18 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment
> Input: undirected, bipartite graph G = L U R, E.
» an edge e = (£,r) has weight w, > 0

» find a matching of maximum weight, where the weight of a
matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):
» assume that [L| = [R| =n

» assume that there is an edge between every pair of nodes
L, r)yeVxV

> can assume goal is to construct maximum weight perfect
matching
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Weighted Bipartite Matching

Theorem 1 (Halls Theorem)

A bipartite graph G = (L U R, E) has a perfect matching if and
only if for all sets S < L, |T'(S)| > |S|, whereT'(S) denotes the set
of nodes in R that have a neighbour in S.
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Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L]|.

> Let S denote a minimum cutand let Ls & L N S and
Rs ¥ R N S denote the portion of S inside L and R,
respectively.

> Clearly, all neighbours of nodes in Lg have to be in S, as
otherwise we would cut an edge of infinite capacity.

> This gives Rg > |T'(Ls)]|.

The size of the cutis |L| — |Lg| + |Rs].

> Using the fact that [T'(Ls)| > Ls gives that this is at least |L|.

v
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Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, x, € R
denote the weight of node v.

> Suppose that the node weights dominate the edge-weights
in the following sense:

Xy + Xy = w, for every edge e = (u,v).

> Let H(X) denote the subgraph of G that only contains
edges that are tight w.r.t. the node weighting X, i.e. edges
e = (u,v) for which w, = xy + xy.

> Try to compute a perfect matching in the subgraph H(x). If
you are successful you found an optimal matching.
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Algorithm Outline

Reason:

> The weight of your matching M* is

> W = D, (u+xy) =D xy

(u,v)yeM* (u,v)eM* v

> Any other perfect matching M (in G, not necessarily in
H(x)) has

Z W) = Z (Xu+Xv)=ny.

(u,v)eM (u,v)eM v
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Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S < L,
with |[I'(S)| < |S|, where I" denotes the neighbourhood w.r.t. the
subgraph H(X).

Idea: reweight such that:
> the total weight assigned to nodes decreases

> the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an
optimal solution (we analyze the running time later).
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Changing Node Weights

Increase node-weights in I'(S) by +6, and decrease the
node-weights in S by —§.

> Total node-weight decreases.
» Only edges from Sto R —T'(S)

decrease in their weight. +0

> Since, none of these edges is
tight (otw. the edge would be
contained in H(X), and hence

would go between S and I'(S5)) 0
we can do this decrement for
small enough 6 > 0 until a new
edge gets tight.
L R

r'eSs)
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Weighted Bipartite Matching

Edges not drawn have weight 0.

Analysis

How many iterations do we need?

» One reweighting step increases the number of edges out of
S by at least one.

> Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

» This matching is still contained in the new graph, because
all its edges either go between I'(S) and S or between L — S
and R —T'(S).

» Hence, reweighting does not decrease the size of a
maximum matching in the tight sub-graph.
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Analysis

> We will show that after at most n reweighting steps the size
of the maximum matching can be increased by finding an
augmenting path.

» This gives a polynomial running time.
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How to find an augmenting path?

Construct an alternating tree.
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Analysis

How do we find S$?

> Start on the left and compute an alternating tree, starting at
any free node u.

> If this construction stops, there is no perfect matching in
the tight subgraph (because for a perfect matching we need
to find an augmenting path starting at u).

> The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

> All odd vertices are matched to even vertices. Furthermore,
the even vertices additionally contain the free vertex u.
Hence, |Vodd! = IT (Veven)| < |Veven!|, and all odd vertices are
saturated in the current matching.
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Analysis

» The current matching does not have any edges from Vqq to
L\ Veyen (edges that may possibly be deleted by changing
weights).

> After changing weights, there is at least one more edge
connecting Veven to a node outside of Vqq. After at most n
reweights we can do an augmentation.

> A reweighting can be trivially performed in time O(n?)
(keeping track of the tight edges).

> An augmentation takes at most O(n) time.

> In total we obtain a running time of O (n?).

» A more careful implementation of the algorithm obtains a
running time of O(n3).
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