
Resolving Collisions

The methods for dealing with collisions can be classified into the

two main types

� open addressing, aka. closed hashing

� hashing with chaining, aka. closed addressing, open

hashing.

There are applications e.g. computer chess where you do not

resolve collisions at all.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 217/291

Resolving Collisions

The methods for dealing with collisions can be classified into the

two main types

� open addressing, aka. closed hashing

� hashing with chaining, aka. closed addressing, open

hashing.

There are applications e.g. computer chess where you do not

resolve collisions at all.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 217/291

Hashing with Chaining

Arrange elements that map to the same position in a linear list.

� Access: compute h(x) and search list for key[x].
� Insert: insert at the front of the list.

k1

k2 k3

k4
k5

k6

k7

k8

U
universe
of keys

S (actual keys)

∅

∅

∅

∅

k1 k4 ∅

k5 k2 k7 ∅

k3 ∅

k8 k6 ∅

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 218/291

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the

following notation:

� A+ denotes the average time for a successful search when

using A;

� A− denotes the average time for an unsuccessful search

when using A;

� We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 219/291

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the

following notation:

� A+ denotes the average time for a successful search when

using A;

� A− denotes the average time for an unsuccessful search

when using A;

� We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 219/291

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the

following notation:

� A+ denotes the average time for a successful search when

using A;

� A− denotes the average time for an unsuccessful search

when using A;

� We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 219/291

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the

following notation:

� A+ denotes the average time for a successful search when

using A;

� A− denotes the average time for an unsuccessful search

when using A;

� We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 219/291

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the

following notation:

� A+ denotes the average time for a successful search when

using A;

� A− denotes the average time for an unsuccessful search

when using A;

� We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 219/291

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 220/291

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined. The average length of a list is

α = m
n .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 220/291

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined. The average length of a list is

α = m
n . Hence, if A is the collision resolving strategy “Hashing

with Chaining” we have

A− = 1+α .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 220/291

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k� denote the �-th key inserted into the table.

Let for two keys ki and kj, Xij denote the indicator variable for

the event that ki and kj hash to the same position. Clearly,

Pr[Xij = 1] = 1/n for uniform hashing.

The expected successful search cost is

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 221/291

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k� denote the �-th key inserted into the table.

Let for two keys ki and kj, Xij denote the indicator variable for

the event that ki and kj hash to the same position. Clearly,

Pr[Xij = 1] = 1/n for uniform hashing.

The expected successful search cost is

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 221/291

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k� denote the �-th key inserted into the table.

Let for two keys ki and kj, Xij denote the indicator variable for

the event that ki and kj hash to the same position. Clearly,

Pr[Xij = 1] = 1/n for uniform hashing.

The expected successful search cost is

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 221/291

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k� denote the �-th key inserted into the table.

Let for two keys ki and kj, Xij denote the indicator variable for

the event that ki and kj hash to the same position. Clearly,

Pr[Xij = 1] = 1/n for uniform hashing.

The expected successful search cost is

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 221/291

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k� denote the �-th key inserted into the table.

Let for two keys ki and kj, Xij denote the indicator variable for

the event that ki and kj hash to the same position. Clearly,

Pr[Xij = 1] = 1/n for uniform hashing.

The expected successful search cost is

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 221/291

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k� denote the �-th key inserted into the table.

Let for two keys ki and kj, Xij denote the indicator variable for

the event that ki and kj hash to the same position. Clearly,

Pr[Xij = 1] = 1/n for uniform hashing.

The expected successful search cost is

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��keys before ki

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 221/291

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k� denote the �-th key inserted into the table.

Let for two keys ki and kj, Xij denote the indicator variable for

the event that ki and kj hash to the same position. Clearly,

Pr[Xij = 1] = 1/n for uniform hashing.

