Part V

Matchings

Ernst Mayr, Harald Räcke

28. Jan. 2019 **505/565**

16 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- ► Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.
- ▶ Shortest augmenting path: $O(mn^2)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m\sqrt{n})$.

Matching

- Input: undirected graph G = (V, E).
- ► $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

17 Augmenting Paths for Matchings

Definitions.

- ► Given a matching *M* in a graph *G*, a vertex that is not incident to any edge of *M* is called a free vertex w.r..t. *M*.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- ► An alternating path is called an augmenting path for matching *M* if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path $w.r.t.\ M$.

16 Bipartite Matching via Flows

28. Jan. 2019 **507/565** 28. Jan. 2019 508/565

Augmenting Paths in Action

∐∐∐ Ernst Mayr, Harald Räcke

17 Augmenting Paths for Matchings

509/565

Augmenting Paths in Action

Ernst Mayr, Harald Räcke

17 Augmenting Paths for Matchings

509/565

17 Augmenting Paths for Matchings

Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path *P* for which both endpoints are incident to edges from M'. P is an alternating path.

17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in Mthen there is no augmenting path starting at u in M'.

The above theorem allows for an easier implementation of an augmenting path algorithm. Once we checked for augmenting paths starting from u we don't have to check for such paths in future rounds.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- ▶ If P' and P are node-disjoint, P' is also augmenting path w.r.t. $M(\mathcal{I})$.
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- $\triangleright u'$ splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P'from u to u' with P'_1 .
- ▶ $P_1 \circ P_1'$ is augmenting path in M (\$).

17 Augmenting Paths for Matchings

512/565

28. lan. 2019

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 1: ν is free vertex not contained in T

you found alternating path

Ernst Mayr, Harald Räcke

17 Augmenting Paths for Matchings

28. lan. 2019 513/565

How to find an augmenting path?

Construct an alternating tree.

17 Augmenting Paths for Matchings

grow the tree

28. lan. 2019

514/565

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 3:

y is already contained in T as an odd vertex

ignore successor γ

17 Augmenting Paths for Matchings

28. Jan. 2019 515/565

||||||||| | Ernst Mayr, Harald Räcke

Ernst Mayr, Harald Räcke

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4:

 ν is already contained in T as an even vertex

can't ignore γ

does not happen in bipartite graphs

Ernst Mayr, Harald Räcke

17 Augmenting Paths for Matchings

28. lan. 2019 516/565

18 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

- ▶ Input: undirected, bipartite graph $G = L \cup R$, E.
- ▶ an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- ightharpoonup assume that |L| = |R| = n
- assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$
- can assume goal is to construct maximum weight perfect matching

Algorithm 24 BiMatch(*G*, *match*) 1: **for** $x \in V$ **do** $mate[x] \leftarrow 0$; 2: $r \leftarrow 0$; free $\leftarrow n$; 3: while $free \ge 1$ and r < n do $r \leftarrow r + 1$ if mate[r] = 0 then **for** i = 1 **to** n **do** $parent[i'] \leftarrow 0$ 6: 7: $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false; while aug = false and $O \neq \emptyset$ do 8: 9: $x \leftarrow Q$. dequeue(); 10: for $y \in A_X$ do if mate[v] = 0 then 11: 12: augm(mate, parent, y);13: *aug* ← true; 14: $free \leftarrow free - 1$; 15: else

The lecture slides contain a step by step

```
graph G = (S \cup S', E)
    S = \{1, ..., n\}
  S' = \{1', \dots, n'\}
```

Weighted Bipartite Matching

16:

17:

18:

Theorem 3 (Halls Theorem)

A bipartite graph $G = (L \cup R, E)$ has a perfect matching if and only if for all sets $S \subseteq L$, $|\Gamma(S)| \ge |S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

if parent[y] = 0 then

 $parent[y] \leftarrow x$; Q. enqueue(mate[y]);

28. lan. 2019

518/565

18 Weighted Bipartite Matching

Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \in \mathbb{R}$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

$$x_u + x_v \ge w_e$$
 for every edge $e = (u, v)$.

