Part V

Matchings

m Ernst Mayr, Harald Racke 505/565

Matching
» Input: undirected graph G = (V,E).

» M c E is a matching if each node appears in at most one
edge in M.

» Maximum Matching: find a matching of maximum
cardinality

16 Bipartite Matching via Flows

Which flow algorithm to use?
» Generic augmenting path: O(mval(f*)) = O(mn).
> Capacity scaling: ©(m?2logC) = O(m?).
> Shortest augmenting path: @ (mn?).

For unit capacity simple graphs shortest augmenting path can be
implemented in time O (m/n).

m 16 Bipartite Matching via Flows
Ernst Mayr, Harald Racke 507/565

17 Augmenting Paths for Matchings

Definitions.

» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

> An alternating path is called an augmenting path for
matching M if it ends at distinct free vertices.

Theorem 1
A matching M is a maximum matching if and only if there is no
augmenting path w.r.t. M.

‘m 17 Augmenting Paths for Matchings
Ernst Mayr, Harald Racke 508/565

Augmenting Paths in Action

(1)

XN

N

Augmenting Paths in Action

m 17 Augmenting Paths for Matchings
Ernst Mayr, Harald Racke 509/565

‘m 17 Augmenting Paths for Matchings
Ernst Mayr, Harald Racke 509/565

17 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because
we could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ @ M (i.e., only edges
that are in either M or M’ but not in both).

Each vertex can be incident to at most two edges (one from
M and one from M’). Hence, the connected components are
alternating cycles or alternating path.

As |M’'| > |[M| there is one connected component that is a
path P for which both endpoints are incident to edges from
M’'. P is an alternating path.

17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching
using this path. When you arrive at a matching for which no
augmenting path exists you have a maximum matching.

Theorem 2
Let G be a graph, M a matching in G, and let u be a free vertex
w.r.t. M. Further let P denote an augmenting path w.r.t. M and
let M' = M & P denote the matching resulting from augmenting
M with P. If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M'.

: The above theorem allows for an easier implementation of an augment-

1ing path algorithm. Once we checked for augmenting paths starting:
i from u we don’t have to check for such paths in future rounds.

m 17 Augmenting Paths for Matchings
Ernst Mayr, Harald Racke 510/565

m 17 Augmenting Paths for Matchings
Ernst Mayr, Harald Racke 511/565

17 Augmenting Paths for Matchings

Proof

» Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

> If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (4).

> Let u’ be the first node on P’ that
isin P, and let e be the matching
edge from M’ incident to u'.

> u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’
from u to u’ with Py.

> P o P, is augmenting path in M (#). "~: i

17 Augmenting Paths for Matchings

m Ernst Mayr, Harald Racke

How to find an augmenting path?

Construct an alternating tree.

~ even nodes
U
odd nodes

contained in T

/ Case 1:
@< Y 7y is free vertex not
@, u\\ @,

you found
alternating path

o
[\

17 Augmenting Paths for Matchings

ﬂﬂm Ernst Mayr, Harald Racke

512/565
How to find an augmenting path?
Construct an alternating tree.
O O O even nodes
odd nodes
O O
/ Case 2:
o, N Y N Q| Y is matched vertex
U J O .
\ not in T; then
mate[y] ¢ T
O O
grow the tree
E //O @.'
~—_ O—0
O O
m 17 Augmenting Paths for Matchings
Ernst Mayr, Harald Racke 514/565

513/565
How to find an augmenting path?
Construct an alternating tree.
e I O even nodes
Y Y
/O odd nodes
O O
/ Case 3:
”) Y] N Q| Y is already contained
(S Y
< .\J\\ in T as an odd vertex
\C?. O ignore successor y
\.\/ //O .®
oo
O O
‘m 17 Augmenting Paths for Matchings
Ernst Mayr, Harald Racke 515/565

How to find an augmenting path?

Construct an alternating tree.

