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1. Maximum flow problem

10

5

10

5

5

5

9

9

3

3

3

8 8

5

15

12

4

4

4
2

2

7

s

t

© S. Albers



3

Maximum flow problem

N = (V,E,c) directed network

G = (V,E) directed graph, c: E  ℝ+ edge capacities

s,t  V source s, sink t

Feasible (s,t)-flow:        f: E  ℝ0
+

 

   

a)  0 ( ) ( )       Capacity constraints

b)     \ ,    Flow conservation

      edges into       ( ) edges out of 

e in(v) e out(v)

f e c e e E

f(e) f(e) v V s t

in(v) v out v v

 

   

  

 

 
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Example
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Forward / backward edges

W.l.o.g. graph G has no pair of forward / backward edges.
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Value of a flow

Let f be a feasible flow. Then its value is:

The max-flow problem:

Compute a feasible flow of maximum value.

( ) ( )

( ) ( ) ( )
e out s e in s

V f f e f e
 

  
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2. Cuts

Definition: An (s,t)-cut is a partition S,T of V, i.e. V = S  T,               

S  T =  ,  such that s  S, t T.

Capacity of a cut: 

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Flows and cuts

Lemma 1: Let f be a feasible flow and (S,T) be an (s,t)-cut. 

There holds

Proof:

( ) ( , ).V f C S T

( ) ( )

( ) ( )

( ) ( )

( )

( )    ( ) ( )

( ) ( )

( ) ( )

( )

( , )

e out s e in s

v S e out v e in v

e E S T e E T S

e E S T

V f f e f e

f e f e

f e f e

c e

C S T
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Flows and cuts

Theorem 1: Let f be a flow of maximum value and (S,T) be an (s,t)-

cut of minimum capacity. There holds

( ) ( , ).V f C S T
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3. Algorithmic idea

Augmenting paths: Find paths along which the flow can be increased.
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Augmenting paths
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Augmenting paths
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4. Residual network

Residual network RN for a given feasible flow f:

E1 = { (v,w) : (v,w) = e  E and f(e) < c(e)}

E2 = { (w,v) : (v,w) = e  E and f(e) > 0}

For e = (v,w)  E use e1 for (v,w)  E1 (if it exists)

e2 for (w,v)  E2 (if it exists)

RN = (V,  E1 E2,  c)

 REEc 21: 1 1 1

2 2 2

( ) ( ) ( )        for 

( ) ( )                  for 

c e c e f e e E

c e f e e E

  

 
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Level network
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Maximum flows

Lemma 2: Sei f be a feasible flow in N and let be the

level network for f.

a)  f is a maximum flow if and only if tV.

b)  Let f be a feasible flow in LN. Then f ´: E  ℝ with

is a feasible flow in N with .

Define f (ei) = 0   for ei 

( , , )LN V E c

)()()()(' 21 efefefef 

.E

( ') ( ) ( )V f V f V f 
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Proof, part b)

Proof: b) Capacity constraints. For any e  E, there holds:

2

1 2

1 2

1

0 ( ) ( )

( ) ( ) ( )

'( )

( ) ( ) ( )

( ) ( )

( )

f e f e

f e f e f e

f e

f e f e f e

f e f e

c e

 

  



  

 



The first inequality holds because .

The last inequality follows because .

2 2( ) ( ) ( )f e c e f e 

1 1( ) ( ) ( ) ( )f e c e c e f e  
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Proof, part b)

For every v V there holds:

   

       

   

( ) ( )

1 2

( ) ( ) ( ) ( )

1 2

( ) ( )

e out v e in v

e out v e in v e out v e in v

e in v e out v

f e f e

f e f e f e f e

f e f e

 
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 

 

 
    

 

 
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 

   

 

Flow conservation: For every v V\{s}, the last expression is equal to 0. 

( ') ( ) ( )V f V f V f Value: For v=s, we obtain .
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Proof, part a)

Then there exists a path P from s to t in LN.

s t

 := min. capacity of any edge in P

Adding f to f, as specified in part b) of the lemma, yields a flow of higher
value. Hence f is not a maximum flow.

a)  " "

Let  .t V





 
 in 

:
0  not in 

e P
f e

e P


 

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Proof, part b)

(E1E2)  (ST) = 

f(e) = c(e)   for e  S T

f(e) = 0       for e  T S

The first equation above was shown in the proof of Lemma 1.

Since V(g)  C(S,T), for every feasible flow g, flow f is a maximum flow. 

   

" "

Let   ,      

There holds ,   .  Hence , is an , cut.

