14 — Network Flow



1. Maximum flow problem TI.ITI
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Maximum flow problem

N = (V,E,c) directed network

G = (V,E) directed graph, c: E > R* edge capacities
steV source s, sinkt

Feasible (s,t)-flow: f.E > R¢

a) 0< f(e)<c(e) VeeE Capacity constraints

b) > fle)= D>, f(e) WveV\{st} Flow conservation

eein(v) eeout(v)

in(v) = {edges intov}  out(v) = {edges out of v}
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Example TI.ITI
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Forward / backward edges TI.ITI

W.l.0.g. graph G has no pair of forward / backward edges.
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Value of a flow TI.ITI

Let f be a feasible flow. Then its value is:

V(i)=Y fe)- > f(e)

ecout(s) ecin(s)

The max-flow problem:

Compute a feasible flow of maximum value.
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2. Cuts TI.ITI

Definition: An (s,t)-cut is a partition S,Tof V, i.e. V=S uUT,
SNT= O, suchthats e S, t eT.

Capacity of a cut: C (S , T) — Z C(e)
ecEN(SxT)
10 10
(s) ()
10 10

WS 2018/19 © S. Albers 7



Flows and cuts TI.ITI

Lemma 1: Let f be a feasible flow and (S,T) be an (s,t)-cut.

There holds V(f)SC(S,T).

Proof:  V(f) = z f(e)-— Z f(e)

eeout(s) ecin(s)

DY DIICEDEICY
veS \ eeout(V) eein(v)

= Y fe)- Y fe)
eeEN(SxT) eeeEN(TxS)

< > c(e)

ecEN(SxT)

=C(S,T)
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Flows and cuts TI.ITI

Theorem 1: Let f be a flow of maximum value and (S,T) be an (s,t)-
cut of minimum capacity. There holds

V(f)=C(S,T).
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3. Algorithmic idea TI.ITI

Augmenting paths: Find paths along which the flow can be increased.
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Augmenting paths TI.ITI
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Augmenting paths TI.ITI
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4. Residual network TI.ITI

Residual network RN for a given feasible flow f:

E,.={(vw):(vw)=e e Eandf(e) <c(e)}
E,={(wVv):(vw)=e e E and f(e) > 0}

Fore = (v,w) € E use e, for (vw) € E; (if it exists)
e, for (w,v) € E, (if it exists)

C:E,UE, > R" c(e,)=c(e)—f(e) fore e E
c(e,)="(e) fore, e E,

RN = (V, E,UE,, ¢
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Example TI.ITI
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Example TI.ITI
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Level network TI.ITI

Vp ={s}
V,={weV -(V,u...0uV,); FveV.:(v,w)eE, UE,} fori>1

V=V

>0

LN :(V,(EluEz)mU(Vi ><Vi+1),5j

1>0
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Example
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Example
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Maximum flows TI.ITI

Lemma 2: Seif be a feasible flow in N and let LN = (V, E,T) be the
level network for f.

a) fis a maximum flow if and only if te V.
b) Let fbe a feasible flow in LN. Then f : E > R with

f'e)=f(e)+ f(e)—f(e,)
is a feasible flow in N with V (f ) =V (f)+V (f).

Definef(e) =0 fore ¢E.
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Example TI.ITI
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Proof, part b) TI.ITI

Proof: b) Capacity constraints. For any e € E, there holds:
0< f(e)- f(e,)
< fe)+Tle)-T(e)
= 1(e)
= f(e)+ f(e)— (&)
< f(e)+f(e)
<c(e)

The first inequality holds because ?(ez) < E(ez) =f(e).
The last inequality follows because ?(el) < E(el) =c(e)— f(e).
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Proof, part b) TI.ITI

For every v €V there holds:

2, fr(e)= 2 f'(e)

ecout(v) ecin(v)
- T e T 104 T Te)r T 7))
ecout(v) ecin(v) ecout(v) ecin(v)
_( > fle)+ 2 ?(ez))
eein(v) eeout(v)

Flow conservation: For every v eV\{s}, the last expression is equal to O.
Value: For v=s, we obtain V (f )=V (f)+V(f).
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Proof, part a) TI.ITI

a) "=
Let teV.

Then there exists a path P from sto tin LN.

