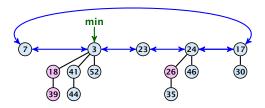
Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.



25. lan. 2019 339/358

Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

x.

Additional implementation details:

whether x is marked or not.

8.3 Fibonacci Heaps

Every node x stores its degree in a field x. degree. Note that this can be updated in constant time when adding a child to

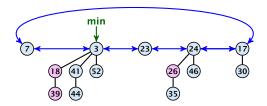
• Every node stores a boolean value x. marked that specifies

25. lan. 2019 340/358

8.3 Fibonacci Heaps

The potential function:

- ightharpoonup t(S) denotes the number of trees in the heap.
- \triangleright m(S) denotes the number of marked nodes.
- We use the potential function $\Phi(S) = t(S) + 2m(S)$.



The potential is $\Phi(S) = 5 + 2 \cdot 3 = 11$.

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

To make this more explicit we use c to denote the amount of work that a unit of potential can pay for.

S. minimum()

- Access through the min-pointer.
- ightharpoonup Actual cost $\mathcal{O}(1)$.
- No change in potential.
- ightharpoonup Amortized cost $\mathcal{O}(1)$.

││∐∐∐∐ Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

25. lan. 2019 343/358

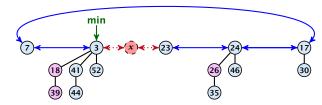
x is inserted next to the min-pointer as

this is our entry point into the root-list.

8.3 Fibonacci Heaps

S. insert(x)

- \triangleright Create a new tree containing x.
- Insert x into the root-list.
- ▶ Update min-pointer, if necessary.



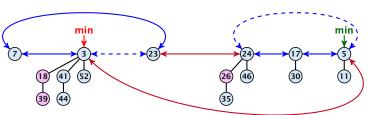
Running time:

- ightharpoonup Actual cost $\mathcal{O}(1)$.
- \triangleright Change in potential is +1.
- ightharpoonup Amortized cost is c + O(1) = O(1).

8.3 Fibonacci Heaps

S. merge(S')

- ► Merge the root lists.
- Adjust the min-pointer



Running time:

- ▶ Actual cost $\mathcal{O}(1)$.
- No change in potential.
- ▶ Hence, amortized cost is $\mathcal{O}(1)$.

Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

25. lan. 2019 344/358

8.3 Fibonacci Heaps

 $D(\min)$ is the number of children of the node that stores the minimum.

• In the figure below the dashed edges are

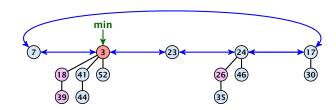
• The minimum of the left heap becomes

the new minimum of the merged heap.

replaced by red edges.

S. delete-min(x)

- Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot \mathcal{O}(1)$.



8.3 Fibonacci Heaps

25. Jan. 2019

345/358

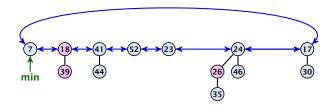
8.3 Fibonacci Heaps

25. Jan. 2019

 $D(\min)$ is the number of children of the node that stores the minimum.

S. delete-min(x)

- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot \mathcal{O}(1)$.



Consolidate root-list so that no roots have the same degree. Time $t \cdot \mathcal{O}(1)$ (see next slide).

TIIII Ernst Mayr, Harald Räcke

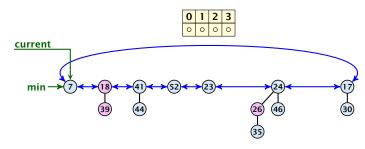
8.3 Fibonacci Heaps

25. Jan. 2019

346/358

8.3 Fibonacci Heaps

Consolidate:



During the consolidation we traverse the root list. Whenever we discover two trees that have the same degree we merge these trees. In order to efficiently check whether two trees have the same degree, we use an array that contains for every degree value d a pointer to a tree left of the current pointer whose root has degree d (if such a tree exist).

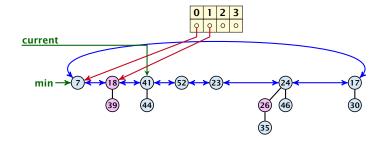
Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

25. Jan. 2019 347/358

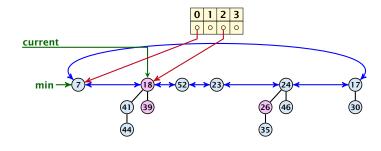
8.3 Fibonacci Heaps

Consolidate:



8.3 Fibonacci Heaps

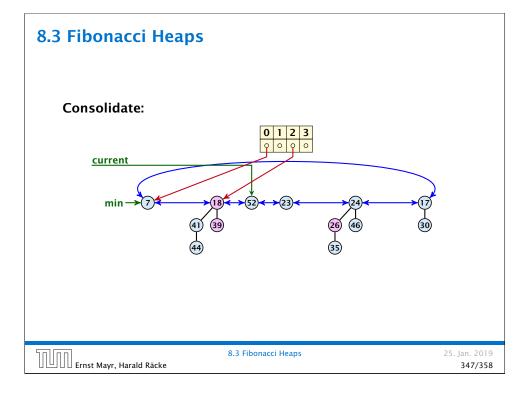
Consolidate:

