Efficient Algorithms and Data Structures II

Deadline: May 13, 10:15 am in the Efficient Algorithms folder.

Homework 1 (5 Points)

Use the simplex method to describe all the optimal solutions of the following problem

max.	$3x_1$	+	$2x_{2}$	+	$4x_3$								
s.t.	x_1	+	<i>x</i> ₂	+	$2x_3$	+	s_1					=	4
	$2x_1$			+	$3x_3$			+	<i>s</i> ₂			=	5
	$2x_1$	+	<i>x</i> ₂	+	$3x_3$					+	<i>s</i> ₃	=	7
				<i>x</i> ₁ ,	<i>x</i> ₂ , <i>x</i> ₃	, s ₁ ,	s ₂ , s	3				\geq	0.

Homework 2 (5 Points)

Prove the following statements (where + denotes the Minkowski sum).

- (a) X is an affine subspace if and only if $X = \emptyset$ or there is a linear subspace U and $v \in \mathbb{R}^n$ with X = v + U.
- (b) Let *P* be a polyhedron. Any vertex of *P* is an extreme point of *P*.

Homework 3 (5 Points)

An $m \times n$ matrix is *totally unimodular* if the determinant of every square submatrix of A is +1, -1 or 0. It is known that if A is totally unimodular and b is integral, then the vertices of the polyhedron $P = \{x \mid Ax \le b, x \ge 0\}$ are integral.

The following LP-relaxation models the maximum matching problem on a bipartite graph $G = (V_1 \cup V_2, E)$.

- (a) Show that the above LP has a totally unimodular matrix.
- (b) Show that the above LP always has an optimum solution that is 0/1-integral.

Homework 4 (5 Points)

Let $f, g_1, \ldots, g_k, h_1, \ldots, h_\ell : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable functions (that might not be linear). We consider the minimization problem

$$\begin{array}{lll} \min & f(x) \\ \text{s.t.} & g_i(x) &\leq 0 \quad \forall i \in [k] \\ & h_j(x) &= 0 \quad \forall j \in [\ell] \end{array} .$$

The Lagrangian $\mathcal{L}_x : \mathbb{R}^k \times \mathbb{R}^\ell \to \mathbb{R}$ at *x* is defined as

$$\mathcal{L}_x: (\lambda, \nu) \mapsto f(x) + \sum_{i=1}^k \lambda_i g_i(x) + \sum_{j=1}^\ell \nu_j h_j(x)$$

The Lagrangian Dual Problem is the optimization problem

$$\max_{(\lambda,\nu)\in\mathbb{R}^k\times\mathbb{R}^\ell,\lambda\geq 0} \inf_{x\in\mathbb{R}^n} \mathcal{L}_x(\lambda,\nu) \ .$$

Consider the problem of minimizing the function $x^2 + y^2$ s.t. x + y = 2. Find the Lagrangian and the (sufficiently simplified) Lagrangian Dual Problem. Then solve the Lagrangian Dual Problem.

Simplex Sigillum Veri. - A. Schopenhauer