€ := min. capacity of any edge in P

?(e)::{g einP

O enotinP

Adding f to f, as specified in part b) of the lemma, yields a flow of higher
value. Hence f is not a maximum flow.
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Proof, part b) TI.ITI

<=

Let S=V, T=V-S

There holdsse S, teT. Hence(S,T)isan(s,t)—cut.
(E,UE,) N (SxT) =Y

f(e) =c(e) fore e SxT
fle)=0 fore e T xS

V(f)= Z f(e)— Z f(e)=C(S,T)

eeEm(SxT) eeEm(TxS)

The first equation above was shown in the proof of Lemma 1.
Since V(g) < C(S,T), for every feasible flow g, flow f is a maximum flow.
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Max-flow min-cut theorem TI.ITI

Theorem 1: Let N =(V, E, c) be a network and s, t € V.
V. ., = maximum value of a feasible (s,t)-flow
C.in = Minimum capacity of an (s,t)-cut

Vi =C

max min

Proof: By Lemma 1 there holds V. =C...

Let f be a flow with V(f) =V, and let LN = (V,E,T) be the layer
network for f.

SetS=Vand T=V-S. Inthe proof of Lemma 2 we showed

V)= Y fe)- Y f(e)=C(S,T).

eeEm(SxT) eeEm(TxS)

Using the fact that V., < C.,,., it follows that (S,T) is an (s,t)-cut of
minimum capacity.
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5. Blocking flows TI.ITI

Definition: A feasible flow f in a level network LN is a blocking flow if
on every path

from s to t at least one edge is saturated, i.e. f(e,) = c(e) for at least
one I.
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Algorithm TI.ITI

.f(e) :=0for all e € E;

. Construct the level network LN = (V, E,t) for f;
.whilet e V do

Find a blocking flow f in LN:

Update f using f as specified in Lemma 2b);
Construct the level network LN for f;

. endwhile;

N o g~ wWN PR

How do we find a blocking flow?
How many iterations?
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6. Depth of a level network TI.ITI

Definition: The depth of a level network is the value k with t € V,.

Lemma 3: Let k; be the depth of the level network in the i-th iteration.
There holds k; >k, ,, fori> 2.

Proof: Level network in the i-th iteration: LN,
There exists a path P from s to t of length k.

el ez es ek

S=Vy — L\, —2—y, —— .. 2Ly, — LV =t

d; = level number of v; in LN;;, 0 <j <k

d; = oo if v;is no node in LN;
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Depth of a level network TI.ITI

Claim:

For every i > 2 there holds:

a) If there exists an edge fromv;; tov; in LN;;, thend, =d,; + 1.
b) If there exists no edge from v;; to v;in LN;;, then d; <d, .

C) ki1 <k

Proof:
a) Obvious.
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Part b) TI.ITI

b) Assumption: d;>d;; +1

f, yields LN, f. yields LN,

Case 1. (v,,v) € E: Since d; > d;; +1, node v; is not contained In levels
numbered O to d; ; In LN;,. If there is no edge from v;; to v; in LN,
then (v;4,v)) Is not in the residual network for f;. Thus f;;(v;;,v;) =
c(vi.1, Vvj) and (v;,v;,) Is in the residual network for f; ;. Since (v, ,,v)) Is
an edge in SN;, there holds fi(v; ;,v)) < c(v;4, V) = fi1(v;1,v)) and flow
along (v;4,v;) was reduced. It follows that (v;,v;,) € E;;.

Case 2. (v;, v;,) € E: There holds f,;(v;v;,) = 0 since otherwise (v, ,,V))
would be in the residual network for f,;, and would be included in
LN;;, given that d, > d; ; +1. Moreover, fi(v;,v; ;) > 0 because (v;4,v)) Is

)
in LN;. Hence flow was increased along (v;,v;;) and (v;,v;;) € E;;.

In any case (v;, v ;) € E.,. Therefore dj,=d+landd=d;-1 < d.
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Part c) TI.ITI

c) Since v, =s and dy= 0, parts a) and b) imply d, <], for 1 <] <k
In particular k;; = d, <k;

We next argue that there exists in edge (v;,v;) on the path P in LN; that
does not exist in LN, ;. Suppose on the contrary that all edges of P
exist in LN. ;. The computed blocking flow f;_, saturates at least one
edge (v;.4,v;) of P in LN;;.

If (vi.1,v) € E, then fi_1(Viy,v) = Cio1 (Vi) = ¢(Viey,V) — fi1(Viey,V)).
Note that the reverse edge (v;,v;,) Is not contained in LN;,. It follows
that £;(vi1,v) = fi—1(Vi, V) + fiea (Viq,v) = c(vig,v) and (vi.4,v) is
not contained in LN;.

