removing a key might interrupt the probe sequence

of other keys which then cannot be found anymore.

� One can delete an element by replacing it with a
deleted-marker.
� During an insertion if a deleted-marker is encountered an

element can be inserted there.
� During a search a deleted-marker must not be used to

terminate the probe sequence.

� The table could fill up with deleted-markers leading to bad

performance.

� If a table contains many deleted-markers (linear fraction of

the keys) one can rehash the whole table and amortize the

cost for this rehash against the cost for the deletions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 238/291

Deletions in Hashtables

� Simply removing a key might interrupt the probe sequence

of other keys which then cannot be found anymore.

� One can delete an element by replacing it with a
deleted-marker.
� During an insertion if a deleted-marker is encountered an

element can be inserted there.
� During a search a deleted-marker must not be used to

terminate the probe sequence.

� The table could fill up with deleted-markers leading to bad

performance.

� If a table contains many deleted-markers (linear fraction of

the keys) one can rehash the whole table and amortize the

cost for this rehash against the cost for the deletions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 238/291

Deletions in Hashtables

� Simply removing a key might interrupt the probe sequence

of other keys which then cannot be found anymore.

� One can delete an element by replacing it with a
deleted-marker.
� During an insertion if a deleted-marker is encountered an

element can be inserted there.
� During a search a deleted-marker must not be used to

terminate the probe sequence.

� The table could fill up with deleted-markers leading to bad

performance.

� If a table contains many deleted-markers (linear fraction of

the keys) one can rehash the whole table and amortize the

cost for this rehash against the cost for the deletions.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 238/291

Deletions for Linear Probing

� For Linear Probing one can delete elements without using

deletion-markers.

� Upon a deletion elements that are further down in the

probe-sequence may be moved to guarantee that they are

still found during a search.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 239/291

Deletions for Linear Probing

� For Linear Probing one can delete elements without using

deletion-markers.

� Upon a deletion elements that are further down in the

probe-sequence may be moved to guarantee that they are

still found during a search.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 239/291

Deletions for Linear Probing

Algorithm 12 delete(p)
1: T[p]← null

2: p ← succ(p)
3: while T[p] ≠ null do

4: y ← T[p]
5: T[p]← null

6: p ← succ(p)
7: insert(y)

p is the index into the table-cell that contains the object to be

deleted.

Pointers into the hash-table become invalid.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 240/291

Deletions for Linear Probing

Algorithm 12 delete(p)
1: T[p]← null

2: p ← succ(p)
3: while T[p] ≠ null do

4: y ← T[p]
5: T[p]← null

6: p ← succ(p)
7: insert(y)

p is the index into the table-cell that contains the object to be

deleted.

Pointers into the hash-table become invalid.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 240/291

Universal Hashing

Regardless, of the choice of hash-function there is always an

input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random

so that regardless of the input the average case behaviour is

good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour

when selecting a hash-function uniformly at random from H .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 241/291

Universal Hashing

Regardless, of the choice of hash-function there is always an

input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random

so that regardless of the input the average case behaviour is

good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour

when selecting a hash-function uniformly at random from H .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 241/291

Universal Hashing

Regardless, of the choice of hash-function there is always an

input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random

so that regardless of the input the average case behaviour is

good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour

when selecting a hash-function uniformly at random from H .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 241/291

Universal Hashing

Regardless, of the choice of hash-function there is always an

input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random

so that regardless of the input the average case behaviour is

good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour

when selecting a hash-function uniformly at random from H .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 241/291

Universal Hashing

Regardless, of the choice of hash-function there is always an

input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random

so that regardless of the input the average case behaviour is

good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour

when selecting a hash-function uniformly at random from H .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 241/291

Universal Hashing

Definition 24

A class H of hash-functions from the universe U into the set

{0, . . . , n−1} is called universal if for all u1, u2 ∈ U with u1 ≠ u2

Pr[h(u1) = h(u2)] ≤ 1
n
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

Note that this means that the probability of a collision between

two arbitrary elements is at most 1
n .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 242/291

Universal Hashing

Definition 24

A class H of hash-functions from the universe U into the set

{0, . . . , n−1} is called universal if for all u1, u2 ∈ U with u1 ≠ u2

Pr[h(u1) = h(u2)] ≤ 1
n
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

Note that this means that the probability of a collision between

two arbitrary elements is at most 1
n .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 242/291

Universal Hashing

Definition 25

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called 2-independent (pairwise independent) if

the following two conditions hold

� For any key u ∈ U , and t ∈ {0, . . . , n− 1} Pr[h(u) = t] = 1
n ,

i.e., a key is distributed uniformly within the hash-table.

