
08 – Amortized Analysis

2WS 2018/19

Amortization

• Consider a sequence a1, a2, ... , an of

n operations performed on a data structure D

• Ti = execution time of ai

• T = T1 + T2 + ... + Tn total execution time

• The execution time of a single operation can vary within a large

range, e.g. in 1,...,n, but the worst case does not occur for all

operations of the sequence.

• Average execution time of an operation, i.e. 1/n ∙ Σ1≤i≤n Ti, is small

even though a single operation can have a high execution time.

© S. Albers

3WS 2018/19

Analysis of algorithms

• Best case (Too optimistic)

• Worst case (Sometimes very pessimistic)

• Average case (Input drawn according to a probability distribution.

However, distribution might not be known, or

input is not generated by a distribution.)

• Amortized worst case

What is the average cost of an operation in a worst case

sequence of operations?

© S. Albers

4WS 2018/19

Amortization

Idea:

• Pay more for inexpensive operations

• Use the credit to cover the cost of expensive operations

Three methods:

1. Aggregate method

2. Accounting method

3. Potential method

© S. Albers

5WS 2018/19

1. Aggregate method: binary counter

Incrementing a binary counter: determine the bit flip cost

Operation Counter value Cost

00000

1 00001 1

2 00010 2

3 00011 1

4 00100 3

5 00101 1

6 00110 2

7 00111 1

8 01000 4

9 01001 1

10 01010 2

11 01011 1

12 01100 3

13 01101 1
© S. Albers

6WS 2018/19

Binary counter

In gneral:

For any n, estimate the total time of n increment operations.

Show:

Amortized cost of an operation is upper bounded by c.

 Total cost is upper bounded by cn.

© S. Albers

7WS 2018/19

2. The accounting method

Observation:

In each operation exactly one 0 flips to 1.

Idea:

Pay two cost units for flipping a 0 to a 1

 each 1 has one cost unit deposited in the banking account

© S. Albers

8WS 2018/19

The accounting method

Operation Counter value

0 0 0 0 0

1 0 0 0 0 1

2 0 0 0 1 0

3 0 0 0 1 1

4 0 0 1 0 0

5 0 0 1 0 1

6 0 0 1 1 0

7 0 0 1 1 1

8 0 1 0 0 0

9 0 1 0 0 1

10 0 1 0 1 0

© S. Albers

9WS 2018/19

The accounting method

Operation Counter value Actual cost Payment Credit

0 0 0 0 0

1 0 0 0 0 1 1 2 1

2 0 0 0 1 0 2 0+2 1

3 0 0 0 1 1 1 2 2

4 0 0 1 0 0 3 0+0+2 1

5 0 0 1 0 1 1 2 2

6 0 0 1 1 0 2 0+2 2

7 0 0 1 1 1 1 2 3

8 0 1 0 0 0 4 0+0+0+2 1

9 0 1 0 0 1 1 2 2

10 0 1 0 1 0 1 0+2 2

We only pay from the credit when flipping a 1 to a 0.

© S. Albers

10WS 2018/19

3. The potential method

Potential function Φ

Data structure D  Φ(D)

ti = actual cost of the i-th operation

Φi = potential after execution of the i-th operation (= Φ(Di))

ai = amortized cost of the i-th operation

Definition:

ai = ti + Φi - Φi-1

© S. Albers

11WS 2018/19

Example: binary counter

Di = counter value after the i-th operation

Φi = Φ(Di) = # of 1‘s in Di

i–th operation # of 1‘s

Di-1: 0/1.....01.....1 Bi-1

Di : 0/1.....10.....0 Bi = Bi-1 – bi + 1

ti = actual bit flip cost of operation i = bi+1

ai = ti + Φ(Di) - Φ(Di-1)

bi

© S. Albers

12WS 2018/19

Binary counter

ti = actual bit flip cost of operation i

ai = amortized bit flip cost of operation i

   1 11 1

2

i i i i ia b B b B      



1

11 1

2

(() ()) 2

n

ii

n n

i i i ii i

a n

a t D D n



 

 

    



 

© S. Albers

0 01 1
() () 2 () () 2

n n

i i n ni i
t a D D n D D n

 
        

13WS 2018/19

Dynamic tables

Problem:

Maintain a table supporting the operations insert and delete such that

• the table size can be adjusted dynamically to the number of items

• the used space in the table is always at least a constant fraction of

the total space

• the total cost of a sequence of n operations (insert or delete) is O(n).

