TUTI

09 — Fibonacci Heaps

Priority queues: operations TI.ITI

Priority queue Q

Data structure for maintaining a set of elements, each having a priority
from a totally ordered universe (U,<). The following operations are
supported.

Operations:
Q.initialize(): initializes an empty queue Q
Q.IsEmpty(): returns true iff Q is empty

Q.insert(e): inserts element e into Q and returns a pointer to the node
containing e

Q.deletemin(): returns the element of Q with minimum key and deletes it
Q.min(): returns the element of Q with minimum key
Q.decreasekey(v,k): decreases the value of v's key to the new value k

WS 2018/19 © S. Albers 2

Priority queues: operations TI.ITI

Additional operations:

Q.delete(v): deletes node v and its element from Q
(without searching for v)

Q.meld(Q"): unites Q and Q" (concatenable queue)

Q.search(k): searches for the element with key k in Q
(searchable queue)

And many more, e.g. predecessor, successor, max, deletemax

WS 2018/19 © S. Albers 3

Priority gueues: implementations

List Heap Bin.— Q. | Fib.-Hp.

insert O(1) O(logn) | O(log n) O(1)

min O(n) O(1) O(log n) O(1)
aclete 1 om) | ofogn) | Oflogn) | Oflog n)"

meld O(n) or
(m<n) O(1) oM log n) O(log n) O(1)
decr.-key O(1) O(logn) | O(log n) O(1)*

*= amortized cost
Q.delete(e) = Q.decreasekey(e, -0) + Q.deletemin()

WS 2018/19

© S. Albers 4

Reminder: Binomial queues TI.ITI

Binomial tree B, of ordern (n>0)

B, (O

WS 2018/19 © S. Albers 5

Binomial trees TI.ITI

BO Bl Bz Bs
O

Binomial queue Q:
Set of heap ordered binomial trees of different order to store keys.

WS 2018/19 © S. Albers 6

Fibonacci heaps TI.ITI

,Lazy-meld* version of binomial queues:
The melding of trees having the same order is delayed until the next
deletemin operation.

Definition
A Fibonacci heap Q is a collection heap-ordered trees.

Variables
Q.min: root of the tree containing the minimum key

Q.rootlist: circular, doubly linked, unordered list containing the roots
of all trees

Q.size: number of nodes/elements currently in Q

WS 2018/19 © S. Albers 7

Trees In Fibonacci heaps TI.ITI

Let B be a heap-ordered tree in Q.rootlist:

B.childlist: circular, doubly linked and unordered list of the children of B

Every node in a Fibonacci heap has a pointer to one child, if it exists.
Children are stored in circular, doubly linked, unordered list

/

/
parent

Structure of a node

key | degree

I1E]
1y6u

child mark
/

/

Advantages of circular, doubly linked lists:
1. Deleting an element takes constant time.

2. Concatenating two lists takes constant time.
WS 2018/19 ©S. Albers 8

Implementation: Example TI_ITI

mlin

- ~)
® o o

WS 2018/19 © S. Albers 9

Operations on Fibonacci heaps TI.ITI

Q.initialize()
Q.rootlist := null; Q.min := null; Q.size = 0;

Q.min()

return Q.min.key;

Q.insert(e)
Generate a new node with element e;
Insert the node into the rootlist of Q and update Q.min;

Q.meld(Q")

Concatenate Q.rootlist and Q" .rootlist;
Update Q.min,

WS 2018/19 © S. Albers 10

Operation ‘deletemin’ TI.ITI

Q.deletemin()

[*Delete the node with minimum key from Q and return its element.*/
1. m:=Q.min();

2. If Q.size() > 0 then

3. Remove Q.min() from Q.rootlist;

4, Add Q.min.childlist to Q.rootlist;

5 Q.consolidate();

[*Repeatedly meld nodes in the root list having the same
degree. Then determine the element with minimum key. */

6. return m;

WS 2018/19 © S. Albers 11

Maximum degree of a node TI_ITI

rank(v) = degree/number of children of node vin Q
rank(Q) = maximum degree of any node in Q

Assumption:
rank(Q) <2 logn

If Q.size =n.

WS 2018/19 © S. Albers 12

Operation ‘link’ TI.ITI

rank(B) = degree of the root of B
Heap-ordered trees B,B” with rank(B) = rank(B")

....................................

1. rank(B) :=rank(B) + 1
2. B".mark .= false

WS 2018/19 © S. Albers 13

Consolidation of the root list TI.ITI

012345067

NN

12345467

L]

WS 2018/19 © S. Albers 14

Consolidation of the root list TI.ITI

D123 4506 7

|l||||l|||

WS 2018/19 © S. Albers 15

Operation ‘deletemin’ TI.ITI

Find roots having the same rank:
Array A:

0O 1 2 logn

Q.consolidate()

1. A =array of length 2 log n pointing to roots of trees in the
Fibonacci heap;

2. fori=0to 2log ndo Afi] = null;

3. while Q.rootlistz & do

4. B = Q.delete-first();

5. while AJlrank(B)] # null do

6. B” := A[rank(B)]; A[rank(B)]:=null; B :=1ink(B,B");
1. end while;

8. Alrank(B)] = B;

9. end while;

