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Deletions in Hashtables

How do we delete in a hash-table?

> For hashing with chaining this is not a problem. Simply
search for the key, and delete the item in the corresponding
list.
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Deletions in Hashtables

How do we delete in a hash-table?

> For hashing with chaining this is not a problem. Simply
search for the key, and delete the item in the corresponding
list.

» For open addressing this is difficult.
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Deletions in Hashtables
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of other keys which then cannot be found anymore.
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> During a search a deleted-marker must not be used to
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Deletions in Hashtables

> Simply removing a key might interrupt the probe sequence
of other keys which then cannot be found anymore.
> One can delete an element by replacing it with a
deleted-marker.
» During an insertion if a deleted-marker is encountered an
element can be inserted there.
> During a search a deleted-marker must not be used to
terminate the probe sequence.
» The table could fill up with deleted-markers leading to bad
performance.

> [f a table contains many deleted-markers (linear fraction of
the keys) one can rehash the whole table and amortize the
cost for this rehash against the cost for the deletions.

m 7.6 Hashing
Ernst Mayr, Harald Racke 238/291



Deletions for Linear Probing

» For Linear Probing one can delete elements without using
deletion-markers.
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Deletions for Linear Probing

» For Linear Probing one can delete elements without using
deletion-markers.

> Upon a deletion elements that are further down in the
probe-sequence may be moved to guarantee that they are
still found during a search.
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Deletions for Linear Probing

Algorithm 12 delete(p)

1: T[p] — null

2: p — succ(p)

3: while T[p] # null do

4: y <= Tlp]

5: T{p] < null

6 p < succ(p)

7 insert(y)

P

p is the index inte-the-tahle-cell that contains the object to be
deleted. \Z2N

v |1
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Deletions for Linear Probing

Algorithm 12 delete(p)
1: T[p] < null

2: p — succ(p)

3: while T[p] # null do
4 y <= Tlp]

5 T{p] < null

6: p — succ(p)

7 insert(y)

p is the index into the table-cell that contains the object to be
deleted.

Pointers into the hash-table become invalid.
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Universal Hashing

Regardless, of the choice of hash-function there is always an
input (a set of keys) that has a very poor worst-case behaviour.
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However, the assumption of uniform hashing that h is chosen
randomly from all functions f: U — [0,...,n — 1] is clearly
unrealistic as there are n!Ul such functions. Even writing down
such a function would take |U|logn bits.
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Universal Hashing

Regardless, of the choice of hash-function there is always an
input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random
so that regardless of the input the average case behaviour is
good.

However, the assumption of uniform hashing that h is chosen
randomly from all functions f: U — [0,...,n — 1] is clearly
unrealistic as there are n!Ul such functions. Even writing down
such a function would take |U|logn bits.

Universal hashing tries to define a set #{ of functions that is
much smaller but still leads to good average case behaviour
when selecting a hash-function uniformly at random from .
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Universal Hashing " T
4

Definition 24 m

A class H of hash-functions from the universe U into the set
{0,...,m—1} is called universal if for all u;,up € U with 1 = u»

Prlh(u1) = h(uz)] < -
n

where the probability is w.r.t. the choice of a random
hash-function from set 7.
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Universal Hashing

Definition 24
A class H of hash-functions from the universe U into the set
{0,...,m—1} is called universal if for all u;,up € U with 1 = u»

Prlh(ur) = h(up)] < +
n

where the probability is w.r.t. the choice of a random
hash-function from set 7.

Note that this means that the probability of a collision between
two arbitrary elements is at most %
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Universal Hashing

Definition 25
A class H of hash-functions from the universe U into the set
{0,...,m — 1} is called 2-independent (pairwise independent) if
the following two conditions hold
» Foranykeyu e U,andt € {0,...,n—1} Pr[h(u) =t] = %
i.e., a key is distributed uniformly within the hash-table.
» Forall uy,u» € U with u; # 1, and for any two
hash-positions ty, t>:

Prih(uy) = t1 A h(up) = t2] < % .
n
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Universal Hashing

Definition 25
A class H of hash-functions from the universe U into the set
{0,...,m — 1} is called 2-independent (pairwise independent) if
the following two conditions hold

» Foranykeyu e U,andt € {0,...,n—1} Pr[h(u) =t] = %

i.e., a key is distributed uniformly within the hash-table.
» Forall uy,u» € U with u; # 1, and for any two
Vshash-positions t1, to:

ol Prh(iy) = £y A h(uz) = 6] Z — .
VL 9.y n

This requirement clearly implies a universal hash-function.
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Universal Hashing

Definition 26

A class HH of hash-functions from the universe U into the set
{0,...,m — 1} is called k-independent if for any choice of £ < k
distinct keys u1,...,uyp € U, and for any set of £ not necessarily
distinct hash-positions t1,...,ty:

1

Prlh(uy) =t A - - Ah(uyp) =tp] < i

where the probability is w.r.t. the choice of a random
hash-function from set 7.
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Universal Hashing

Definition 27
A class H of hash-functions from the universe U into the set
{0,...,m — 1} is called (u, k)-independent if for any choice of
{ < k distinct keys uy,...,up € U, and for any set of £ not
necessarily distinct hash-positions t1,..., t;:

Prih(uy) = t1 A - A h(uy) = ty] < % ,
where the probability is w.r.t. the choice of a random
hash-function from set 7.
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Universal Hashing

Let U:= {0,...,p — 1} for a prime p. Let Z, := {0,...,p — 1},
and let Z; :={1,...,p — 1} denote the set of invertible elements
inZp.