The expected successful search cost is

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��

cost for key ki

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 221/291

Hashing with Chaining

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 222/291

Hashing with Chaining

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��
= 1
m

m�

i=1

�
1+

m�

j=i+1

E
�
Xij
��

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 222/291

Hashing with Chaining

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��
= 1
m

m�

i=1

�
1+

m�

j=i+1

E
�
Xij
��

= 1
m

m�

i=1

�
1+

m�

j=i+1

1
n

�

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 222/291

Hashing with Chaining

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��
= 1
m

m�

i=1

�
1+

m�

j=i+1

E
�
Xij
��

= 1
m

m�

i=1

�
1+

m�

j=i+1

1
n

�

= 1+ 1
mn

m�

i=1

(m− i)

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 222/291

Hashing with Chaining

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��
= 1
m

m�

i=1

�
1+

m�

j=i+1

E
�
Xij
��

= 1
m

m�

i=1

�
1+

m�

j=i+1

1
n

�

= 1+ 1
mn

m�

i=1

(m− i)

= 1+ 1
mn

�
m2 − m(m+ 1)

2

�

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 222/291

Hashing with Chaining

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��
= 1
m

m�

i=1

�
1+

m�

j=i+1

E
�
Xij
��

= 1
m

m�

i=1

�
1+

m�

j=i+1

1
n

�

= 1+ 1
mn

m�

i=1

(m− i)

= 1+ 1
mn

�
m2 − m(m+ 1)

2

�

= 1+ m− 1
2n

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 222/291

Hashing with Chaining

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��
= 1
m

m�

i=1

�
1+

m�

j=i+1

E
�
Xij
��

= 1
m

m�

i=1

�
1+

m�

j=i+1

1
n

�

= 1+ 1
mn

m�

i=1

(m− i)

= 1+ 1
mn

�
m2 − m(m+ 1)

2

�

= 1+ m− 1
2n

= 1+ α
2
− α

2m
.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 222/291

Hashing with Chaining

E
�

1
m

m�

i=1

�
1+

m�

j=i+1

Xij
��
= 1
m

m�

i=1

�
1+

m�

j=i+1

E
�
Xij
��

= 1
m

m�

i=1

�
1+

m�

j=i+1

1
n

�

= 1+ 1
mn

m�

i=1

(m− i)

= 1+ 1
mn

�
m2 − m(m+ 1)

2

�

= 1+ m− 1
2n

= 1+ α
2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 222/291

Hashing with Chaining

Disadvantages:

� pointers increase memory requirements

� pointers may lead to bad cache efficiency

Advantages:

� no à priori limit on the number of elements

� deletion can be implemented efficiently

� by using balanced trees instead of linked list one can also

obtain worst-case guarantees.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 223/291

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1)
must form a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 224/291

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1)
must form a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 224/291

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1)
must form a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 224/291

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1)
must form a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 224/291

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1)
must form a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 224/291

Open Addressing

Choices for h(k, j):
� Linear probing:

h(k, i) = h(k)+ i mod n
(sometimes: h(k, i) = h(k)+ ci mod n).

� Quadratic probing:

h(k, i) = h(k)+ c1i+ c2i2 mod n.

� Double hashing:

h(k, i) = h1(k)+ ih2(k) mod n.

For quadratic probing and double hashing one has to ensure

that the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n (teilerfremd); for

quadratic probing c1 and c2 have to be chosen carefully).

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 225/291

Open Addressing

Choices for h(k, j):
� Linear probing:

h(k, i) = h(k)+ i mod n
(sometimes: h(k, i) = h(k)+ ci mod n).

� Quadratic probing:

h(k, i) = h(k)+ c1i+ c2i2 mod n.

� Double hashing:

h(k, i) = h1(k)+ ih2(k) mod n.

For quadratic probing and double hashing one has to ensure

that the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n (teilerfremd); for

quadratic probing c1 and c2 have to be chosen carefully).

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 225/291

Open Addressing

Choices for h(k, j):
� Linear probing:

h(k, i) = h(k)+ i mod n
(sometimes: h(k, i) = h(k)+ ci mod n).

� Quadratic probing:

h(k, i) = h(k)+ c1i+ c2i2 mod n.

� Double hashing:

h(k, i) = h1(k)+ ih2(k) mod n.

For quadratic probing and double hashing one has to ensure

that the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n (teilerfremd); for

quadratic probing c1 and c2 have to be chosen carefully).