If (vj,vi.1) € E, then fi_1(viq,v) = €1 (Vi) = fio1(V;,Vj-1). Again
(V;,vp.1) is not contained in LN ;. It follows that f;(v;,v;_,) =
fi—1(Vyvie)) — fi—1(vj_1,v) = 0and (v;,,v)) is not contained in LN,

In both cases we obtain a contradiction.
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Part c) TI.ITI

Consider path P in LN..

e : : e, e,
VAN VA BV S TRV .

1 2
Let (v;1,v)) be the edge not contained in LN; ;. Part a) and b) imply
di; <J-1. Part b) ensures d; < J-1. Again, by parts a) and b), along

each of the remaining k; - j edges of P the level number can increase
by at most 1.

We conclude ki; =d, <] -1+Kk-] <k
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Number of iterations TI.ITI

Corollary: The number of iterations is < n.
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/. Blocking flows: DFS algorithm TI.ITI

Starting at s, at any node always choose the first outgoing edge until
a) tis reached or b)adead end v (no outgoing edges) is reached.

a) Determine the minimum capacity ¢ along the path. Increase the flow
by ¢, reduce the capacity by € and delete saturated edges.
b) Go back one node, delete v and its incoming edges.
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Analysis TI.ITI

Let n=|V| and m=|E]|.

Theorem 2: A blocking flow can be computed in time O(nm).
Proof: k = depth of the level network

Construction of a path requires time
O(k + # traversed edges ending in a dead end).

At most m paths are constructed. Every edge, over all path
constructions, ends only once in a dead end.

Total time: O(km + m) = O(nhm)

WS 2018/19 © S. Albers 35



Improved algorithm TI.ITI

Work with the level network. Maintain a working copy that is used to
construct a blocking flow. A second copy keeps track of the flow
constructed so far.

Potential of a node v

P(v):min{ D> Te), D, 6(e)}

ecout(v) ecin(v)

P*=min {P(v): v € V}
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Improved algorithm TI.ITI

Choose v with P(v) = P*.
Push P* flow units from v to higher levels.
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Improved algorithm TI.ITI

Level V. S, cV,, set containing P* extra flow units

P*=>"S[X] S[x] =supply at node x

XESh

Pull P* flow units into v from lower levels.

Flow increases by P* units.

Simplify the network by deleting saturated edges and nodes with
iIndegree or outdegree equal to O (at least one node is deleted).
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Pushing flow TI.ITI

Algorithm push(x,S,h);
\\ X is node in level V, and has a supply of S extra flow units to be pushed
to nodes in level V,,;.
1. while S>0do
2 Let e = (X,y) be the first outgoing edge at x;
3. o :=min{S, c(e)};
4 Increase the flow along e by 6, reduce c(e) by 6,
add y to S, ., (in case y is not yet element), increase S[y] by ¢;

S =S-56
if ¢(e) = 0then delete e from the network endif;
endwhile;

Delete x from S, and set S[x]:=0;
If out(x) =J and x #t then

10. Add x to the set del;

11. endif;

© 00N O
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Algorithm computing a blocking flow

1. for all x e Vdo S[x] :=0; endfor;
2. foralll,0<1<k, do S,:=d; endfor;
3. del € ;
4. while LN is not empty do
5. Compute P[v] for all v € V and P* =min {P[v]; v € V};
Let v € V, be a node with P* = P|v];
6 S[v]:=P*; S;:={v};
7. forh:=1tok—-1do
8. for all x € S;, do push(x,S[x], h); endfor;
9. endfor;
10.  S[v]:=P*; S;:={v}
11. for h:=Idownto 1 do
12. for all x € S;, do pull(x,S[x],h) endfor;
13. endfor;
14. simplify(del);
15. endwhile;
WS 2018/19
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Result TLTI

Theorem 3: A blocking flow in a level network can be compute in time
O(n?).

Proof: 1-3: O(n)

Loop 4-15: Executed O(n) times. Each execution takes O(n) if we
ignore push, pull, simplify.

All executions of push / pull take time O(n? + e): If a push/pull operation
at x (line 4) does not saturate an outgoing/incoming edge e, i.e. ¢(e)
remains positive, then the operation terminates the current call of
push / pull.

All executions of simplify take time O(n + m).
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Main result TI.ITI

Theorem 4: A maximum flow can be computed in O(n3) time.

