
08 – Amortized Analysis
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Amortization

• Consider a sequence a1, a2, ... , an of

n operations performed on a data structure D

• Ti = execution time of ai

• T = T1 + T2 + ... + Tn total execution time

• The execution time of a single operation can vary within a large 

range, e.g. in 1,...,n, but the worst case does not occur for all 

operations of the sequence.

• Average execution time of an operation, i.e. 1/n ∙ Σ1≤i≤n Ti, is small

even though a single operation can have a high execution time. 
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Analysis of algorithms

• Best case (Too optimistic)

• Worst case (Sometimes very pessimistic)

• Average case (Input drawn according to a probability distribution.

However, distribution might not be known, or

input is not generated by a distribution.)

• Amortized worst case

What is the average cost of an operation in a worst case

sequence of operations?
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Amortization

Idea: 

• Pay more for inexpensive operations

• Use the credit to cover the cost of expensive operations

Three methods:

1. Aggregate method

2. Accounting method

3. Potential method
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1. Aggregate method: binary counter 

Incrementing a binary counter: determine the bit flip cost

Operation Counter value Cost

00000

1 00001 1

2 00010 2

3 00011 1

4 00100 3

5 00101 1

6 00110 2

7 00111 1

8 01000 4

9 01001 1

10 01010 2

11 01011 1

12 01100 3

13 01101 1
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Binary counter

In gneral:

For any n, estimate the total time of n increment operations. 

Show:

Amortized cost of an operation is upper bounded by c. 

 Total cost is upper bounded by cn. 
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2. The accounting method

Observation:

In each operation exactly one 0 flips to 1.

Idea:

Pay two cost units for flipping a 0 to a 1 

 each 1 has one cost unit deposited in the banking account
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The accounting method

Operation Counter value

0 0 0 0 0

1 0 0 0 0 1

2 0 0 0 1 0

3 0 0 0 1 1

4 0 0 1 0 0

5 0 0 1 0 1

6 0 0 1 1 0

7 0 0 1 1 1

8 0 1 0 0 0

9 0 1 0 0 1

10 0 1 0 1 0
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The accounting method

Operation Counter value Actual cost Payment Credit

0 0 0 0 0

1 0 0 0 0 1 1 2 1

2 0 0 0 1 0 2 0+2 1

3 0 0 0 1 1 1 2 2

4 0 0 1 0 0 3 0+0+2 1

5 0 0 1 0 1 1 2 2

6 0 0 1 1 0 2 0+2 2

7 0 0 1 1 1 1 2 3

8 0 1 0 0 0 4 0+0+0+2 1

9 0 1 0 0 1 1 2 2

10 0 1 0 1 0 1 0+2 2

We only pay from the credit when flipping a 1 to a 0. 
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3. The potential method

Potential function Φ

Data structure D  Φ(D)

ti = actual cost of the i-th operation

Φi = potential after execution of the i-th operation (= Φ(Di) ) 

ai = amortized cost of the i-th operation

Definition:

ai = ti + Φi - Φi-1
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Example: binary counter

Di = counter value after the i-th operation

Φi = Φ(Di) = # of 1‘s in Di

i–th operation # of 1‘s

Di-1:  .....0/1.....01.....1 Bi-1

Di :    .....0/1.....10.....0 Bi = Bi-1 – bi + 1

ti = actual bit flip cost of operation i = bi+1

ai = ti + Φ(Di) - Φ(Di-1)

bi
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Binary counter

ti = actual bit flip cost of operation i 

ai = amortized bit flip cost of operation i
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Dynamic tables

Problem:

Maintain a table supporting the operations insert and delete such that

• the table size can be adjusted dynamically to the number of items

• the used space in the table is always at least a constant fraction of

the total space

• the total cost of a sequence of n operations (insert or delete) is O(n).

Applications: hash table, heap, stack, etc.

Load factor T: number of items stored in the table divided by the size

of the table
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Dynamic tables

Dynamic table T

size[T]; // size of the table

num[T]; // number of items

Initially there is an empty table with 1 slot, i.e.

size[T] = 1 and num[T] = 0. 
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Implementation of ‘insert’

insert (T, x) 

1. if num[T] = size[T] then

2. allocate new tableT‘ with 2∙size[T] slots;

3. insert all items in T into T‘; 

4. T := T‘; free table T‘;

5. size[T] := 2∙size[T];

6. endif;

7. insert x into T;

8. num[T] := num[T]+1;
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Cost of n insertions into an initially empty table

ti = cost of the i-th insert operation

Worst case:

ti = 1 if the table is not full prior to operation i

ti = (i – 1) + 1 if the table is full prior to operation i.

Thus n insertions incur a total cost of at most

Amortized worst case:

Aggregate method, accounting method, potential method
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Potential method

T table with

• k = num[T]  items

• s = size[T]   size

Potential function

Φ(T) = 2 k – s
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Potential method

Properties

• Φ0 = Φ(T0) = Φ (empty table) = -1

• Immediately before a table expansion we have k = s,

thus Φ(T) = k = s.

• Immediately after a table expansion we have k = s/2,

thus Φ(T) = 2k – s = 0.

• For all i  1:  Φi = Φ(Ti) > 0

Since Φn - Φ0  0
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Amortized cost ai of the i-th insertion

ki = # items stored in T after the i-th operation

si = table size of T after the i-th operation

Case 1: i-th operation does not trigger an expansion

ki = ki-1 + 1, si = si-1

ai = 1 + (2ki - si) - (2ki-1 – si-1)

= 1 + 2(ki - ki-1)

= 3
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Case 2: i-th operation does trigger an expansion

ki = ki-1 + 1, si = 2si-1

ai = ki-1 + 1 + (2ki - si) - (2ki-1 – si-1)

= 2(ki-1 + 1) - ki-1 + 1 - 2si-1 + si-1

= ki-1 + 3 - si-1 

= 3
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Inserting and deleting items

Now: Contract the table whenever the load becomes too small.

