Technische Universität München Fakultät für Informatik Lehrstuhl für Algorithmen und Komplexität Prof. Dr. Harald Räcke Richard Stotz

Efficient Algorithms and Data Structures II

Deadline: June 17, 2019, 10:15 am in the Efficient Algorithms folder.

Homework 1 (5 Points)

Consider the (very simple) LP:

min. -xs.t. $x + y \leq 1$ $-x \leq 0$ $-y \leq 0$.

- 1. Compute the logarithmic barrier function for the LP, as well as its gradient.
- 2. Compute the analytic center and the trajectory of the central path (using some computer algebra system, e.g. MATHEMATICA.
- 3. Plot the barrier function together with the central path for $t \in (0, 100]$.

Homework 2 (5 Points)

A sufficiently smooth function $f : \mathbb{R} \to \mathbb{R}$ is *self-concordant* if

$$|f'''(x)| \le 2f''(x)^{3/2}$$

An *n*-dimensional function $f : U \to \mathbb{R}$ is *self-concordant* if the function $\tilde{f} : \mathbb{R} \to \mathbb{R}$, $\tilde{f}(t) = f(x + tv)$ is self-concordant for all x in the domain of f and all $v \in \mathbb{R}^n$. Show that any logarithmic barrier function Φ (as defined in the lecture) is self-concordant.

Homework 3 (7 Points)

Recall that any point $x^*(t)$ on the central path yields a dual feasible point $z^*(t)$ with

$$z_i^*(t) = \frac{1}{ts_i(x^*(t))}$$

Now suppose that $x^*(t)$ is only calculated approximately using the Newton Method. In this exercise, we show that we can still obtain a dual feasible point.

Assume that x(t) is strictly feasible, let Δx_{nt} be the Newton step at x(t) and D_x the diagonal matrix of inverse slacks diag (d_x) with $d_x = (1/s_1(x(t)), \dots, 1/s_m(x(t)))^T$. Show that if the Newton decrement $\lambda(x) = ||D_x A \Delta x_{nt}||_2$ is at most 1, then the point

$$z = (d_x + D_x^2 A \Delta x_{\rm nt})/t$$

is dual feasible (i.e. $A^T z + c = 0$ and $z \ge 0$).

1/3

Homework 4 (5 Points)

Let \mathcal{P} be a bounded polyhedron defined by the inequalities $Ax \leq b$. Let $s_i(x)$ denote the *i*th slack function, defined as $b_i - a_i^T x$. Let \hat{x} be the analytic center with respect to the barrier function $\Phi(x)$, as defined in the lecture.

Show that for every point $x \in P^{\circ}$ it holds that

$$\sum_{i=1}^m \frac{s_i(x)}{s_i(\hat{x})} = m \quad .$$

Tutorial Exercise 1

Let \mathcal{P} be a bounded polyhedron defined by the inequalities $Ax \leq b$. Let \hat{x} be the analytic center with respect to the barrier function $\Phi(x)$, as defined in the lecture. The expanded Dikin ellipsoid is

$$\mathcal{E} = \{ y \mid (y - \hat{x})^T H_{\hat{x}} (y - \hat{x}) \le m^2 - m \}$$
.

Show that the polyhedron \mathcal{P} is completely contained in \mathcal{E} . **Hint:** Use the result from Homework 2.

Tutorial Exercise 2

- 1. Given a directed graph G = (V, E), pick a maximum cardinality set of edges from *E* so that the resulting subgraph is acyclic. Find a 1/2-approximation algorithm for this problem.
- 2. A maximal matching is a matching M of a graph G with the property that if any edge not in M is added to M, it is no longer a matching. Pick a minimum cardinality maximal matching.

Find a 2-approximation algorithm for this problem!

Geometry was invented that we might expeditiously avoid, by drawing Lines, the Tediousness of Computation.

- I. Newton