8.2 Binomial Heaps Binomial Trees

By By B> B3 By
@)
Binary Binomial Fibonacci
Operation Heap BST Heap Heap®
build n nlogn nlogn n
minimum 1 logn logn 1

is-empty 1 1 1 1

insert logn logn logn 1 B
delete logn* logn logn logn O
delete-min logn logn logn logn

decrease-key logn logn logn 1 O

merge n nlogn logn 1

m ‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 319/338 Ernst Mayr, Harald Racke 320/338

Binomial Trees Binomial Trees

Properties of Binomial Trees Bo
> By has 2% nodes.

By has height k.

The root of By has degree k.

B
B>

B
By has (’z,) nodes on level £. :

vV v.v Y

Deleting the root of By gives trees By, B1,...,Br_1. Ba

Deleting the root of Bs leaves sub-trees B4, B3, B2, B1, and By.

m 8.2 Binomial Heaps m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 321/338 Ernst Mayr, Harald Racke 322/338




Binomial Trees

By
B3
B>
B;

Bo

Deleting the leaf furthest from the root (in Bs) leaves a path that
connects the roots of sub-trees By, B3, B>, B, and By.

m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 323/338

Binomial Trees

By

Bi-1

go ©od o dOo O

gé g gég e

The number of nodes on level £ in tree By is therefore

(e () - ()

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 324/338

Binomial Trees

The binomial tree By is a sub-graph of the hypercube Hy.

The parent of a node with label by, ..., b; is obtained by setting
the least significant 1-bit to 0.

The £-th level contains nodes that have £ 1’s in their label.

m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 325/338

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

v

The children of a node are arranged in a circular linked list.
A child-pointer points to an arbitrary node within the list.

A parent-pointer points to the parent node.

Pointers x.left and x.right point to the left and right sibling
of x (if x does not have siblings then x.left = x.right = x).

vV vy

parent
left X right
child
> >() >
a '\I_J/ > >(d

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 326/338




8.2 Binomial Heaps

> Given a pointer to a node x we can splice out the sub-tree
rooted at x in constant time.

» We can add a child-tree T to a node x in constant time if we
are given a pointer to x and a pointer to the root of T.

Binomial Heap

In a binomial heap the keys are arranged in a collection of
binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For
example the above heap contains trees By, By, and Bj.

m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 327/338

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 328/338

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we
can deduce the binomial trees that will be contained in the
collection.

Let Bk, , Bk,, Bk;, ki < ki+1 denote the binomial trees in the
collection and recall that every tree may be contained at most
once.

Then n = 3; 2k must hold. But since the k; are all distinct this
means that the k; define the non-zero bit-positions in the binary
representation of n.

Binomial Heap

Properties of a heap with n keys:
» Letn = bibg_1,...,bo denote binary representation of n.
» The heap contains tree B; iff b; = 1.
Hence, at most [logn] + 1 trees.
The minimum must be contained in one of the roots.
The height of the largest tree is at most [logn].
The trees are stored in a single-linked list; ordered by
dimension/size.

v vyyvyy

m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 329/338

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 330/338




Binomial Heap: Merge OO
9 @ G
The merge-operation is instrumental for binomial heaps. @
14
A merge is easy if we have two heaps with :',\]o'te' that we do not just do a
different binomial trees. We can simply concatenation as we want to |
. , keep the trees in the list 1
merge the tree-lists. i sorted according to size. |
Otherwise, we cannot do this because the merged heap is not < @
allowed to contain two trees of the same order. (5 @ B 6 @
(9 @ @2
Merging two trees of the same size: Add © @9
the tree with larger root-value as a child to
9 & @ — -
the other tree. T & 2 ﬁf‘
F t the techni i I @2 Yee ¢
or more trees the technique is analogous
. > g @ @ ©
to binary addition.
@)
m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 331/338
8.2 Binomial Heaps 8.2 Binomial Heaps
S1. merge(S>): All other operations can be reduced to merge().

> Analogous to binary addition.
» Time is proportional to the number of trees in both heaps.
» Time: O(logn).

S. insert(x):
> Create a new heap S’ that contains just the element x.
> Execute S.merge(S’).
» Time: O(logn).

m 8.2 Binomial Heaps m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 333/338 Ernst Mayr, Harald Racke 334/338




8.2 Binomial Heaps

S. minimum ():
» Find the minimum key-value among all roots.

> Time: O(logn).

8.2 Binomial Heaps

S. delete-min():

>

>

>

Find the minimum key-value among all roots.

Remove the corresponding tree T, from the heap.

Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just
O(logn) trees).

Compute S.merge(S’).

Time: O(logn).

m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 335/338

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 336/338

8.2 Binomial Heaps

S. decrease-key(handle h):
> Decrease the key of the element pointed to by h.
> Bubble the element up in the tree until the heap property is
fulfilled.
» Time: O(logn) since the trees have height O(logn).

8.2 Binomial Heaps

S. delete(handle h):
> Execute S.decrease-key(h, —o).

> Execute S.delete-min().

» Time: O(logn).

m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 337/338

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 338/338




	Binomial Heaps