- Let $H(\vec{x})$ denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e = (u, v) for which $w_e = x_u + x_v$.
- ► Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Halls Theorem

Proof:

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \not \equiv L \cap S$ and $R_S \not \equiv R \cap S$ denote the portion of S inside L and R, respectively.
 - ▶ Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ► This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - ▶ Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

18 Weighted Bipartite Matching

28. Jan. 2019

521/565

Algorithm Outline

Reason:

▶ The weight of your matching M^* is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v \ .$$

Any other perfect matching M (in G, not necessarily in $H(\vec{x})$) has

$$\sum_{(u,v)\in M} w_{(u,v)} \le \sum_{(u,v)\in M} (x_u + x_v) = \sum_{v} x_v .$$

Algorithm Outline

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- ▶ the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

| | | | | | | | | | Ernst Mayr, Harald Räcke

| oxdot igcup igcu

18 Weighted Bipartite Matching

28. lan. 2019

524/565

Edges not drawn have weight 0.

Weighted Bipartite Matching

Changing Node Weights

Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- ► Total node-weight decreases.
- ▶ Only edges from S to $R \Gamma(S)$ decrease in their weight.
- ► Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between S and $\Gamma(S)$ we can do this decrement for small enough $\delta > 0$ until a new edge gets tight.

Ernst Mayr, Harald Räcke

18 Weighted Bipartite Matching

28. lan. 2019 525/565

Analysis

How many iterations do we need?

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in S (we will show that we can always find S and a matching such that this holds).
- This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L-Sand $R - \Gamma(S)$.
- ▶ Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

28. Jan. 2019

526/565

Analysis

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

18 Weighted Bipartite Matching

28. Jan. 2019 528/565

How to find an augmenting path?

Construct an alternating tree.

Ernst Mayr, Harald Räcke

18 Weighted Bipartite Matching

28. Jan. 2019

529/565

Analysis

How do we find *S*?

- ► Start on the left and compute an alternating tree, starting at any free node *u*.
- ▶ If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- ► The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- ▶ All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex u. Hence, $|V_{\rm odd}| = |\Gamma(V_{\rm even})| < |V_{\rm even}|$, and all odd vertices are saturated in the current matching.

Analysis

- ▶ The current matching does not have any edges from $V_{\rm odd}$ to $L \setminus V_{\rm even}$ (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting $V_{\rm even}$ to a node outside of $V_{\rm odd}$. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- ▶ An augmentation takes at most O(n) time.
- In total we obtain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

28. lan. 2019

530/565

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4:

y is already contained in T as an even vertex

can't ignore γ

The cycle $w \leftrightarrow y - x \leftrightarrow w$ is called a blossom. w is called the base of the blossom (even node!!!). The path u-w is called the stem of the blossom.

| | ∐ ∐ ∐ Ernst Mayr, Harald Räcke

19 Maximum Matching in General Graphs

28. lan. 2019 532/565

Flowers and Blossoms

Definition 4

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node γ , is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

19 Maximum Matching in General Graphs

28. Jan. 2019 533/565

Flowers and Blossoms

Flowers and Blossoms

Properties:

- 1. A stem spans $2\ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
- **2.** A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- 3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

Flowers and Blossoms

Properties:

- **4.** Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

IIIII Ernst Mayr, Harald Räcke

19 Maximum Matching in General Graphs

28. lan. 2019 536/565

Flowers and Blossoms

19 Maximum Matching in General Graphs

28. lan. 2019 537/565

Ernst Mayr, Harald Räcke

Shrinking Blossoms

- \triangleright Edges of T that connect a node unot in B to a node in B become tree edges in T' connecting u to b.
- ► Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- ▶ Nodes that are connected in *G* to at least one node in B become connected to b in G'.

Shrinking Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by G' = G/B, which is obtained from G by contracting the blossom B.

- ▶ Delete all vertices in *B* (and its incident edges) from *G*.
- \triangleright Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in $V \setminus B$ that had at least one edge to a vertex from B.

Shrinking Blossoms

- \triangleright Edges of T that connect a node unot in B to a node in B become tree edges in T' connecting u to b.
- ► Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- ▶ Nodes that are connected in *G* to at least one node in B become connected to b in G'.