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 225/291

Open Addressing

Choices for h(k, j):
� Linear probing:

h(k, i) = h(k)+ i mod n
(sometimes: h(k, i) = h(k)+ ci mod n).

� Quadratic probing:

h(k, i) = h(k)+ c1i+ c2i2 mod n.

� Double hashing:

h(k, i) = h1(k)+ ih2(k) mod n.

For quadratic probing and double hashing one has to ensure

that the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n (teilerfremd); for

quadratic probing c1 and c2 have to be chosen carefully).

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 225/291

Linear Probing

� Advantage: Cache-efficiency. The new probe position is very

likely to be in the cache.

� Disadvantage: Primary clustering. Long sequences of

occupied table-positions get longer as they have a larger

probability to be hit. Furthermore, they can merge forming

larger sequences.

Lemma 21

Let L be the method of linear probing for resolving collisions:

L+ ≈ 1
2

�
1+ 1

1−α
�

L− ≈ 1
2

�
1+ 1

(1−α)2
�

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 226/291

Linear Probing

� Advantage: Cache-efficiency. The new probe position is very

likely to be in the cache.

� Disadvantage: Primary clustering. Long sequences of

occupied table-positions get longer as they have a larger

probability to be hit. Furthermore, they can merge forming

larger sequences.

Lemma 21

Let L be the method of linear probing for resolving collisions:

L+ ≈ 1
2

�
1+ 1

1−α
�

L− ≈ 1
2

�
1+ 1

(1−α)2
�

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 226/291

Linear Probing

� Advantage: Cache-efficiency. The new probe position is very

likely to be in the cache.

� Disadvantage: Primary clustering. Long sequences of

occupied table-positions get longer as they have a larger

probability to be hit. Furthermore, they can merge forming

larger sequences.

Lemma 21

Let L be the method of linear probing for resolving collisions:

L+ ≈ 1
2

�
1+ 1

1−α
�

L− ≈ 1
2

�
1+ 1

(1−α)2
�

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 226/291

Quadratic Probing

� Not as cache-efficient as Linear Probing.

� Secondary clustering: caused by the fact that all keys

mapped to the same position have the same probe

sequence.

Lemma 22

Let Q be the method of quadratic probing for resolving

collisions:

Q+ ≈ 1+ ln
� 1

1−α
�
− α

2

Q− ≈ 1
1−α + ln

� 1
1−α

�
−α

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 227/291

Quadratic Probing

� Not as cache-efficient as Linear Probing.

� Secondary clustering: caused by the fact that all keys

mapped to the same position have the same probe

sequence.

Lemma 22

Let Q be the method of quadratic probing for resolving

collisions:

Q+ ≈ 1+ ln
� 1

1−α
�
− α

2

Q− ≈ 1
1−α + ln

� 1
1−α

�
−α

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 227/291

Double Hashing

� Any probe into the hash-table usually creates a cache-miss.

Lemma 23

Let A be the method of double hashing for resolving collisions:

D+ ≈ 1
α

ln
� 1

1−α
�

D− ≈ 1
1−α

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 228/291

Double Hashing

� Any probe into the hash-table usually creates a cache-miss.

Lemma 23

Let A be the method of double hashing for resolving collisions:

D+ ≈ 1
α

ln
� 1

1−α
�

D− ≈ 1
1−α

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 228/291

Open Addressing

Some values:

α Linear Probing Quadratic Probing Double Hashing

L+ L− Q+ Q− D+ D−

0.5 1.5 2.5 1.44 2.19 1.39 2

0.9 5.5 50.5 2.85 11.40 2.55 10

0.95 10.5 200.5 3.52 22.05 3.15 20

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 229/291

Open Addressing

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

α

#probes

L− Q− D−

L+ Q+ D+

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 230/291

Analysis of Idealized Open Address Hashing

We analyze the time for a search in a very idealized Open

Addressing scheme.

