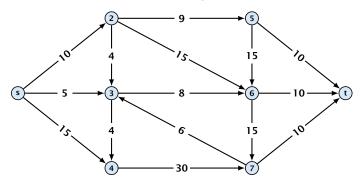
10 Introduction

Flow Network

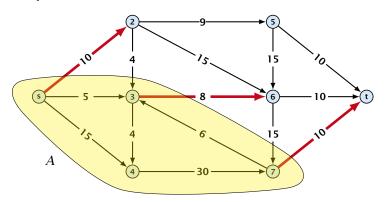
- directed graph G = (V, E); edge capacities c(e)
- two special nodes: source s; target t;
- ▶ no edges entering *s* or leaving *t*;
- at least for now: no parallel edges;



25. lan. 2019 390/399

Cuts

Example 3



The capacity of the cut is $cap(A, V \setminus A) = 28$.

Cuts

Definition 1

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \setminus A$.

Definition 2

The capacity of a cut A is defined as

$$\operatorname{cap}(A, V \setminus A) := \sum_{e \in \operatorname{out}(A)} c(e) ,$$

where $\operatorname{out}(A)$ denotes the set of edges of the form $A \times V \setminus A$ (i.e. edges leaving A).

10 Introduction

Minimum Cut Problem: Find an (s, t)-cut with minimum capacity.

25. Jan. 2019 391/399

Flows

Definition 4

An (s,t)-flow is a function $f: E \mapsto \mathbb{R}^+$ that satisfies

1. For each edge *e*

$$0 \le f(e) \le c(e)$$
.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{e \in \text{out}(v)} f(e) = \sum_{e \in \text{into}(v)} f(e) \ .$$

(flow conservation constraints)

Flows

Definition 5

The value of an (s, t)-flow f is defined as

$$val(f) = \sum_{e \in out(s)} f(e)$$
.

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

10 Introduction

25. Jan. 2019

394/399

Flows

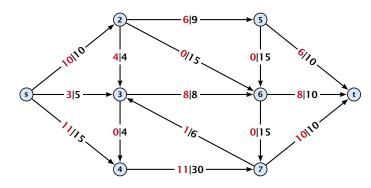
Lemma 7 (Flow value lemma)

Let f be a flow, and let $A \subseteq V$ be an (s,t)-cut. Then the net-flow across the cut is equal to the amount of flow leaving s, i.e.,

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$$
.

Flows

Example 6



The value of the flow is val(f) = 24.

Ernst Mayr, Harald Räcke

10 Introduction

25. Jan. 2019

395/399

Proof.

$$val(f) = \sum_{e \in out(s)} f(e)$$

$$= \sum_{e \in out(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in out(v)} f(e) - \sum_{e \in in(v)} f(e) \right)$$

$$= \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$

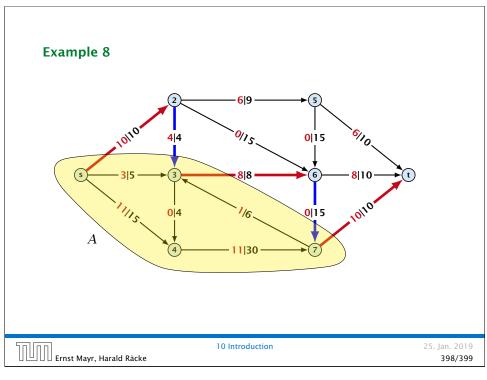
The last equality holds since every edge with both end-points in A contributes negatively as well as positively to the sum in Line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering A.

10 Introduction

25. Jan. 2019 396/399

10 Introduction Ernst Mayr, Harald Räcke

25. lan. 2019 397/399



Corollary 9

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

$$val(f) = cap(A, V \setminus A).$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f^{\prime} with larger value. Then

$$cap(A, V \setminus A) < val(f')$$

$$= \sum_{e \in out(A)} f'(e) - \sum_{e \in into(A)} f'(e)$$

$$\leq \sum_{e \in out(A)} f'(e)$$

$$\leq cap(A, V \setminus A)$$

Ernst Mayr, Harald Räcke

10 Introduction

25. Jan. 2019

399/399