� For all u1, u2 ∈ U with u1 ≠ u2, and for any two

hash-positions t1, t2:

Pr[h(u1) = t1 ∧ h(u2) = t2] ≤ 1
n2 .

This requirement clearly implies a universal hash-function.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 243/291

Universal Hashing

Definition 25

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called 2-independent (pairwise independent) if

the following two conditions hold

� For any key u ∈ U , and t ∈ {0, . . . , n− 1} Pr[h(u) = t] = 1
n ,

i.e., a key is distributed uniformly within the hash-table.

� For all u1, u2 ∈ U with u1 ≠ u2, and for any two

hash-positions t1, t2:

Pr[h(u1) = t1 ∧ h(u2) = t2] ≤ 1
n2 .

This requirement clearly implies a universal hash-function.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 243/291

Universal Hashing

Definition 26

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called k-independent if for any choice of � ≤ k
distinct keys u1, . . . , u� ∈ U , and for any set of � not necessarily

distinct hash-positions t1, . . . , t�:

Pr[h(u1) = t1 ∧ · · ·∧ h(u�) = t�] ≤
1

n�
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 244/291

Universal Hashing

Definition 27

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called (µ, k)-independent if for any choice of

� ≤ k distinct keys u1, . . . , u� ∈ U , and for any set of � not

necessarily distinct hash-positions t1, . . . , t�:

Pr[h(u1) = t1 ∧ · · ·∧ h(u�) = t�] ≤
µ
n�

,

where the probability is w. r. t. the choice of a random

hash-function from set H .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 245/291

Universal Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1},
and let Z∗p := {1, . . . , p − 1} denote the set of invertible elements

in Zp.

Define

ha,b(x) := (ax + b mod p) mod n

Lemma 28

The class

H = {ha,b | a ∈ Z∗p, b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 246/291

Universal Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1},
and let Z∗p := {1, . . . , p − 1} denote the set of invertible elements

in Zp.

Define

ha,b(x) := (ax + b mod p) mod n

Lemma 28

The class

H = {ha,b | a ∈ Z∗p, b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 246/291

Universal Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1},
and let Z∗p := {1, . . . , p − 1} denote the set of invertible elements

in Zp.

Define

ha,b(x) := (ax + b mod p) mod n

Lemma 28

The class

H = {ha,b | a ∈ Z∗p, b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 246/291

Universal Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1},
and let Z∗p := {1, . . . , p − 1} denote the set of invertible elements

in Zp.

Define

ha,b(x) := (ax + b mod p) mod n

Lemma 28

The class

H = {ha,b | a ∈ Z∗p, b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 246/291

Universal Hashing

Proof.

Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.
� ax + b �≡ ay + b (mod p)

If x ≠ y then (x −y) �≡ 0 (mod p).

Multiplying with a �≡ 0 (mod p) gives

a(x −y) �≡ 0 (mod p)

where we use that Zp is a field (Körper) and, hence, has no

zero divisors (nullteilerfrei).

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 247/291

Universal Hashing

Proof.

Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.
� ax + b �≡ ay + b (mod p)

If x ≠ y then (x −y) �≡ 0 (mod p).

Multiplying with a �≡ 0 (mod p) gives

a(x −y) �≡ 0 (mod p)

where we use that Zp is a field (Körper) and, hence, has no

zero divisors (nullteilerfrei).

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 247/291

Universal Hashing

Proof.

Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.
� ax + b �≡ ay + b (mod p)

If x ≠ y then (x −y) �≡ 0 (mod p).