 $||\underline{||}||$ Ernst Mayr, Harald Räcke

19 Maximum Matching in General Graphs

28. lan. 2019 539/565

Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.

Ernst Mayr, Harald Räcke

19 Maximum Matching in General Graphs

28. lan. 2019 540/565

28. Jan. 2019

542/565

Correctness

Assume that in G we have a flower w.r.t. matching M. Let γ be the root, B the blossom, and w the base. Let graph G' = G/Bwith pseudonode b. Let M' be the matching in the contracted graph.

Lemma 5

If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then Gcontains an augmenting path starting at r w.r.t. matching M.

Correctness

Proof.

Ernst Mayr, Harald Räcke

If P' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.

19 Maximum Matching in General Graphs

Correctness

- \blacktriangleright After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- ▶ If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- ▶ $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- ▶ If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

| | | | | | | | Ernst Mayr, Harald Räcke

19 Maximum Matching in General Graphs

28. lan. 2019 543/565

Correctness

Lemma 6

If G contains an augmenting path P from r to g w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

Correctness

Proof.

Case 2: empty stem

If the stem is empty then after expanding the blossom, w = r.

▶ The path $r \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.

Ernst Mayr, Harald Räcke

19 Maximum Matching in General Graphs

28. lan. 2019

544/565

Correctness

Proof.

- ▶ If *P* does not contain a node from *B* there is nothing to prove.
- \blacktriangleright We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Ernst Mayr, Harald Räcke

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i, j) \circ P_2$, for some node j and (i, j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

Correctness

Illustration for Case 1:

Ernst Mayr, Harald Räcke

19 Maximum Matching in General Graphs

28. Jan. 2019 547/565

The lecture

step by step

explanation.

slides contain a

Algorithm 25 search(r, found)

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* ← false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize $list \leftarrow \{r\}$
- 5: while $list \neq \emptyset$ do
- 6: delete a node i from list
- 7: examine(*i*, *found*)
- 8: **if** *found* = true **then return**

Search for an augmenting path starting at r.

Correctness

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , γ is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{\pm} .

For M'_{+} the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

This path must go between r and q.

```
The lecture
                                                           slides contain a
Algorithm 26 examine(i, found)
                                                           step by step
1: for all j \in \bar{A}(i) do
                                                          explanation.
        if j is even then contract(i, j) and return
        if i is unmatched then
3:
             q \leftarrow j;
4:
5:
             pred(q) \leftarrow i;
             found ← true;
6:
7:
             return
        if j is matched and unlabeled then
8:
             pred(j) \leftarrow i;
9:
             pred(mate(j)) \leftarrow j;
10:
             add mate(j) to list
11:
```

Examine the neighbours of a node i

Algorithm 27 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Contract blossom identified by nodes i and j

Ernst Mayr, Harald Räcke

19 Maximum Matching in General Graphs

28. lan. 2019 551/565

Algorithm 27 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Identify all neighbours of b.

Time: $\mathcal{O}(m)$ (how?)

Algorithm 27 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Get all nodes of the blossom.

Time: $\mathcal{O}(m)$

19 Maximum Matching in General Graphs

28. Jan. 2019 551/565

Ernst Mayr, Harald Räcke

Algorithm 27 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph

b will be an even node, and it has unexamined neighbours.

Algorithm 27 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Every node that was adjacent to a node in *B* is now adjacent to *b*

19 Maximum Matching in General Graphs

28. lan. 2019

🖳 🖺 Ernst Mayr, Harald Räcke

551/565

Algorithm 27 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Only delete links from nodes not in B to B.

When expanding the blossom again we can recreate these links in time $\mathcal{O}(m)$.

Algorithm 27 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Only for making a blossom expansion easier.

Ernst Mayr, Harald Räcke

19 Maximum Matching in General Graphs

28 Jan 2019

551/565

Analysis

Ernst Mayr, Harald Räcke

- \blacktriangleright A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- ▶ The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- ▶ There are at most *n* contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

$$n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2)$$
.

Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.

|| | | | | | | | Ernst Mayr, Harald Räcke

19 Maximum Matching in General Graphs

28. lan. 2019 553/565

Analysis Hopcroft-Karp

Lemma 7

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- ▶ Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- ▶ Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ▶ The connected components of *G* are cycles and paths.
- ▶ The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- ▶ Hence, there are at least *k* components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.

A Fast Matching Algorithm

Algorithm 28 Bimatch-Hopcroft-Karp(*G*)

1: *M* ← Ø

2: repeat

let $\mathcal{P} = \{P_1, \dots, P_k\}$ be maximal set of

vertex-disjoint, shortest augmenting path w.r.t. M.

 $M \leftarrow M \oplus (P_1 \cup \cdots \cup P_k)$

6: until $\mathcal{P} = \emptyset$

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

20 The Hopcroft-Karp Algorithm

28. Jan. 2019 554/565

Analysis Hopcroft-Karp

- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_{\nu}) = M \oplus P_1 \oplus \cdots \oplus P_{\nu}.$
- \blacktriangleright Let P be an augmenting path in M'.

Lemma 8

Ernst Mayr, Harald Räcke

The set $A \stackrel{\text{def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

Analysis Hopcroft-Karp

Proof.

- ▶ The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- \blacktriangleright Hence, the set contains at least k+1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- \blacktriangleright Each of these paths is of length at least ℓ .

||||||||| Ernst Mayr, Harald Räcke

20 The Hopcroft-Karp Algorithm

28. lan. 2019 557/565

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Analysis Hopcroft-Karp

Lemma 9

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- ▶ If P does not intersect any of the $P_1, ..., P_k$, this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- ▶ Otherwise, at least one edge from *P* coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- ► Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

20 The Hopcroft-Karp Algorithm

28. Jan. 2019

558/565

Analysis Hopcroft-Karp

Analysis Hopcroft-Karp

Lemma 10

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- After iteration $|\sqrt{|V|}|$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- ▶ Hence, there can be at most $|V|/(\sqrt{|V|}+1) \le \sqrt{|V|}$ additional augmentations.

Analysis Hopcroft-Karp

Lemma 11

One phase of the Hopcroft-Karp algorithm can be implemented in time O(m).

construct a "level graph" G':

- construct Level 0 that includes all free vertices on left side L
- construct Level 1 containing all neighbors of Level 0
- construct Level 2 containing matching neighbors of Level 1
- construct Level 3 containing all neighbors of Level 2
- stop when a level (apart from Level 0) contains a free vertex can be done in time $\mathcal{O}(m)$ by a modified BFS

20 The Hopcroft-Karp Algorithm

28. lan. 2019 561/565

Analysis Hopcroft-Karp

See lecture versions of the slides.

Analysis Hopcroft-Karp

- ▶ a shortest augmenting path must go from Level 0 to the last layer constructed
- it can only use edges between layers
- construct a maximal set of vertex disjoint augmenting path connecting the layers
- for this, go forward until you either reach a free vertex or you reach a "dead end" v
- if you reach a free vertex delete the augmenting path and all incident edges from the graph
- \blacktriangleright if you reach a dead end backtrack and delete v together with its incident edges

20 The Hopcroft-Karp Algorithm

562/565

Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is O(mn)

- ightharpoonup a search (successful or unsuccessful) takes time O(n)
- a search deletes at least one edge from the level graph

there are at most n phases

Time: $\mathcal{O}(mn^2)$.

20 The Hopcroft-Karp Algorithm

28. Jan. 2019 564/565

Analysis for Unit-capacity Simple Networks			
cost for searches during a phase is $\mathcal{O}(m)$			
an edge/vertex is traversed at most twice			
need at most $\mathcal{O}(\sqrt{n})$ phases			
• after \sqrt{n} phases there is a cut of size at most \sqrt{n} in the residual graph			
$ ightharpoonup$ hence at most \sqrt{n} additional augmentations required			
Time: $\mathcal{O}(m\sqrt{n})$.			
20 The Hopcroft-Karp Algorithm Ernst Mayr, Harald Räcke	28. Jan. 2019 565/565		
	303,303	L	