Efficient Algorithms and Data Structures II

Deadline: None, Tutorial exercises only.

Tutorial Exercise 1

A closed convex set is called line-free (geradenfrei) if it does not contain any (straight) line.

- (a) Let *P* be the feasible region of an LP in standard form. Show that *P* is line free.
- (b) Let *P* be the feasible region of an LP in the form $\max c^T x$ s.t. $Ax \le b$ (natural form). Show that *P* might not be line free.
- (c) Show that Theorem 21 does not hold if *P* is in natural form.

Tutorial Exercise 2

Consider the following LP:

max.		$2x_1$	_	$3x_{2}$	+	$3x_3$		
s.t.		x_1	+	<i>x</i> ₂	_	<i>x</i> ₃	\leq	7
	—	x_1	_	<i>x</i> ₂	+	<i>x</i> ₃	\leq	-7
		x_1	_	$2x_{2}$	+	$2x_3$	\leq	4
			x_1, x_2, x_3					0.

- (a) Rewrite the LP in standard form and then in matrix form.
- (b) Give three feasible solutions and their objective value.

(Extra) Solve the LP using the Simplex algorithm shown in the lecture.

Tutorial Exercise 3

Formulate the minimum spanning tree problem on an edge-weighted graph G = (V, E, c) as a integer linear program with |E| variables, one for each edge.

Tutorial Exercise 4

Consider the data set found under http://www14.in.tum.de/lehre/2019SS/ea/ uebung/loesungen/data/ex1-4-data.csv of students in some TUM course. Any student that passed the final exam has PASSED=1 (positive instance), any student that failed the exam has FAILED=-1 (negative instance). We want to determine a hyperplane that separates the students that failed from those that passed.

In order to do so, we want to construct a linear function h such that

$$h(p^i) \ge 1$$

for all positive instances p^i and

$$h(q^i) \leq -1$$

for all negative instances q^i . The *hinge loss* incurred by *h* is the extend to which the above inequalities fail to hold. For a positive instance p^i this is max $\{1 - h(p^i), 0\}$, for a negative instance q^i this is max $\{1 + h(q^i), 0\}$.

The linear function *h* is to be chosen so that the total hinge loss is minimal. In order to do so, we solve the following linear program:

min.
$$\sum_{i} e_{i}$$

s.t. $1 - \left(\sum_{j=1}^{d} a_{j} p_{j}^{i} + b\right) \leq e_{i}$ for every negative instance p^{i}
 $1 + \left(\sum_{j=1}^{d} a_{j} q_{j}^{i} + b\right) \leq e_{i}$ for every negative instance q^{i}
 $e_{i} \geq 0$.

Solve the given linear program using a method of your choice. It is maybe easiest to use Python Pulp https://pythonhosted.org/PuLP/index.html.

The success of solving linear programming therefore depends on a number of factors: (1) the power of computers, (2) extremely clever algorithms; but it depends most of all upon (3) a lot of good luck that the matrices of practical problems will be very very sparse and that their bases, after rearrangement, will be nearly triangular.

- G. B. Dantzig