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We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

> We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

> An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to
more precise results as the computational model is already
quite a distance from reality.

> A linear speed-up (i.e., by a constant factor) is always
possible by e.g. implementing the algorithm on a faster
machine.

» Running time should be expressed by simple functions.
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Asymptotic Notation

Formal Definition

Let f denote functions from N to R™.

> O(f) ={gl3c>03ngeNgVn=ngp: [gn) <c- f(n)l}
(set of functions that asymptotically grow not faster than f)
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Formal Definition
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> O(f) ={gl3c>03angeNgVn=ng: [gn) <c- f(n)l}
(set of functions that asymptotically grow not faster than f)

> Q(f) ={gl3c>03angeNgVn=ng: [gn) =c- f(n)l}
(set of functions that asymptotically grow not slower than f)

> Of) =Q(f)nof)
(functions that asymptotically have the same growth as f)

> o(f) ={glVe>03ngeNgVn=ng: [gln) <c-f(n)]}
(set of functions that asymptotically grow slower than f)

> w(f)={g|Vc>03IngeNyVn=np: [gn) =c- f(n)l}
(set of functions that asymptotically grow faster than f)
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Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from Ny
to R;.

gn)
f(n)

> geO(f): Os}tilrolo < o
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functions).
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3. People write e.g. h(n) = f(n) + o(g(n)) when they mean
that there exists a function z: N - R*,n — z(n),z € o(g)
such that h(n) = f(n) + z(n).

4. People write O(f(n)) = O(g(n)), when they mean
O(f(n)) € O(g(n)). Again this is not an equality.



Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +3n+1=2n%+0(n)
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Asymptotic Notation in Equations

How do we interpret an expression like:

2n° +3n+1=2n°+0(n)
Here, ®(n) stands for an anonymous function in the set ©(n)
that makes the expression true.

Note that ®(n) is on the right hand side, otw. this interpretation
is wrong.
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Asymptotic Notation in Equations

How do we interpret an expression like:
2n® +0(n) = 0(n?)

Regardless of how we choose the anonymous function
f(n) € O(n) there is an anonymous function g(n) € ©(n?)
that makes the expression true.
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Asymptotic Notation in Equations

How do we interpret an expression like:
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Asymptotic Notation in Equations

How do we interpret an expression like:

> 03) =0(n?)
i=1

Careful!

“It is understood” that every occurence of an @-symbol (or
0,Q, 0, w) on the left represents one anonymous function.

Hence, the left side is not equal to

O(l)+0R2)+---+0(n-1)+0B(n)
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Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as
generating a set:
n’-0(n) + O(logn)

represents

{fiN=R" | f(n) =n?-g(n) +h(n)
with g(n) € 0(n) and h(n) € O(logn)}
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Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as
containement btw. two sets:

n’-0m) +0logn) = O(n?)

represents

n?-0m) +0logn) < O(n?)
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Asymptotic Notation

Lemma 1
Let f,g be functions with the property
dng > 0Vn = ng: f(n) > 0 (the same for g). Then

> c- f(n) € O(f(n)) for any constant c
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dng > 0Vn = ng: f(n) > 0 (the same for g). Then

> c- f(n) € O(f(n)) for any constant c

> O(f(n)) +0(g(n)) =0(f(n) +g(n))

> O(f(n)-0(gn)) =0(f(n) -gn))
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Asymptotic Notation

Lemma 1
Let f,g be functions with the property
dng > 0Vn = ng: f(n) > 0 (the same for g). Then

> c- f(n) € O(f(n)) for any constant c

> O(f(n)) +0(g(n)) =0(f(n) +g(n))
O(f(n)) -0(gn)) =0(f(n)-gn))

> O(f(n)) + O(g(n)) = Omax{f(n),gn)})

The expressions also hold for Q). Note that this means that
f(n) + gn) € O(max{f(n),gn)}).

v
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Asymptotic Notation

Comments

» Do not use asymptotic notation within induction proofs.
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Comments
» Do not use asymptotic notation within induction proofs.
» For any constants a, b we have log, n = ©(log, n).
Therefore, we will usually ignore the base of a logarithm
within asymptotic notation.
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Asymptotic Notation

Comments

» Do not use asymptotic notation within induction proofs.

» For any constants a, b we have log, n = ©(log, n).
Therefore, we will usually ignore the base of a logarithm
within asymptotic notation.

> In general logn = log, n, i.e., we use 2 as the default base
for the logarithm.
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Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:
> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely
theoretical worst-case bound), then the algorithm that has
better asymptotic running time will always outperform a
weaker algorithm for large enough values of n.
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Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:
> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely
theoretical worst-case bound), then the algorithm that has
better asymptotic running time will always outperform a
weaker algorithm for large enough values of n.
» However, suppose that | have two algorithms:
» Algorithm A. Running time f(n) = 1000logn = O(logn).
> Algorithm B. Running time g(n) = log® n.
Clearly f = 0(g). However, as long as logn < 1000
Algorithm B will be more efficient.
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