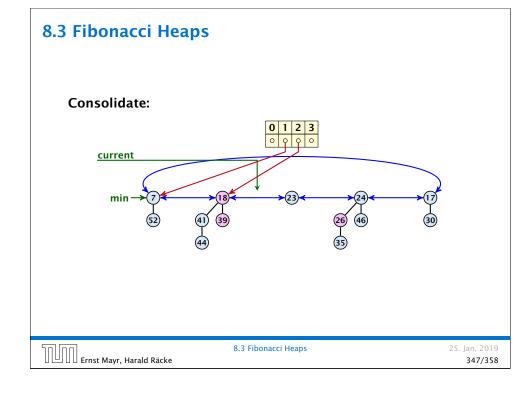


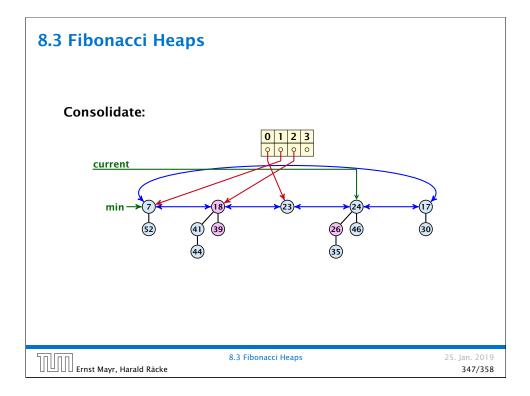
Ernst Mayr, Harald Räcke

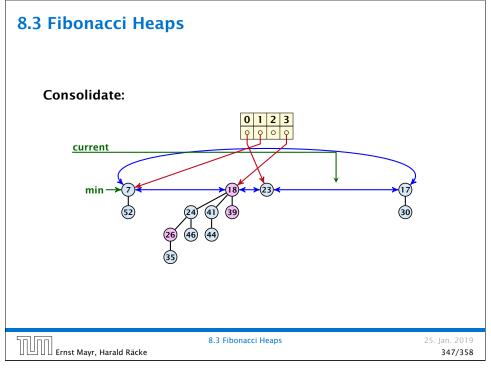
8.3 Fibonacci Heaps

25. Jan. 2019 **347/358**

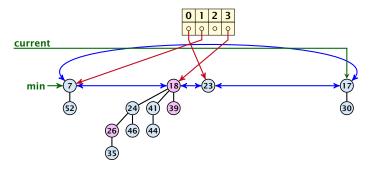








Consolidate:



Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

25. lan. 2019 347/358

8.3 Fibonacci Heaps

t and t' denote the number of trees before and after the delete-min() operation, respectively. ${}^{l}_{i}D_{n}$ is an upper bound on the degree (i.e., number of children) of a tree node.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

- $ightharpoonup t' \leq D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

$$\leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1) \leq \mathcal{O}(D_n)$$

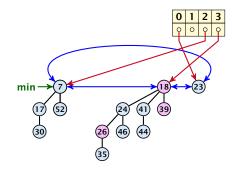
for $c \ge c_1$.

8.3 Fibonacci Heaps

25. lan. 2019 348/358

8.3 Fibonacci Heaps

Consolidate:



Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

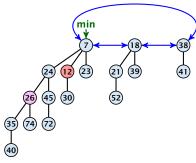
25. lan. 2019 347/358

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then $D_n \leq \log n$.

Fibonacci Heaps: decrease-key(handle h, v)



Case 1: decrease-key does not violate heap-property

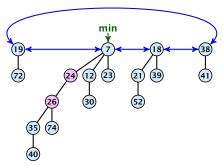
▶ Just decrease the key-value of element referenced by *h*. Nothing else to do.

∐∐∐∐ Ernst Mayr, Harald Räcke

350/358

8.3 Fibonacci Heaps

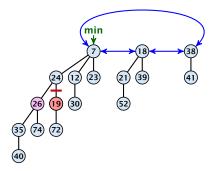
Fibonacci Heaps: decrease-key(handle h, v)



Case 2: heap-property is violated, but parent is not marked

- ightharpoonup Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- \blacktriangleright Mark the (previous) parent of x (unless it's a root).

