Efficient Algorithms and Data Structures II

Deadline: July 22, 2019, 10:15 am in the Efficient Algorithms folder.

Homework 1 (5 Points)

In this exercise, we aim to show that MAX-3SAT(29) is NP-hard with a constant gap of ε .

Let 3SAT(k) be the 3SAT problem restricted to instances, in which each variable occurs at most *k* times. Similarly, let MAX-3SAT(k) be the MAX-3SAT problem restricted to instances, where each variable occurs at most *k* times.

- 1. Show that 3SAT(5) is NP-complete.
- 2. A graph *G* is an *expander* if every vertex has the same degree and for any subset $\emptyset \neq S \subset V$, we have

 $\delta(S) > \min\{|S|, |V \setminus S|\}$,

where $\delta(S)$ denotes the set of edges leaving *S*.

It is known that for each *n* larger than some constant N_0 , a 14-regular *n*'-node expander can be constructed efficiently with n' = n(1 + o(1)).

Use an expander to enhance the construction from Part 1 to prove the following theorem: There is a gap preserving reduction from MAX-3SAT to MAX-3SAT(29) that transforms a Boolean formula ϕ to ψ such that

- if $OPT(\phi) = m$, then $OPT(\psi) = m'$, and
- if OPT(φ) < (1 − ε)m, then OPT(ψ) < (1 − ε_b)m', where m and m' are the number of clauses in φ and ψ, resp., and ε_b = ε/43.
- 3. Show that a similar theorem holds for 3SAT-MAX(5).

Homework 2 (5 Points)

Have questions? Send them to the tutor ≥ 48 hours before the tutorial and win amazing prizes!

Tutorial Exercise 1

Prove the following claim: For any MAX-E3SAT formula ϕ , there exists an assignment satisfying at least $\frac{7}{8}m$ clauses. The MAX-E3SAT problem is a variant of MAX-3SAT where each clause of ϕ contains *exactly* 3 distinct variables.

Proof. A random truth assignment to the variables fulfills any clause with probability 7/8, hence the expected number of clauses we can fulfill is 7/8m. The optimal number is larger than the expected one.

Amusez-vous, foutez-vous tout. La vie, entre nous, est si brève. Amusez-vous, comme des fous La vie est si courte après tout. Car l'on est pas ici pour se faire du souci on n'est pas ici bas pour se faire du tracas. - A. Willemetz