Applications: hash table, heap, stack, etc.

Load factor T: number of items stored in the table divided by the size

of the table

© S. Albers

14WS 2018/19

Dynamic tables

Dynamic table T

size[T]; // size of the table

num[T]; // number of items

Initially there is an empty table with 1 slot, i.e.

size[T] = 1 and num[T] = 0.

© S. Albers

15WS 2018/19

Implementation of ‘insert’

insert (T, x)

1. if num[T] = size[T] then

2. allocate new tableT‘ with 2∙size[T] slots;

3. insert all items in T into T‘;

4. T := T‘; free table T‘;

5. size[T] := 2∙size[T];

6. endif;

7. insert x into T;

8. num[T] := num[T]+1;

© S. Albers

16WS 2018/19

Cost of n insertions into an initially empty table

ti = cost of the i-th insert operation

Worst case:

ti = 1 if the table is not full prior to operation i

ti = (i – 1) + 1 if the table is full prior to operation i.

Thus n insertions incur a total cost of at most

Amortized worst case:

Aggregate method, accounting method, potential method

 2

1

.
n

i

i n




© S. Albers

17WS 2018/19

Potential method

T table with

• k = num[T] items

• s = size[T] size

Potential function

Φ(T) = 2 k – s

© S. Albers

18WS 2018/19

Potential method

Properties

• Φ0 = Φ(T0) = Φ (empty table) = -1

• Immediately before a table expansion we have k = s,

thus Φ(T) = k = s.

• Immediately after a table expansion we have k = s/2,

thus Φ(T) = 2k – s = 0.

• For all i  1: Φi = Φ(Ti) > 0

Since Φn - Φ0  0

1 1
 .

n n

i ii i
t a

 
 

© S. Albers

19WS 2018/19

Amortized cost ai of the i-th insertion

ki = # items stored in T after the i-th operation

si = table size of T after the i-th operation

Case 1: i-th operation does not trigger an expansion

ki = ki-1 + 1, si = si-1

ai = 1 + (2ki - si) - (2ki-1 – si-1)

= 1 + 2(ki - ki-1)

= 3

© S. Albers

20WS 2018/19

Case 2: i-th operation does trigger an expansion

ki = ki-1 + 1, si = 2si-1

ai = ki-1 + 1 + (2ki - si) - (2ki-1 – si-1)

= 2(ki-1 + 1) - ki-1 + 1 - 2si-1 + si-1

= ki-1 + 3 - si-1

= 3

© S. Albers

21WS 2018/19

Inserting and deleting items

Now: Contract the table whenever the load becomes too small.

Goal:

(1) The load factor is bounded from below by a constant.

(2) The amortized cost of a table operation is constant.

First approach

• Expansion: as before

• Contraction: Halve the table size when a deletion would cause the

table to become less than half full.

© S. Albers

22WS 2018/19

„Bad“ sequence of table operations

Cost

n/2 ‘insert’ op.

(table is full)

n – 1

Σai-Φn/2+Φ0 =

3n/2-n/2-1

I: expansion n/2 + 1

D, D: contraction n/2 + 1

I, I : expansion n/2 + 1

D, D: contraction

Total cost of the sequence of n operations, with n≥2: In/2, I,D,D,I,I,D,D

23 / 2 1/ 2 (/ 2 1) (/ 2 1) / 8n n n n      

© S. Albers

23WS 2018/19

Second approach

Expansion: Double the table size when an item is inserted into

a full table.

Contraction: Halve the table size when a deletion causes the table to

become less than ¼ full.

Property: At any time the table is at least ¼ full, i.e.

¼  (T)  1

What is the cost of a sequence of table operations?

