We need to find paths efficiently.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

Intuition:

Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- ▶ Maintain scaling parameter Δ .
- ▶ $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- ▶ Maintain scaling parameter Δ .
- ▶ $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .


```
Algorithm 2 maxflow(G, s, t, c)
 1: foreach e \in E do f_e \leftarrow 0;
 2: \Delta \leftarrow 2^{\lceil \log_2 C \rceil}
 3: while \Delta \geq 1 do
 4: G_f(\Delta) \leftarrow \Delta-residual graph
5: while there is augmenting path P in G_f(\Delta) do
6: f \leftarrow \text{augment}(f, c, P)
7: \text{update}(G_f(\Delta))
8: \Delta \leftarrow \Delta/2
 9: return f
```

Assumption:

All capacities are integers between 1 and C.

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

• because of integrality we have $G_f(1) = G_f$

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

Lemma 1

There are $\lceil \log C \rceil + 1$ iterations over Δ .

Proof: obvious.

Lemma 1

There are $\lceil \log C \rceil + 1$ iterations over Δ .

Proof: obvious.

Lemma 2

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $\mathrm{val}(f)+m\Delta$.

Proof: less obvious, but simple:

Lemma 1

There are $\lceil \log C \rceil + 1$ *iterations over* Δ .

Proof: obvious.

Lemma 2

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $\mathrm{val}(f) + m\Delta$.

Proof: less obvious, but simple:

▶ There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.

Lemma 1

There are $\lceil \log C \rceil + 1$ iterations over Δ .

Proof: obvious.

Lemma 2

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $\operatorname{val}(f) + m\Delta$.

Proof: less obvious, but simple:

- ▶ There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
- ▶ In G_f this cut can have capacity at most $m\Delta$.

Lemma 1

There are $\lceil \log C \rceil + 1$ iterations over Δ .

Proof: obvious.

Lemma 2

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $\operatorname{val}(f) + m\Delta$.

Proof: less obvious, but simple:

- ▶ There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
- ▶ In G_f this cut can have capacity at most $m\Delta$.
- This gives me an upper bound on the flow that I can still add.

Lemma 3

There are at most 2m augmentations per scaling-phase.

Lemma 3

There are at most 2m augmentations per scaling-phase.

Proof:

Let *f* be the flow at the end of the previous phase.

Lemma 3

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $ightharpoonup \operatorname{val}(f^*) \le \operatorname{val}(f) + 2m\Delta$

Lemma 3

There are at most 2m augmentations per scaling-phase.

Proof:

- Let f be the flow at the end of the previous phase.
- $ightharpoonup \operatorname{val}(f^*) \le \operatorname{val}(f) + 2m\Delta$
- **Each** augmentation increases flow by Δ .

Lemma 3

There are at most 2m augmentations per scaling-phase.

Proof:

- Let f be the flow at the end of the previous phase.
- $ightharpoonup \operatorname{val}(f^*) \le \operatorname{val}(f) + 2m\Delta$
- **Each** augmentation increases flow by Δ .

Theorem 4

We need $\mathcal{O}(m \log C)$ augmentations. The algorithm can be implemented in time $\mathcal{O}(m^2 \log C)$.