Technische Universität München Fakultät für Informatik Lehrstuhl für Algorithmen und Komplexität Prof. Dr. Harald Räcke Richard Stotz

Efficient Algorithms and Data Structures II

Deadline: July 15, 2019, 10:15 am in the Efficient Algorithms folder.

Homework 1 (5 Points)

Suppose there is a polynomial-time approximation algorithm for bin packing with guarantee $OPT(I)+log^2(OPT(I))$, where OPT(I) is the number of bins used by an optimal packing. Show that then there is a fully polynomial approximation scheme for bin packing

Homework 2 (5 Points)

In the maximum directed cut problem, we are given as input a directed graph G = (V, A). Each directed arc $(i, j) \in A$ has nonnegative weight $w_{ij} \ge 0$. The goal is to partition V into two sets U and $W = V \setminus U$ SO as to maximize the total weight of the arcs going from U to W. Give a $\frac{1}{4}$ -approximation algorithm for this problem.

Additional Bonus Question: How can you improve the approximation factor using the ideas by Goemans and Williamson?

Homework 3 (7 Points)

Give a 2-approximation algorithm for the multicut problem in trees. You are given a tree T = (V, E) and k pairs of vertices s_i, t_i , as well as edge costs. The goal is to find a minimum-cost set of edges F such that for all i, s_i and t_i are in different connected components of $(V, E \setminus F)$.

Hint: Construct a (natural) LP and design a primal-dual approximation algorithm.

If the [Unique Games Conjecture] holds then the Goemans-Williamson approximation algorithm [for MAX-CUT] is optimal. Our result indicates that the geometric nature of the Goemans-Williamson algorithm might be intrinsic to the MAX-CUT problem. - S. Khot, G. Kindler, E. Mossel, R. O'Donnell