Goal: 

(1) The load factor is bounded from below by a constant.

(2) The amortized cost of a table operation is constant.

First approach 

• Expansion:   as before

• Contraction: Halve the table size when a deletion would cause the 

table to become less than half full.
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„Bad“ sequence of table operations

Cost

n/2 ‘insert’ op.

(table is full)

n – 1   

Σai-Φn/2+Φ0 = 

3n/2-n/2-1

I: expansion n/2 + 1

D, D:  contraction n/2 + 1

I, I :  expansion n/2 + 1

D, D: contraction

Total cost of the sequence of n operations, with n≥2:  In/2, I,D,D,I,I,D,D

23 / 2 1/ 2 ( / 2 1) ( / 2 1) / 8n n n n      
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Second approach

Expansion: Double the table size when an item is inserted into

a full table.

Contraction: Halve the table size when a deletion causes the table to

become less than ¼ full.

Property:  At any time the table is at least ¼ full, i.e.

¼   (T)  1

What is the cost of a sequence of table operations?
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Analysis of ‘insert’ and ‘delete’ operations

k = num[T],   s = size[T],  = k/s

Potential function Φ

 
2 ,   if 1/ 2

/ 2 ,  if 1/ 2

k s
T

s k





 
  

 
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Analysis of ‘insert’ and ‘delete’ operations

Immediately after a table expansion or contraction:

s = 2k, thus Φ(T) = 0

 
2 ,  if 1/ 2

/ 2 ,  if 1/ 2

k s
T

s k





 
  

 
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Analysis of an ‘insert’ operation

i-th operation: ki = ki-1 + 1

Case 1: i-1  ½

Potential function before and after the operation is Φ(T) = 2k-s. We

have already proved that the amortized cost is equal to 3. 

Case 2: i-1 < ½

Case 2.1: i < ½

Case 2.2: i  ½
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Analysis of an ‘insert’ operation

Case 2.1: i-1 < ½, i < ½  no expansion

 
2 ,  if 1/ 2

/ 2 ,  if 1/ 2

k s
T

s k





 
  

 

Potential function Φ

ai = 1 + (si /2 - ki) - (si-1/2 - ki-1)

= 1 - (ki-1 + 1) + ki-1

= 0
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Analysis of an ‘insert’ operation

Case 2.2: i-1 < ½, i  ½ no expansion

 
2 ,  if 1/ 2

/ 2 ,  if 1/ 2

k s
T

s k





 
  

 

Potential function Φ

ai = 1 + (2ki -si) - (si-1/2 - ki-1)

= 1 + 2(ki-1 + 1) - 3si-1/2 + ki-1

= 3 + 3(ki-1 - si-1/2) 

< 3   

The last inequality holds because ki-1 / si-1 < ½. 
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Analysis of a ‘delete’ operation

ki = ki-1 - 1

Case 1: i-1 < ½ 

Case 1.1: deletion does not trigger a contraction

si = si-1

 
2 ,  if 1/ 2

/ 2 ,  if 1/ 2

k s
T

s k





 
  

 

Potential function Φ

ai = 1 + (si /2 - ki) - (si-1/2 - ki-1)

= 1 - (ki-1 - 1) + ki-1

= 2
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Analysis of a ‘delete’ operation

Case 1.2: i-1 < ½ deletion does trigger a contraction

si = si –1/2   ki-1 = si-1/4

ki = ki-1 - 1

Case 1: i-1 < ½ 

 
2 ,  if 1/ 2

/ 2 ,  if 1/ 2

k s
T

s k





 
  

 

Potential function Φ

ai = 1 + ki-1 + (si /2 - ki) - (si-1/2 - ki-1)

= 1 + ki-1 + si-1 /4 - (ki-1 - 1) - si-1/2 + ki-1

= 2 - si-1 /4 + ki-1

= 2
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Analysis of a ‘delete’ operation

Case 2: i-1  ½

A contraction only occurs if si –1 = 2 and ki-1 = 1.

In this case ai = 1 + si/2 – ki – (2 ki-1 - si –1) 

= 1 +1/2 - 2 + 2 < 2. 

Therefore, in the following, we may assume that no

contraction occurs.
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Analysis of a ‘delete’ operation

Case 2: i-1  ½ no contraction

si = si –1 ki = ki-1 - 1

Case 2.1: i  ½

 
2 ,  if 1/ 2

/ 2 ,  if 1/ 2

k s
T

s k





 
  

 

Potential function Φ

ai = 1 + (2ki -si) - (2ki-1 –si-1)

= 1 + 2(ki-1 - 1) - 2ki-1

< 0
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Analysis of a ‘delete’ operation

Case 2: i-1  ½ no contraction

si = si –1 ki = ki-1 - 1

Case 2.2: i < ½

 
2 ,  if 1/ 2

/ 2 ,  if 1/ 2

k s
T

s k





 
  

 

Potential function Φ

ai = 1 + (si/2 - ki) - (2ki-1 - si-1)

= 1 + si-1/2 - ki-1 + 1 - 2ki-1 + si-1

= 2 +3(si-1/2 - ki-1) 

≤ 2

The last inequality holds because ki-1 ≥ si-1/2. 
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