) (O | even nodes
)
odd nodes
/ Case 4:
) Y O is already contained
'.\ in T as an even vertex
*
*
*
*
"«.’ O can’t ignore y
.....
= (*) | does not happen in
@< bipartite graphs
B ®
m 17 Augmenting Paths for Matchings
Ernst Mayr, Harald Racke 516/565

T
:The lecture

Algorithm 24 BiMatch(G, match) i slides containa
1: for x € V do mate[x] < O; 1 step by step E
2: v < 0; free — n; !
3: while free>1andr <n do graph G = (SU S', E)

4: r—r+1

5: if mate[r] =0 then S=1{1,...,n}
6: for i =1 to n do parent[i'] — 0 S’ ={1,....,n'}
7 Q < 0; Q.append(r); aug — false;

8: while aug = false and Q # ® do

9: x — Q.dequeue();

10: for y € A, do

11: if mate[y] =0 then

12: augm(mate, parent, y);

13: aug - true;

14: free — free —1;

15: else

16: if parent[y] =0 then

17: parent[y] — x;

18: Q.enqueue(mate[y]);

18 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment
» Input: undirected, bipartite graph G = L UR,E.
» an edge e = (£,7) has weight w, > 0

» find a matching of maximum weight, where the weight of a
matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):
> assume that [L| = |R| =n

» assume that there is an edge between every pair of nodes

L, r) evxV
> can assume goal is to construct maximum weight perfect
matching
m 18 Weighted Bipartite Matching
Ernst Mayr, Harald Racke 518/565

Weighted Bipartite Matching

Theorem 3 (Halls Theorem)

A bipartite graph G = (L U R, E) has a perfect matching if and
only if for all sets S < L, |[T'(S)| = |S|, whereI'(S) denotes the set
of nodes in R that have a neighbour in S.

‘m 18 Weighted Bipartite Matching
Ernst Mayr, Harald Racke 519/565

18 Weighted Bipartite Matching

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L]|.
> Let S denote a minimum cut and let Lg & L. N S and
Rs ¥ R N S denote the portion of S inside L and R,
respectively.
> Clearly, all neighbours of nodes in Lg have to be in S, as
otherwise we would cut an edge of infinite capacity.
> This gives Rg > [T'(Ls)]|.
The size of the cutis |L| — |Lg| + |Rs].
> Using the fact that [T'(Ls)| > Ls gives that this is at least |L|.

v

‘m 18 Weighted Bipartite Matching
Ernst Mayr, Harald Racke 521/565

Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, x, € R
denote the weight of node v.

> Suppose that the node weights dominate the edge-weights
in the following sense:

Xy + Xy = w, for every edge e = (u,v).

> Let H(X) denote the subgraph of G that only contains
edges that are tight w.r.t. the node weighting X, i.e. edges
e = (u,v) for which w, = xy + xp.

» Try to compute a perfect matching in the subgraph H(xX). If
you are successful you found an optimal matching.

Algorithm Outline

Reason:

> The weight of your matching M* is

> W = D, (Xu+xy) =D Xy

(u,v)yeM* (u,v)eM* v

» Any other perfect matching M (in G, not necessarily in

m 18 Weighted Bipartite Matching
Ernst Mayr, Harald Racke 522/565

H (X)) has
S wuw = D (Xutxy) =D Xy .
(u,v)eM (u,v)eM v
‘m 18 Weighted Bipartite Matching
Ernst Mayr, Harald Racke 523/565

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that thereisaset S < L,
with |[T'(S)| < |S], where I" denotes the neighbourhood w.r.t. the
subgraph H(X).

Idea: reweight such that:
> the total weight assigned to nodes decreases

> the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an
optimal solution (we analyze the running time later).

18 Weighted Bipartite Matching

m Ernst Mayr, Harald Racke

524/565

Changing Node Weights

Increase node-weights in I'(S) by +6, and decrease the
node-weights in S by —§.