S V T V S

s S t T S T s t



  

  

  

( ) ( ) ( ) ( , )
e E S T e E T S

V f f e f e C S T
     

   
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Max-flow min-cut theorem

Theorem 1: Let N = (V, E, c) be a network and s, t  V.

Vmax = maximum value of a feasible (s,t)-flow

Cmin = minimum capacity of an (s,t)-cut

Vmax = Cmin

Proof: By Lemma 1 there holds Vmax ≤ Cmin. 

Let f be a flow with V(f) = Vmax and let be the layer

network for f.        

Set S = V and T = V – S.  In the proof of Lemma 2 we showed

Using the fact that Vmax ≤ Cmin, it follows that (S,T) is an (s,t)-cut of

minimum capacity. 

  

( ) ( ) ( ) ( , ).
e E S T e E T S

V f f e f e C S T
     

   

( , , )LN V E c
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5. Blocking flows

Definition: A feasible flow f in a level network LN is a blocking flow if 

on every path 

s = v0 v1 v2 ...                vk = t 

from s to t at least one edge is saturated, i.e. f(ei) = c(ei) for at least 

one i.
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Algorithm

1. f(e) := 0 for all e  E;

2. Construct the level network for f;

3. while t  V do

4. Find a blocking flow f in LN;

5. Update f using f  as specified in Lemma 2b);

6. Construct the level network LN for f;

7. endwhile;

How do we find a blocking flow?

How many iterations? 

( , , )LN V E c
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6. Depth of a level network

Definition: The depth of a level network is the value k with t  Vk.

Lemma 3: Let ki be the depth of the level network in the i-th iteration.

There holds ki > ki-1, for i  2.

Proof: Level network in the i-th iteration:  LNi

There exists a path P from s to t of length ki. 

dj = level number of vj in LNi-1, 0  j  ki

dj =  if vj is no node in LNi-1

.....
1ik

e
ik

e
1ikv tv

ik
1e 2e 3e

0vs 
2v1v
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Depth of a level network

Claim:

For every i  2 there holds:

a) If there exists an edge from vj-1 to vj in LNi-1, then dj = dj-1 + 1.

b) If there exists no edge from vj-1 to vj in LNi-1, then dj  dj-1 .

c)  ki-1 < ki

Proof:

a)  Obvious.

WS 2018/19 © S. Albers
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Part b)

b)  Assumption:   dj  dj-1 +1

fi-1 yields LNi-1 fi yields LNi

Case 1. (vj-1,vj)  E: Since dj  dj-1 +1, node vj is not contained in levels

numbered 0 to dj-1 in LNi-1. If there is no edge from vj-1 to vj in LNi-1, 

then (vj-1,vj) is not in the residual network for fi-1. Thus  fi-1(vj-1,vj) = 

c(vj-1, vj) and (vj,vj-1) is in the residual network for fi-1. Since (vj-1,vj) is

an edge in SNi, there holds fi(vj-1,vj) < c(vj-1, vj) = fi-1(vj-1,vj) and flow

along (vj-1,vj) was reduced. It follows that (vj,vj-1)  Ei-1.

Case 2.  (vj, vj-1)  E: There holds fi-1(vj,vj-1) = 0 since otherwise (vj-1,vj) 

would be in the residual network for fi-1 and would be included in

LNi-1, given that dj  dj-1 +1. Moreover, fi(vj,vj-1) > 0 because (vj-1,vj) is

in LNi. Hence flow was increased along (vj,vj-1) and (vj,vj-1)  Ei-1.

In any case (vj, vj-1)  Ei-1. Therefore dj-1 = dj + 1 and dj = dj-1 –1  <  dj-1.

WS 2018/19 © S. Albers
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Part c)

c) Since v0 = s and d0 = 0, parts a) and b) imply dj  j,  for 1  j  ki.

In particular ki-1 = dki
 ki.

We next argue that there exists in edge (vj-1,vj) on the path P in LNi that

does not exist in LNi-1. Suppose on the contrary that all edges of P

exist in LNi-1. The computed blocking flow ҧ𝑓𝑖−1 saturates at least one

edge (vj-1,vj) of P in LNi-1.

If (vj-1,vj)  E, then ҧ𝑓𝑖−1 vj−1,vj = ҧ𝑐𝑖−1 vj−1,vj = 𝑐 vj−1,vj − 𝑓𝑖−1(vj−1,vj). 
Note that the reverse edge (vj,vj-1) is not contained in LNi-1. It follows

that 𝑓𝑖 vj−1,vj = 𝑓𝑖−1 vj−1,vj + ҧ𝑓𝑖−1 vj−1,vj = 𝑐 vj−1,vj and (vj-1,vj) is

not contained in LNi. 