Proof: There are at most n iterations. In each one, a level network and
a blocking flow can be computed in time O(n?).
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8. d-bounded networks TI.ITI

Definition: Letd € N. N = (V,E,c) is d-bounded if c(e) € {1,2,...,d} for
all e € E.

1-bounded networks are called (0,1)-networks.

Application of our flow algorithms to d-bounded networks:
—> all computed flows are integral, i.e. f(e) € N,
- the maximum flow is integral
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d-bounded networks TI.ITI

Theorem 5: A blocking flow in a d-bounded network can be computed
In time O(de). For d = 1 we obtain O(e) time.

Proof: DFS algorithm

Time for the construction of a path:
O(# edges on s-t-path + # traversed edges ending in a dead end)

Each edge is contained in at most d paths.
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Maximum flows in residual networks TI.ITI

Lemma4: Let N be a network and V., be the value of a maximum
(s,t)-flow. Let RN be the residual network for a flow f and V., be the
value of a maximum (s,t)-flow in RN. There holds

Vmax = Vmax + V(f)

Proof: Let (S,T) be an (s,t)-cut.
C(S,T): capacity of (5,T) in N
C(S,T): capacity of (S5,T) in RN

C(S.T)= > ctvw)= > (cv,w)—f(v,w)+ f(w,v))

:C(S,T)—( PR IAVEESY f(w,v)]
_C(S,T)-V(f) |
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Maximum flows in residual networks TI.ITI

We obtain

Cmin - Cmin - V(1),

where C_,;, and C_,, denote the minimum capacities of (s,t)-cuts in N
and RN, respectively.

Using the max-flow min-cut theorem we conclude
Vmax = Vmax - V(f)
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9. Simple networks TI.ITI

Definition: A network N = (V,E,c) is simple, if indeg(v) = 1
or outdeg(v) = 1, for all v e V\{s,t}.

Theorem 6: Let N = (V,E,c) be a simple (0,1)-network. Then a
maximum flow can be computed in time O(n'?m).
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Residual networks of simple networks TI.ITI

Claim: Let N be a simple (0,1)-network and f be an integral flow in N.
Then RN is a simple (0,1)-network.

Proof: Seiv € V\{s,t} and indeg(v) =1 (outdeg(v) = 1 is analogous).

If f(e) = O for e € in(v), then f(e”) =0, for all " € out(v), and v has
Indegree 1 in RN.

1
O’OO/O: 1:0/0:
e o\‘ e o\‘

If f(e) = 1 for e € in(v), then f(e”) = 1 for exactly one " € out(v) and v
has indegree 1 in RN.

Obviously, the edge capacities in RN are either O or 1.
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Proof of Theorem 6 TI.ITI

Consider our maximum flow algorithm. All intermediate flows are
integral.

A blocking flow can becomputed in time O(m).
We prove: # iterations = O(n'/?).

V. = value of a maximum (s,t)-flow

Vo S N2 0K

m

m

We study the case that V., > n/2.
Let iteration | be the one increasing the flow value to >V, — n'~.
We show that the level network in iteration | has depth < n/2+1.

This implies that before iteration |, at most n/2 +1 iterations were
executed. After iteration |, at most n'2iterations can be performed
because the flow value increases by at least 1 in each iteration.

WS 2018/19 © S. Albers 49



Proof of Theorem 6 TI.ITI

f . feasible (s,t)-flow immediately before iteration |
RN: residual network for f

By Lemma 4 there exists a flow f in RN with value

V

maxX — Vmax

—V () 2V, = (Vo =% ) =02,

Since RN is a simple (0,1)-network, we may assume that f is integral,
l.e. f(e) € {0,1}.

As RN is simple, at most one flow unit is routed through each
v eV\{s,t}.

f consists of at least n/2 vertex-disjoint paths from s to t.
Hence there exists a path with < n¥2intermediate nodes.
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10. Matchings in bipartite graphs TI.ITI

G = (V,E) undirected graph
Matching M is an edge set M c E such that no two edges e,, e, € M,
e,#e,, have a common node.

A maximum matching is a matching of maximum cardinality.
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Matchings in bipartite graphs TI.ITI

An undirected graph G = (V,E) is bipartite if V = V,UV,, for V,,V, c V
with V,nV, =, and E c V;x V..
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Matchings in bipartite graphs TI.ITI

Theorem 7: Let G = (V,UV,,E), E < V,xV,, be a bipartite graph. Then a
maximum matching can be computed in time O(n'2m).

Proof: Construct a simple network as follows:
(All capacities are equal to 1.)

et
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