10. determine Q.min;
WS 2018/19 © S. Albers 16

Operation ‘decreasekey’:. example TI.ITI

& —@
s0) (15 @@
13) (22 (83,

WS 2018/19 © S. Albers 17

Operation ‘decreasekey’ TI.ITI

Q.decreasekey(v,k)
If k> v.key then return;
v.key = k;
update Q.min;
If v e Q.rootlist or k > v.parent.key then return;
repeat /* cascading cuts */
parent := v.parent;
Q.cut(v);
V = parent;
until v.mark = false or v € Q.rootlist;
10. if v ¢ Q.rootlist then v.mark = true;

© 0o NO O WDNRE

WS 2018/19 © S. Albers 18

Operation ‘cut’ TI.ITI

Q.cut(v)

1. if v ¢ Q.rootlist

2. then /[* cut the link between v and its parent */
3. rank (v.parent) := rank (v.parent) — 1,
Remove v from v.parent.childlist;
v.parent := null;

Add v to Q.rootlist;

L

WS 2018/19 © S. Albers 19

Marks TI.ITI

History of a node:

v is being linked to a node — v.mark ;= false
a child of v is cut —— v.mark :=true
a second child of v is cut — Cutv

The boolean value mark indicates whether node v has
lost a child since the last time v was made the child of
another node.

WS 2018/19 © S. Albers 20

Rank of the children of a node TI.ITI

Lemma

Let v be a node in a Fibonacci-Heap Q. Let u,,...,u, denote the children
of v in the order in which they were linked to v. Then

rank(u;) >1 - 2.
Proof:

At the time when u; was linked to v:
children of v (rank(v)): >1-1
children of u; (rank(u)): >1-1

children u; may have lost: 1

WS 2018/19 © S. Albers 21

Maximum rank of a node TI.ITI

Theorem

Let v be a node in a Fibonacci heap Q, and let rank(v) =k . Then v is
the root of a subtree that has at least F,,, nodes.

Fo=0 F,=1 F,=Fu+F F,20 &=(1++5)/2~1.618
Golden Ratio

The number of descendants of a node grows exponentially in the
number of children.

Implication: The maximum rank k of any node v in a Fibonacci heap Q
with n nodes is upper bounded by 2 log n.

®k<n = k<log,n/log,® < 1.45 log,n

WS 2018/19 © S. Albers 22

Maximum rank of a node TI.ITI

Proof of the Theorem:
S, = minimum possible size of a subtree whose root has rank k

So=1=F,
S;=2=F;
There holds:

S, 2243, fork=2 (1)

Fibonacci numbers:
k
Fe.o =1+ Z F (2)
i=0
=1+F+F+...+F

(1) + (2) + induction = S, > F, .,

WS 2018/19 © S. Albers 23

Analysis of Fibonacci heaps TI.ITI

Potential method to analyze Fibonacci heap operations.
Potential @, of Fibonacci heap Q:
Oy =r5+2mg
where
o = number of nodes in Q.rootlist

mMy= number of all marked nodes in Q
that are not in the root list.

WS 2018/19 © S. Albers 24

Amortized analysis TI.ITI

a, : amortized cost of the i-th operation
t. : actual cost of the i-th operation

=+ O -d,
=t + (r,—r.y) + 2(m;—m;,)

In the following we assume that a constant number of constant-time
Instructions (such as a key comparison, a pointer update, the cut of
a link or the marking of a node) incurs an actual cost of 1. Otherwise
we can simply scale up the potential function.

WS 2018/19 © S. Albers 25

Analysis of ‘insert’ TI.ITI

Insert

m-m;; =0

a=1+1+0=0(1)

WS 2018/19 © S. Albers 26

Analysis of ‘deletemin’ TI.ITI

deletemin:

t<r,+2logn+2logn

By deleting the element with minimum key, at most 2 log n children
join the root list. Hence at most r,; + 2 log n link operations can be
performed. After consolidation at most 2 log n roots have to be
Inspected to determine the new minimum. Thus the actual cost, up to

a constant factor, is upper bounded by the above right-hand side
expression.

n-r,< 2logn-r,

m-m_ ;<0

a<r,+4logn+2logn-r;+0
= O(log n)

WS 2018/19 © S. Albers 27

Analysis of ‘decreasekey’ TI.ITI

decreasekey:

Let c denote the number of cut operations.

t =c+1 In addition to the cut operations, there is constant cost for
possibly marking a new node and updating the min-pointer.

i—h,=0C

mi—mi_lﬁ- (C' 1) +1

a<c+l+c+2(-c+2)
=0(1)

WS 2018/19 © S. Albers 28

Priority gueues. comparison

List Heap Bin.— Q. | Fib.-Hp.

insert O(1) O(logn) | O(log n) O(1)

min O(n) O(1) O(log n) O(1)
aclete 1 om) | ofogn) | Oflogn) | Oflog n)"

meld O(n) or
(m<n) O(1) oM log n) O(log n) O(1)
decr.-key O(1) O(logn) | O(log n) O(1)*

*= amortized cost
Q.delete(e) = Q.decreasekey(e, -«) + Q.deletemin()

WS 2018/19

© S. Albers 29