If (vj,vj-1)  E, then ҧ𝑓𝑖−1 vj−1,vj = ҧ𝑐𝑖−1 vj−1,vj = 𝑓𝑖−1(vj,vj−1). Again

(vj,vj-1) is not contained in LNi-1. It follows that 𝑓𝑖 vj,vj−1 =
𝑓𝑖−1 vj,vj−1 − ҧ𝑓𝑖−1 vj−1,vj = 0and (vj-1,vj) is not contained in LNi. 

In both cases we obtain a contradiction. 

WS 2018/19 © S. Albers
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Part c)

Consider path P in LNi. 

Let (vj-1,vj) be the edge not contained in LNi-1.  Part a) and b) imply

dj-1  j-1. Part b) ensures dj  j-1. Again, by parts a) and b), along

each of the remaining ki - j edges of P the level number can increase

by at most 1. 

We conclude ki-1 = dki
 j -1 + ki - j < ki. 

.....
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Number of iterations

Corollary: The number of iterations is  n.
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7. Blocking flows: DFS algorithm

Starting at s, at any node always choose the first outgoing edge until

a) t is reached or b) a dead end v (no outgoing edges) is reached.

a) Determine the minimum capacity  along the path. Increase the flow

by , reduce the capacity by  and delete saturated edges.

b) Go back one node, delete v and its incoming edges.

s t
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Analysis

Let n=|V|   and m=|E|.

Theorem 2: A blocking flow can be computed in time O(nm).

Proof: k = depth of the level network

Construction of a path requires time

O(k +  # traversed edges ending in a dead end).

At most m paths are constructed. Every edge, over all path

constructions, ends only once in a dead end.

Total time: O(km + m) = O(nm)
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Improved algorithm

Work with the level network. Maintain a working copy that is used to

construct a blocking flow. A second copy keeps track of the flow

constructed so far.

Potential of a node v

P* = min {P(v): v  V}

( ) ( )

( ) min ( ), ( )
e out v e in v

P v c e c e
 

 
  

 
 
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Improved algorithm

Choose v with P(v) = P*.  

Push P* flow units from v to higher levels.

Vl-1                            Vl                                        Vl+1                     

t
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Improved algorithm

Level Vh:    Sh  Vh, set containing P* extra flow units

Pull P* flow units into v from lower levels.

Flow increases by P* units.

Simplify the network by deleting saturated edges and nodes with
indegree or outdegree equal to 0 (at least one node is deleted).

   *             supply at node 
hx S

P S x S x x


 
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Pushing flow

Algorithm push(x,S,h);

\\ x is node in level Vh and has a supply of S extra flow units to be pushed

to nodes in level Vh+1.

1.   while S >0 do

2.        Let e = (x,y) be the first outgoing edge at x;

3.  := min{S, ҧ𝑐 𝑒 };

4.       Increase the flow along e by , reduce ҧ𝑐 𝑒 by ,

add y to Sh+1 (in case y is not yet element), increase S[y] by ;

5. S := S - ;

6. if ҧ𝑐 𝑒 = 0 then delete e from the network endif;

7.   endwhile;

8.   Delete x  from Sh and set S[x]:=0;

9.   if out(x) =  and x  t then

10. Add x to the set del;

11.  endif;
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Algorithm computing a blocking flow

1. for all x  V do S[x] := 0; endfor;

2. for all l, 0  l  k,  do Sl := ; endfor;

3.  del  ;

4.  while LN is not empty do

5.       Compute P[v] for all v  V and P* = min {P[v]; v  V};

Let v  Vl be a node with P* = P[v];

6.       S[v]:=P*; Sl:={v};

7. for h:= l to k – 1 do

8. for all x  Sh do push(x,S[x], h); endfor;

9. endfor;

10. S[v]:=P*; Sl:={v}

11. for h:= l downto 1 do

12. for all x  Sh do pull(x,S[x],h) endfor;

13.     endfor;

14.    simplify(del);

15.  endwhile;
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Result

Theorem 3: A blocking flow in a level network can be compute in time

O(n2).

Proof: 1-3: O(n)

Loop 4-15: Executed O(n) times. Each execution takes O(n) if we

ignore push, pull, simplify.

All executions of push / pull take time O(n2 + e): If a push/pull operation

at x (line 4) does not saturate an outgoing/incoming edge e, i.e. ҧ𝑐 𝑒
remains positive, then the operation terminates the current call of

push / pull.

All executions of simplify take time O(n + m).
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Main result

Theorem 4: A maximum flow can be computed in O(n3) time.