© S. Albers

24WS 2018/19

Analysis of ‘insert’ and ‘delete’ operations

k = num[T], s = size[T],  = k/s

Potential function Φ

 
2 , if 1/ 2

/ 2 , if 1/ 2

k s
T

s k





 
  

 

© S. Albers

25WS 2018/19

Analysis of ‘insert’ and ‘delete’ operations

Immediately after a table expansion or contraction:

s = 2k, thus Φ(T) = 0

 
2 , if 1/ 2

/ 2 , if 1/ 2

k s
T

s k





 
  

 

© S. Albers

26WS 2018/19

Analysis of an ‘insert’ operation

i-th operation: ki = ki-1 + 1

Case 1: i-1  ½

Potential function before and after the operation is Φ(T) = 2k-s. We

have already proved that the amortized cost is equal to 3.

Case 2: i-1 < ½

Case 2.1: i < ½

Case 2.2: i  ½

© S. Albers

27WS 2018/19

Analysis of an ‘insert’ operation

Case 2.1: i-1 < ½, i < ½ no expansion

 
2 , if 1/ 2

/ 2 , if 1/ 2

k s
T

s k





 
  

 

Potential function Φ

ai = 1 + (si /2 - ki) - (si-1/2 - ki-1)

= 1 - (ki-1 + 1) + ki-1

= 0

© S. Albers

28WS 2018/19

Analysis of an ‘insert’ operation

Case 2.2: i-1 < ½, i  ½ no expansion

 
2 , if 1/ 2

/ 2 , if 1/ 2

k s
T

s k





 
  

 

Potential function Φ

ai = 1 + (2ki -si) - (si-1/2 - ki-1)

= 1 + 2(ki-1 + 1) - 3si-1/2 + ki-1

= 3 + 3(ki-1 - si-1/2)

< 3

The last inequality holds because ki-1 / si-1 < ½.

© S. Albers

29WS 2018/19

Analysis of a ‘delete’ operation

ki = ki-1 - 1

Case 1: i-1 < ½

Case 1.1: deletion does not trigger a contraction

si = si-1

 
2 , if 1/ 2

/ 2 , if 1/ 2

k s
T

s k





 
  

 

Potential function Φ

ai = 1 + (si /2 - ki) - (si-1/2 - ki-1)

= 1 - (ki-1 - 1) + ki-1

= 2

© S. Albers

30WS 2018/19

Analysis of a ‘delete’ operation

Case 1.2: i-1 < ½ deletion does trigger a contraction

si = si –1/2 ki-1 = si-1/4

ki = ki-1 - 1

Case 1: i-1 < ½

 
2 , if 1/ 2

/ 2 , if 1/ 2

k s
T

s k





 
  

 

Potential function Φ

ai = 1 + ki-1 + (si /2 - ki) - (si-1/2 - ki-1)

= 1 + ki-1 + si-1 /4 - (ki-1 - 1) - si-1/2 + ki-1

= 2 - si-1 /4 + ki-1

= 2

© S. Albers

31WS 2018/19

Analysis of a ‘delete’ operation

Case 2: i-1  ½

A contraction only occurs if si –1 = 2 and ki-1 = 1.

In this case ai = 1 + si/2 – ki – (2 ki-1 - si –1)

= 1 +1/2 - 2 + 2 < 2.

Therefore, in the following, we may assume that no

contraction occurs.

© S. Albers

32WS 2018/19

Analysis of a ‘delete’ operation

Case 2: i-1  ½ no contraction

si = si –1 ki = ki-1 - 1

Case 2.1: i  ½

 
2 , if 1/ 2

/ 2 , if 1/ 2

k s
T

s k





 
  

 

Potential function Φ

ai = 1 + (2ki -si) - (2ki-1 –si-1)

= 1 + 2(ki-1 - 1) - 2ki-1

< 0

© S. Albers

33WS 2018/19

Analysis of a ‘delete’ operation

Case 2: i-1  ½ no contraction

si = si –1 ki = ki-1 - 1

Case 2.2: i < ½

 
2 , if 1/ 2

/ 2 , if 1/ 2

k s
T

s k





 
  

 

Potential function Φ

ai = 1 + (si/2 - ki) - (2ki-1 - si-1)

= 1 + si-1/2 - ki-1 + 1 - 2ki-1 + si-1

= 2 +3(si-1/2 - ki-1)

≤ 2

The last inequality holds because ki-1 ≥ si-1/2.
© S. Albers