> Total node-weight decreases.

» Only edges from Sto R —T'(S)
decrease in their weight. +0|I(S)

> Since, none of these edges is
tight (otw. the edge would be
contained in H(X), and hence

would go between S and I'(S5)) 0
we can do this decrement for
small enough 6 > 0 until a new
edge gets tight.
L R

18 Weighted Bipartite Matching

‘m Ernst Mayr, Harald Racke 525/565

Weighted Bipartite Matching

Edges not drawn have weight 0.

18 Weighted Bipartite Matching

m Ernst Mayr, Harald Racke

526/565

Analysis

How many iterations do we need?

» One reweighting step increases the number of edges out of
S by at least one.

> Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

» This matching is still contained in the new graph, because
all its edges either go between I'(S) and S or between L — S
and R —T'(S).

> Hence, reweighting does not decrease the size of a
maximum matching in the tight sub-graph.

18 Weighted Bipartite Matching

lm Ernst Mayr, Harald Racke 527/565

Analysis

> We will show that after at most n reweighting steps the size
of the maximum matching can be increased by finding an
augmenting path.

> This gives a polynomial running time.

m 18 Weighted Bipartite Matching
Ernst Mayr, Harald Racke 528/565

How to find an augmenting path?

Construct an alternating tree.

()
O O
r\//
Y u\\ O
O
~—
‘m 18 Weighted Bipartite Matching
Ernst Mayr, Harald Racke 529/565

Analysis

How do we find S?

> Start on the left and compute an alternating tree, starting at
any free node u.

> If this construction stops, there is no perfect matching in
the tight subgraph (because for a perfect matching we need
to find an augmenting path starting at u).

> The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

> All odd vertices are matched to even vertices. Furthermore,
the even vertices additionally contain the free vertex u.
Hence, |Vodd|l = T (Veven)| < |Veven!, and all odd vertices are
saturated in the current matching.

m 18 Weighted Bipartite Matching
Ernst Mayr, Harald Racke 530/565

Analysis

» The current matching does not have any edges from Vyqq to
L\ Veyen (edges that may possibly be deleted by changing
weights).

> After changing weights, there is at least one more edge
connecting Veyen to a node outside of Vqq. After at most n
reweights we can do an augmentation.

> A reweighting can be trivially performed in time O(n?)
(keeping track of the tight edges).

> An augmentation takes at most O(n) time.
> In total we obtain a running time of O (n*).

» A more careful implementation of the algorithm obtains a
running time of O (n?).

‘m 18 Weighted Bipartite Matching
Ernst Mayr, Harald Racke 531/565

How to find an augmenting path?

Construct an alternating tree.

~ even nodes
U
odd nodes

Case 4:
v is already contained

\ in T as an even vertex

0 ¢
(ON

can’t ignore y

Thecyclew « y —x - w
is called a blossom.

w is called the base of the
blossom (even node!!!).
The path u-w is called the
stem of the blossom.

Flowers and Blossoms

Definition 4
A flower in a graph G = (V, E) w.r.t. a matching M and a (free)
root node 7, is a subgraph with two components:

> A stem is an even length alternating path that starts at the
root node ¥ and terminates at some node w. We permit the
possibility that ¥ = w (empty stem).

» A blossom is an odd length alternating cycle that starts and
terminates at the terminal node w of a stem and has no
other node in common with the stem. w is called the base
of the blossom.

‘m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 533/565

m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 532/565
Flowers and Blossoms
(2) o)
—(D)——C
(o) ()
—O—O—C
e\ () (2)
O—@O—0—O—=¢
m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 534/565

Flowers and Blossoms

Properties:
1. A stem spans 2 + 1 nodes and contains £ matched edges
for some integer £ > 0.

2. A blossom spans 2k + 1 nodes and contains k matched
edges for some integer k > 1. The matched edges match all
nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of
an alternating tree starting at 7).