‘m 7.6 Hashing
Ernst Mayr, Harald Racke 246/291



Universal Hashing

Let U:= {0,...,p — 1} for a prime p. Let Z, := {0,...,p — 1},
and let Z; :={1,...,p — 1} denote the set of invertible elements
inZp.

Define
hap(x):= (ax + bmod p) mod n
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Universal Hashing

Let U:= {0,...,p — 1} for a prime p. Let Z, := {0,...,p — 1},
and let Z; :={1,...,p — 1} denote the set of invertible elements
inZp.

Define
hap(x):= (ax + bmod p) mod n

Lemma 28
The class
H={haplaecl}bel,}

is a universal class of hash-functions from U to {0,...,n — 1}.
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Universal Hashing
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Universal Hashing
Proof.

Let x,y € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.
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Universal Hashing

Proof.
Let x,y € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.

» ax + b # ay + b (mod p)
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Universal Hashing

Proof.
Let x,y € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.

» ax + b # ay + b (mod p)

If x = y then (x — ¥) # 0 (mod p).
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Universal Hashing

Proof.
Let x,y € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.

» ax + b # ay + b (mod p)

If x = y then (x — ¥) # 0 (mod p).
Multiplying with a # 0 (mod p) gives

a(x—-y)#0 (modp)
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Universal Hashing

Proof.
Let x,» € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.

» ax + b # ay + b (mod p)

If x = y then (x — ¥) # 0 (mod p).
Multiplying with a # 0 (mod p) gives
a(x-y)#0 (modp)

where we use that 7, is a field (Kérper) and, hence, has no
zero divisors (nullteilerfrei).
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Universal Hashing

» The hash-function does not generate collisions before the
(mod n)-operation. Furthermore, every choice (a, b) is
mapped to a different pair (tx,t,) with ty := ax + b and
ty:=ay +b.
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Universal Hashing
» The hash-function does not generate collisions before the
(mod n)-operation. Furthermore, every choice (a, b) is
mapped to a different pair (tx,t,) with ty := ax + b and
ty:=ay +b.

This holds because we can compute a and b when given ty

and ty:
ty=ax+b (mod p)
ty=ay+b (mod p)
tx —ty=alx-y) (mod p)
ty=ay+b (mod p)
a=(tx—ty)(x-»)" (mod p)

b=ty -ay (mod p)
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Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # 5.
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Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # 5.

Therefore, we can view the first step (before the mod n-

operation) as choosing a pair (fx,ty), tx # t, uniformly at
random.
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Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # 5.

Therefore, we can view the first step (before the mod n-
operation) as choosing a pair (fx,ty), tx # t, uniformly at

random.

What happens when we do the mod n operation?
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Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # 5.

Therefore, we can view the first step (before the mod n-
operation) as choosing a pair (fx,ty), tx # t, uniformly at
random.

What happens when we do the mod n operation?

Fix a value ty. There are p — 1 possible values for choosing .
p-1
% X
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Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # 5.

Therefore, we can view the first step (before the mod n-
operation) as choosing a pair (fx,ty), tx # t, uniformly at
random.

What happens when we do the mod n operation?

Fix a value ty. There are p — 1 possible values for choosing .

From the range O,...,p — 1 the values ty,tx + n,tx +21,... Mmap
to t, after the modulo-operation. These are at most [p/n]|
values.
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Universal Hashing

‘m 7.6 Hashing
Ernst Mayr, Harald Racke 250/291



Universal Hashing

As ty + Ly there are

[l
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Universal Hashing

As ty + Ly there are

[%]—1s%+n_1—1
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Universal Hashing

As ty + Ly there are

[%]—15%+n_1—15p_1
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Universal Hashing

As ty + Ly there are

[%]—15% n-1 _p—l

possibilities for choosing t, such that the final hash-value
creates a collision.
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Universal Hashing

As ty + Ly there are

[%]—15% n-1 _p—l

possibilities for choosing t, such that the final hash-value
creates a collision.

This happens with probability at most %
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Universal Hashing
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Universal Hashing

It is also possible to show that #{ is an (almost) pairwise
independent class of hash-functions.

[ tx mod n=h, :|
: A
ty mod n=h»
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Universal Hashing

It is also possible to show that #{ is an (almost) pairwise
independent class of hash-functions.

2]

T plp-1)

2

tx mod n=h;
m = Prtxattyez%, A

ty mod n=h»
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Universal Hashing

It is also possible to show that 7{ is an (almost) pairwise
independent class of hash-functions.

2]

T plp-1)

2

tx mod n=h;
p(p . 1) = Prtxqttyelf, A

ty mod n=h»

Note that the middle is the probability that h(x) = h; and

h(y) = h>. The total number of choices for (tx,t,) is p(p — 1).

The number of choices for ¢y (ty) such that t, mod n = h;
(ty mod n = hy) lies between [ % | and [2].
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