� The probe sequence h(k,0), h(k,1), h(k,2), . . . is equally

likely to be any permutation of �0,1, . . . , n− 1�.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 231/291

Analysis of Idealized Open Address Hashing

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 232/291

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 232/291

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · ·∩Ai−1]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 232/291

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · ·∩Ai−1]

= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·
. . . · Pr[Ai−1 | A1 ∩ · · ·∩Ai−2]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 232/291

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · ·∩Ai−1]

= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·
. . . · Pr[Ai−1 | A1 ∩ · · ·∩Ai−2]

Pr[X ≥ i]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 232/291

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · ·∩Ai−1]

= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·
. . . · Pr[Ai−1 | A1 ∩ · · ·∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 232/291

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · ·∩Ai−1]

= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·
. . . · Pr[Ai−1 | A1 ∩ · · ·∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
�m
n

�i−1

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 232/291

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · ·∩Ai−1]

= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·
. . . · Pr[Ai−1 | A1 ∩ · · ·∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
�m
n

�i−1 = αi−1 .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 232/291

Analysis of Idealized Open Address Hashing

E[X]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 233/291

Analysis of Idealized Open Address Hashing

E[X] =
∞�

i=1

Pr[X ≥ i]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 233/291

Analysis of Idealized Open Address Hashing

E[X] =
∞�

i=1

Pr[X ≥ i] ≤
∞�

i=1

αi−1

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 233/291

Analysis of Idealized Open Address Hashing

E[X] =
∞�

i=1

Pr[X ≥ i] ≤
∞�

i=1

αi−1 =
∞�

i=0

αi

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 233/291

Analysis of Idealized Open Address Hashing

E[X] =
∞�

i=1

Pr[X ≥ i] ≤
∞�

i=1

αi−1 =
∞�

i=0

αi = 1
1−α .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 233/291

Analysis of Idealized Open Address Hashing

E[X] =
∞�

i=1

Pr[X ≥ i] ≤
∞�

i=1

αi−1 =
∞�

i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 233/291

Analysis of Idealized Open Address Hashing

1 2 3 4 5 6 7

i

Pr[X = i] �
i
iPr[X = i] =

�
i
Pr[X ≥ i]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 234/291

Analysis of Idealized Open Address Hashing

i = 1

1 2 3 4 5 6 7

i

Pr[X = i] �
i
iPr[X = i] =

�
i
Pr[X ≥ i]iPr[X = i]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 234/291

Analysis of Idealized Open Address Hashing

i = 2

1 2 3 4 5 6 7

i

Pr[X = i] �
i
iPr[X = i] =

�
i
Pr[X ≥ i]iPr[X = i]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 234/291

Analysis of Idealized Open Address Hashing

i = 3

1 2 3 4 5 6 7

i

Pr[X = i] �
i
iPr[X = i] =

�
i
Pr[X ≥ i]iPr[X = i]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 234/291

Analysis of Idealized Open Address Hashing

i = 4

1 2 3 4 5 6 7

i

Pr[X = i] �
i
iPr[X = i] =

�
i
Pr[X ≥ i]iPr[X = i]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 234/291

Analysis of Idealized Open Address Hashing

i = 1

1 2 3 4 5 6 7

i

Pr[X = i] �
i
iPr[X = i] =

�
i
Pr[X ≥ i]Pr[X ≥ i]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 234/291

Analysis of Idealized Open Address Hashing

i = 2

1 2 3 4 5 6 7

i

Pr[X = i] �
i
iPr[X = i] =

�
i
Pr[X ≥ i]Pr[X ≥ i]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 234/291

Analysis of Idealized Open Address Hashing

i = 3

1 2 3 4 5 6 7

i

Pr[X = i] �
i
iPr[X = i] =

�
i
Pr[X ≥ i]Pr[X ≥ i]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 234/291

Analysis of Idealized Open Address Hashing

i = 4

1 2 3 4 5 6 7

i

Pr[X = i] �
i
iPr[X = i] =

�
i
Pr[X ≥ i]Pr[X ≥ i]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 234/291

Analysis of Idealized Open Address Hashing

1 2 3 4 5 6 7

i

Pr[X = i] �
i
iPr[X = i] =

�
i
Pr[X ≥ i]

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 234/291

Analysis of Idealized Open Address Hashing

1 2 3 4 5 6 7

i

Pr[X = i] �
i
iPr[X = i] =

�
i
Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

7.6 Hashing 29. Nov. 2019

Ernst Mayr, Harald Räcke 234/291