‘m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 535/565

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable
from the root (or from the base of the blossom) through two
distinct alternating paths; one with even and one with odd
length.

5. The even alternating path to x terminates with a matched
edge and the odd path with an unmatched edge.

Flowers and Blossoms

m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 536/565

D) (2)
O—@—0—0O—=¢
‘m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 537/565

Shrinking Blossoms

When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.

> Delete all vertices in B (and its incident edges) from G.

» Add a new (pseudo-)vertex b. The new vertex b is
connected to all vertices in V' \ B that had at least one edge
to a vertex from B.

Shrinking Blossoms

> Edges of T that connect a node u
not in B to a node in B become
tree edges in T’ connecting u to
b.

» Matching edges (there is at most
one) that connect a node u not in
B to a node in B become
matching edges in M’.

> Nodes that are connected in G to
at least one node in B become
connected to b in G'.

m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 538/565

‘m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 539/565

Shrinking Blossoms

» Edges of T that connect a node u
not in B to a node in B become
tree edges in T’ connecting u to
b.

» Matching edges (there is at most
one) that connect a node u not in
B to a node in B become
matching edges in M’.

» Nodes that are connected in G to
at least one node in B become
connected to b in G'.

m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke

539/565

i Animation of Blossom Shrinking |

: algorithm is only available in the

r lecture version of the slides. |

Example: Blossom Algorithm

‘m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 540/565

Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be
the root, B the blossom, and w the base. Let graph G’ = G/B

with pseudonode b. Let M’ be the matching in the contracted

graph.

Lemma 5

If G’ contains an augmenting path P’ starting at v (or the
pseudo-node containing v) w.r.t. the matching M' then G
contains an augmenting path starting at v w.r.t. matching M.

m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke

541/565

Correctness

Proof.
If P" does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

> Next suppose that the stem is non-empty.

@ © ® P3@

‘m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 542/565

Correctness

> After the expansion £ must be incident to some node in the
blossom. Let this node be k.

» If k # w there is an alternating path P> from w to k that
ends in a matching edge.

> Ppo(i,w) o P>o (k,¥) o P3is an alternating path.

» If k = w then Py o (i,w) o (w,¥) o P3 is an alternating path.

m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 543/565

Correctness
Proof.

Case 2: empty stem

> If the stem is empty then after expanding the blossom,
w=r.

» The path v o P> o (k,) o P3 is an alternating path.

‘m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 544/565

Correctness

Lemma 6

If G contains an augmenting path P from v to q w.r.t. matching
M then G’ contains an augmenting path from v (or the
pseudo-node containing v) to q w.r.t. M'.

m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 545/565

Correctness

Proof.

» If P does not contain a node from B there is nothing to
prove.

» We can assume that v and g are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.

P is of the form Py o (i, j) o P2, for some node j and (i, j) is
unmatched.

(b, j) o P> is an augmenting path in the contracted network.

‘m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 546/565

Correctness

lllustration for Case 1:

O O O
% oy
() (D))
% %

m Ernst Mayr, Harald Racke

19 Maximum Matching in General Graphs
547/565

Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because v and
w are root and base of a blossom. Define M, = M & P3.

In M, v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M. have same cardinality.

This path must go between w and q as these are the only
unmatched vertices w.r.t. M.

For M, the blossom has an empty stem. Case 1 applies.

G’ has an augmenting path w.r.t. M. It must also have an
augmenting path w.r.t. M’, as both matchings have the same
cardinality.

This path must go between » and q.