Multiplying with a �≡ 0 (mod p) gives

a(x −y) �≡ 0 (mod p)

where we use that Zp is a field (Körper) and, hence, has no

zero divisors (nullteilerfrei).

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 247/291

Universal Hashing

Proof.

Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.
� ax + b �≡ ay + b (mod p)

If x ≠ y then (x −y) �≡ 0 (mod p).

Multiplying with a �≡ 0 (mod p) gives

a(x −y) �≡ 0 (mod p)

where we use that Zp is a field (Körper) and, hence, has no

zero divisors (nullteilerfrei).

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 247/291

Universal Hashing

Proof.

Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.
� ax + b �≡ ay + b (mod p)

If x ≠ y then (x −y) �≡ 0 (mod p).

Multiplying with a �≡ 0 (mod p) gives

a(x −y) �≡ 0 (mod p)

where we use that Zp is a field (Körper) and, hence, has no

zero divisors (nullteilerfrei).

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 247/291

Universal Hashing

Proof.

Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.
� ax + b �≡ ay + b (mod p)

If x ≠ y then (x −y) �≡ 0 (mod p).

Multiplying with a �≡ 0 (mod p) gives

a(x −y) �≡ 0 (mod p)

where we use that Zp is a field (Körper) and, hence, has no

zero divisors (nullteilerfrei).

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 247/291

Universal Hashing
� The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to a different pair (tx, ty) with tx := ax + b and

ty := ay + b.

Universal Hashing
� The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to a different pair (tx, ty) with tx := ax + b and

ty := ay + b.

This holds because we can compute a and b when given tx
and ty :

Universal Hashing
� The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to a different pair (tx, ty) with tx := ax + b and

ty := ay + b.

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

Universal Hashing
� The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to a different pair (tx, ty) with tx := ax + b and

ty := ay + b.

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

Universal Hashing
� The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to a different pair (tx, ty) with tx := ax + b and

ty := ay + b.

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ty − ay (mod p)

Universal Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the modn-

operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the modn operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p− 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most �p/n�
values.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 249/291

Universal Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the modn-

operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the modn operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p− 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most �p/n�
values.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 249/291

Universal Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the modn-

operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the modn operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p− 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most �p/n�
values.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 249/291

Universal Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the modn-

operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the modn operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p− 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most �p/n�
values.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 249/291

Universal Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the modn-

operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the modn operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p− 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most �p/n�
values.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 249/291

Universal Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the modn-

operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the modn operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p− 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most �p/n�
values.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 249/291

Universal Hashing

As ty ≠ tx there are

�p
n

�
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value

creates a collision.

This happens with probability at most 1
n .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 250/291

Universal Hashing

As ty ≠ tx there are

�p
n

�
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value

creates a collision.

This happens with probability at most 1
n .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 250/291

Universal Hashing

As ty ≠ tx there are

�p
n

�
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value

creates a collision.

This happens with probability at most 1
n .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 250/291

Universal Hashing

As ty ≠ tx there are

�p
n

�
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value

creates a collision.

This happens with probability at most 1
n .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 250/291

Universal Hashing

As ty ≠ tx there are

�p
n

�
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value

creates a collision.

This happens with probability at most 1
n .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 250/291

Universal Hashing

As ty ≠ tx there are

�p
n

�
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value

creates a collision.

This happens with probability at most 1
n .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 250/291

Universal Hashing

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 251/291

Universal Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

Prtx≠ty∈Z2
p

�
tx mod n=h1∧
ty mod n=h2

�

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 251/291

Universal Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

�
p
n

�2

p(p − 1)
≤ Prtx≠ty∈Z2

p

�
tx mod n=h1∧
ty mod n=h2

�
≤
�
p
n

�2

p(p − 1)

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 251/291

Universal Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

�
p
n

�2

p(p − 1)
≤ Prtx≠ty∈Z2

p

�
tx mod n=h1∧
ty mod n=h2

�
≤
�
p
n

�2

p(p − 1)

Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty) such that tx mod n = h1

(ty mod n = h2) lies between � pn� and �pn�.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 251/291