Proof: There are at most n iterations. In each one, a level network and

a blocking flow can be computed in time O(n2).
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8. d-bounded networks

Definition: Let d ∈ ℕ. N = (V,E,c) is d-bounded if c(e)  {1,2,...,d} for

all e  E.   

1-bounded networks are called (0,1)-networks.

Application of our flow algorithms to d-bounded networks:

 all computed flows are integral, i.e. f(e)  ℕ0

 the maximum flow is integral
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d-bounded networks

Theorem 5: A blocking flow in a d-bounded network can be computed

in time O(de). For d = 1 we obtain O(e) time.

Proof: DFS algorithm

Time for the construction of a path:

O(# edges on s-t-path +  # traversed edges ending in a dead end)

Each edge is contained in at most d paths.
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Maximum flows in residual networks

Lemma 4: Let N be a network and Vmax be the value of a maximum 

(s,t)-flow. Let RN be the residual network for a flow f and Vmax be the 

value of a maximum (s,t)-flow in RN. There holds

Vmax = Vmax + V(f).

Proof: Let (S,T) be an (s,t)-cut.

C(S,T): capacity of (S,T) in N

C(S,T): capacity of (S,T) in RN

, ,

, ,

( , ) ( , ) ( ( , ) ( , ) ( , ))

( , ) ( , ) ( , )

( , ) ( )

v S w T v S w T

v S w T v S w T

C S T c v w c v w f v w f w v

C S T f v w f w v

C S T V f

   

   

   

 
   

 

 

 

 
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Maximum flows in residual networks

We obtain

Cmin = Cmin - V(f),

where Cmin and Cmin denote the minimum capacities of (s,t)-cuts in N

and RN, respectively. 

Using the max-flow min-cut theorem we conclude

Vmax = Vmax - V(f).
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9. Simple networks

Definition: A network N = (V,E,c) is simple, if indeg(v) = 1

or outdeg(v) = 1, for all v  V\{s,t}.

Theorem 6: Let N = (V,E,c) be a simple (0,1)-network. Then a 

maximum flow can be computed in time O(n1/2m).

WS 2018/19 © S. Albers



48

Residual networks of simple networks

Claim: Let N be a simple (0,1)-network and f be an integral flow in N. 
Then RN is a simple (0,1)-network.

Proof: Sei v  V\{s,t} and indeg(v) = 1 (outdeg(v) = 1 is analogous).

If f(e) = 0 for e  in(v), then f(e´) = 0, for all e´  out(v), and v has
indegree 1 in RN.

If f(e) = 1 for e  in(v), then f(e´) = 1 for exactly one e´  out(v)  and v
has indegree 1 in RN.

Obviously, the edge capacities in RN are either 0 or 1. 

0

e

0
0

0

1

e

1
0

0
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Proof of Theorem 6

Consider our maximum flow algorithm. All intermediate flows are

integral. 

A blocking flow can becomputed in time O(m).

We prove:  # iterations = O(n1/2).

Vmax = value of a maximum (s,t)-flow

Vmax ≤ n1/2: ok

We study the case that Vmax > n1/2. 

Let iteration l be the one increasing the flow value to > Vmax – n1/2.

We show that the level network in iteration l has depth < n1/2+1.

This implies that before iteration l, at most n1/2 +1 iterations were

executed. After iteration l, at most n1/2 iterations can be performed

because the flow value increases by at least 1 in each iteration.

WS 2018/19 © S. Albers



50

Proof of Theorem 6

f : feasible (s,t)-flow immediately before iteration l

RN: residual network for f

By Lemma 4 there exists a flow f in RN with value

Since RN is a simple (0,1)-network, we may assume that f is integral, 

i.e. f(e)  {0,1}.

As RN is simple, at most one flow unit is routed through each

v V\{s,t}.

f consists of at least n1/2 vertex-disjoint paths from s to t.

Hence there exists a path with < n1/2 intermediate nodes.

   1/2 1/2

max max max max .V V V f V V n n     
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10. Matchings in bipartite graphs

G = (V,E) undirected graph

Matching M is an edge set M  E such that no two edges e1, e2  M,  

e1e2 , have a common node.

A maximum matching is a matching of maximum cardinality.

WS 2018/19 © S. Albers



52

Matchings in bipartite graphs

An undirected graph G = (V,E) is bipartite if V = V1V2, for V1,V2  V 

with V1V2 = , and E  V1 V2.
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Matchings in bipartite graphs

Theorem 7: Let G = (V1V2,E), E  V1V2, be a bipartite graph. Then a 

maximum matching can be computed in time O(n1/2m).

Proof: Construct a simple network as follows:

(All capacities are equal to 1.)

s t
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