T

1 The lecture

I a q

1 slides contain a

Algorithm 25 search(r, found) | explanation.

 step by step

1: set A(i) — A(i) for all nodes i

2: found — false

3: unlabel all nodes;

4: give an even label to v and initialize list — {r}
5: while list + 0 do

6 delete a node i from list

7 examine (i, found)

8 if found = true then return

Search for an augmenting path

starting at 7.

| The lecture :
Algorithm 26 examine (i, found) ' slides contain a E
- — i step by step)
1: forall j € A(i) do ! explanation. !
2 if j is even then contract(i, j) and return =~~~ "~~~ """~
3 if j is unmatched then
4 a-7J
5 pred(q) - 1
6: found — true;
7 return
8 if j is matched and unlabeled then
9 pred(j) «
10 pred(mate(j)) < j;
11 add mate(j) to list

Examine the neighbours of a node i

Algorithm 27 contract(i, j)

. trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxcpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B
delete nodes in B from the graph

o v A W N~

Get all nodes of the blossom.

Time: O(m)

m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke

551/565

Algorithm 27 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set A(b) — UxecpA(x)
3: label b even and add to list
4: update A(j) — A(j) U {b} for each j € A(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
Contract blossom identified by
nodes i and j
m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 551/565
Algorithm 27 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set A(b) < UyxepA(x)
3: label b even and add to list
4: update A(j) — A(j) U {b} for each j € A(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
Identify all neighbours of b.
Time: O(m) (how?)
m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 551/565

Algorithm 27 contract(i, j)

trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxepA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)
form a circular double linked list of nodes in B
delete nodes in B from the graph

(o) IV, B U0 i N

b will be an even node, and it has
unexamined neighbours.

m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke

551/565

Algorithm 27 contract(i, j)

trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxcpA(x)

label b even and add to list

update A(j) — A(j) U {b} for each j € A(b)

form a circular double linked list of nodes in B

o vl A~ W N =

delete nodes in B from the graph

Only for making a blossom
expansion easier.

m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke

551/565

Algorithm 27 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set A(b) — UxecpA(x)
3: label b even and add to list
4: update A(j) — A(j) U {b} for each j € A(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
Every node that was adjacent to a node
in B is now adjacent to b
m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 551/565
Algorithm 27 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set A(b) — UxepA(x)
3: label b even and add to list
4: update A(j) — A(j) U {b} for each j € A(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
Only delete links from nodes not in B to B.
When expanding the blossom again we can
recreate these links in time O(m).
m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 551/565

Analysis

> A contraction operation can be performed in time O (m).

Note, that any graph created will have at most m edges.

The time between two contraction-operation is basically a
BFS/DFS on a graph. Hence takes time O (m).

There are at most n contractions as each contraction
reduces the number of vertices.

The expansion can trivially be done in the same time as
needed for all contractions.

An augmentation requires time O(n). There are at most n
of them.

In total the running time is at most

n-(O(mn) + On)) = O(mn?) .

m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke

552/565

i Animation of Blossom Shrinking |

: algorithm is only available in the |

i lecture version of the slides. |

Example: Blossom Algorithm

m 19 Maximum Matching in General Graphs
Ernst Mayr, Harald Racke 553/565

A Fast Matching Algorithm

Algorithm 28 Bimatch-Hopcroft-Karp(G)

" M<0

2: repeat

3 let P = {Py,...,Px} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.
5: M~M&PLU---UPy)

6: until 7 =0

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

‘m 20 The Hopcroft-Karp Algorithm
Ernst Mayr, Harald Racke 554/565

Analysis Hopcroft-Karp

Lemma 7
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

> Similar to the proof that a matching is optimal iff it does not
contain an augmenting path.

> Consider the graph G = (V,M @ M*), and mark edges in
this graph blue if they are in M and red if they are in M*.

» The connected components of G are cycles and paths.

> The graph contains k ¢ |M*| — |[M| more red edges than
blue edges.

> Hence, there are at least k components that form a path
starting and ending with a red edge. These are augmenting
paths w.r.t. M.

m 20 The Hopcroft-Karp Algorithm
Ernst Mayr, Harald Racke 555/565

Analysis Hopcroft-Karp

> Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

» M “M@PiuU---UP,)=MoP, ®---Pg.
> Let P be an augmenting path in M.