Fibonacci Heaps: decrease-key(handle h, v)



Case 2: heap-property is violated, but parent is not marked

- \triangleright Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

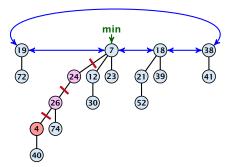
Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

25. Jan. 2019

350/358

Fibonacci Heaps: decrease-key(handle h, v)

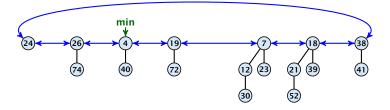


Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element *x* reference by *h*.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

8.3 Fibonacci Heaps || || || || Ernst Mayr, Harald Räcke

Fibonacci Heaps: decrease-key(handle h, v)



Case 3: heap-property is violated, and parent is marked

- \triangleright Decrease key-value of element x reference by h.
- \triangleright Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

8.3 Fibonacci Heaps

25. lan. 2019 350/358

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- ightharpoonup Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1)+c(4-\ell) \leq (c_2-c)\ell+4c+c_2 = \mathcal{O}(1)$$
, m and m' : number of marked nodes before if $c \geq c_2$.

t and t': number of trees before and after operation.

marked nodes before and after operation.

|||||||||| Ernst Mayr, Harald Räcke

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element *x* reference by *h*.
- \triangleright Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Execute the following:

```
p \leftarrow parent[x];
while (p is marked)
      pp \leftarrow parent[p];
```

Marking a node can be viewed as a first step towards becoming a root. The first time x loses a child ! it is marked; the second time it loses a child it is made into a root.

cut of p; make it into a root; unmark it; $p \leftarrow pp$;

if p is unmarked and not a root mark it;

Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

25. lan. 2019

351/358

Delete node

H. delete(x):

- ▶ decrease value of x to $-\infty$.
- delete-min.

Amortized cost: $\mathcal{O}(D_n)$

- \triangleright $\mathcal{O}(1)$ for decrease-key.
- \triangleright $\mathcal{O}(D_n)$ for delete-min.

8.3 Fibonacci Heaps Ernst Mayr, Harald Räcke

25. Jan. 2019 352/358 8.3 Fibonacci Heaps

25. Jan. 2019 353/358

Lemma 1

Let x be a node with degree k and let y_1, \ldots, y_k denote the children of x in the order that they were linked to x. Then

$$degree(y_i) \ge \begin{cases} 0 & if i = 1\\ i - 2 & if i > 1 \end{cases}$$

The marking process is very important for the proof of this lemma. It ensures that a node can have lost at most one child since the last time it became a non-root node. When losing a first child the node gets marked; when losing the second child it is cut from the parent and made into a root.

8.3 Fibonacci Heaps

25. Jan. 2019 354/358

8.3 Fibonacci Heaps

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- \triangleright s_k monotonically increases with k
- $ightharpoonup s_0 = 1 \text{ and } s_1 = 2.$

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(y_i)$$

$$\geq 2 + \sum_{i=2}^k s_{i-2}$$

$$= 2 + \sum_{i=0}^{k-2} s_i$$

8.3 Fibonacci Heaps

Proof

- ▶ When y_i was linked to x, at least $y_1, ..., y_{i-1}$ were already linked to x.
- ▶ Hence, at this time $degree(x) \ge i 1$, and therefore also $degree(y_i) \ge i 1$ as the algorithm links nodes of equal degree only.
- \triangleright Since, then y_i has lost at most one child.
- ▶ Therefore, degree(y_i) ≥ i 2.

8.3 Fibonacci Heaps

25. Jan. 2019 355/358

8.3 Fibonacci Heaps

 $\phi = \frac{1}{2}(1+\sqrt{5})$ denotes the *golden ratio*. Note that $\phi^2 = 1+\phi$.

Definition 2

Consider the following non-standard Fibonacci type sequence:

$$F_k = \begin{cases} 1 & \text{if } k = 0 \\ 2 & \text{if } k = 1 \\ F_{k-1} + F_{k-2} & \text{if } k \ge 2 \end{cases}$$

Facts:

- 1. $F_k \geq \phi^k$.
- **2.** For $k \ge 2$: $F_k = 2 + \sum_{i=0}^{k-2} F_i$.

The above facts can be easily proved by induction. From this it follows that $s_k \ge F_k \ge \phi^k$, which gives that the maximum degree in a Fibonacci heap is logarithmic.

k=0:	$1 = F_0 \ge \Phi^0 = 1$	
	$2 = F_1 \ge \Phi^1 \approx 1.61$	Φ^2
k-2,k-1 → k:	$F_k = F_{k-1} + F_{k-2} \ge \Phi^{k-1} + \Phi^{k-2} = \Phi^{k-1}$	$\Phi^{k-2'}(\Phi+1) = \Phi^k$

k=2:
$$3 = F_2 = 2 + 1 = 2 + F_0$$

k-1 \rightarrow k: $F_k = F_{k-1} + F_{k-2} = 2 + \sum_{i=0}^{k-3} F_i + F_{k-2} = 2 + \sum_{i=0}^{k-2} F_i$

8.3 Fibonacci Heaps 25. Jan. 2019
Ernst Mayr, Harald Räcke 358/358