Lemma 8
Theset A2 Mo (M ©P)=(PyU---UPy) &P contains at least
(k +1)¥ edges.

m 20 The Hopcroft-Karp Algorithm
Ernst Mayr, Harald Racke 556/565

Analysis Hopcroft-Karp

Proof.

> The set describes exactly the symmetric difference between
matchings M and M’ @ P.

> Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as |[M’| = |M| + k + 1.

> Each of these paths is of length at least £.

m 20 The Hopcroft-Karp Algorithm
Ernst Mayr, Harald Racke 557/565

Analysis Hopcroft-Karp

Lemma 9

P is of length at least { + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.
> If P does not intersect any of the Py,..., Py, this follows
from the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {P1,...,Py}.

» This edge is not contained in A.
» Hence, |A| < k{ + |P| — 1.

» The lower bound on |A| gives (k + 1)f < |A| < k€ + |P| -1,
and hence |P| =¥ + 1.

‘m 20 The Hopcroft-Karp Algorithm
Ernst Mayr, Harald Racke 558/565

Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has £ edges
then the cardinality of the maximum matching is of size at most
V]
Proof.
The symmetric difference between M and M* contains
[M*| — |M| vertex-disjoint augmenting paths. Each of these
paths contains at least £ + 1 vertices. Hence, there can be at
V]

most ;¢ of them.

m 20 The Hopcroft-Karp Algorithm
Ernst Mayr, Harald Racke 559/565

Analysis Hopcroft-Karp

Lemma 10
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

Proof.
> After iteration [/[V|] the length of a shortest augmenting
path must be at least [/|V]] +1 = /|V].

» Hence, there can be at most |V|/(+/|V]| + 1) < +/|V]
additional augmentations.

'm 20 The Hopcroft-Karp Algorithm
Ernst Mayr, Harald Racke 560/565

Analysis Hopcroft-Karp

Lemma 11
One phase of the Hopcroft-Karp algorithm can be implemented
in time O(m).

construct a “level graph” G':

> construct Level 0 that includes all free vertices on left side L
construct Level 1 containing all neighbors of Level 0
construct Level 2 containing matching neighbors of Level 1

construct Level 3 containing all neighbors of Level 2

vV v.v. v Vv

stop when a level (apart from Level 0) contains a free vertex
can be done in time O(m) by a modified BFS

m 20 The Hopcroft-Karp Algorithm
Ernst Mayr, Harald Racke 561/565

Analysis Hopcroft-Karp

> a shortest augmenting path must go from Level 0 to the last
layer constructed

> it can only use edges between layers

> construct a maximal set of vertex disjoint augmenting path
connecting the layers

» for this, go forward until you either reach a free vertex or
you reach a “dead end” v

> if you reach a free vertex delete the augmenting path and
all incident edges from the graph

» if you reach a dead end backtrack and delete v together
with its incident edges

‘m 20 The Hopcroft-Karp Algorithm
Ernst Mayr, Harald Racke 562/565

Analysis Hopcroft-Karp

Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is @ (mn)
» a search (successful or unsuccessful) takes time O (n)

> a search deletes at least one edge from the level graph

there are at most n phases

Time: O(mn?).

'm 20 The Hopcroft-Karp Algorithm
Ernst Mayr, Harald Racke 564/565

Analysis for Unit-capacity Simple Networks

cost for searches during a phase is @ (m)

> an edge/vertex is traversed at most twice

need at most @ (/n) phases

» after ./n phases there is a cut of size at most \/n in the
residual graph

> hence at most /n additional augmentations required

Time: O(mn).

m 20 The Hopcroft-Karp Algorithm
Ernst Mayr, Harald Racke 565/565

	Matchings
	Definition
	Bipartite Matching via Flows
	Augmenting Paths for Matchings
	Weighted Bipartite Matching
	Maximum Matching in General Graphs
	The Hopcroft-Karp Algorithm

