
06 – Suffix Trees (1)

2WS 2018/19

Text search

Various scenarios:

Static texts

• Literature databases

• Library systems

• Gene databases

• World Wide Web

Dynamic texts

• Text editors

• Symbol manipulators

Algorithms by Knuth, Morris & Pratt and Boyer & Moore

© S. Albers

3WS 2018/19

Properties of suffix trees

Search index

for a text  in order to search for several patterns .

Properties:

1. Substring searching in time O(||).

2. Queries to  itself, e.g.:

Longest substring of  that occurs at least twice.

3. Prefix search: all positions in  with prefix .

© S. Albers

4WS 2018/19

Properties of suffix trees

4. Range search: all locations (substrings) in  belonging to an

interval

[, ] with  lex , e.g.

abrakadabra, acacia  [abc, acc],

abacus  [abc, acc] .

5. Linear complexity:

Space requirement and construction time in O(| |).

© S. Albers

5WS 2018/19

Tries

Alphabet , set S of keys, S  *

Key: string in *

Trie: A tree representing a set of keys.

Edge of a trie T: labeled with a single character of 

Neighboring edges (edges that lead to different children of a node):

labeled with different characters

© S. Albers

6

Tries

a

a

a

c

b

b

c

b

b c

c

c

Example:

© S. AlbersWS 2018/19

7WS 2018/19

Tries

A leaf represents a key:

The corresponding key is the string consisting of the edge labels

along the path from the root to the leaf.

Keys are not stored in nodes!

© S. Albers

8

Suffix tries

Trie representing all suffixes of a string

Example:  = ababc

suffixes: ababc = suf1
babc = suf2
abc = suf3
bc = suf4

c = suf5

a

a

a

c

b

b

c

b

b c

c

c

WS 2018/19

9WS 2018/19

Suffix tries

Nodes of a suffix trie substrings of 

Each substring of  is represented by a node.

Let  = anbn. Then there are n2 + 2n + 1 different substrings

(or internal nodes).

 space requirement is O(n2)

̂

© S. Albers

10WS 2018/19

Suffix tries

A suffix trie T satisfies some of the desired properties:

a

a

a

c

b

b

c

b

b c

c

c

1. String matching for : Following the path with

edge labels  takes O(||) time.

leaves of the subtree occurrences of 

2. Longest substring occurring at least twice:

internal node with maximum depth having

at least two children

3. Prefix search: All occurrences of strings with

prefix  are represented by the nodes of the

subtree rooted at the internal node corres-

ponding to  .

̂

© S. Albers

11WS 2018/19

Suffix trees

A suffix tree is obtained from a suffix trie by contracting unary nodes.

a

a

a

c

b

b

c

b

b c

c

c

ab

abc abc

b

c c

c

suffix tree = contracted suffix trie

© S. Albers

12WS 2018/19

Internal representation of suffix trees

Child-sibling representation

substring: pair of numbers (i,j)

ab

abc abc

b

c c

c

T

Example:  = ababc

© S. Albers

13

Internal representation of suffix trees

()

(1,2) (2,2) (5,$)

(3,$) (5,$) (3,$) (5,$)

ab

abc abc

b c

c c

Example:  = ababc

node v = (v.l, v.u, v.c, v.s)

Further pointers (suffix links) are added later.

© S. AlbersWS 2018/19

14WS 2018/19

Properties of suffix trees

(S1) No suffix of  is prefix of another suffix.

This holds if the last character of  is $  .

Search:

(T1) edge non-empty substring of .

(T2) neighboring edges:

corresponding substrings start with different characters

̂

© S. Albers

15WS 2018/19

Properties of suffix trees

Size

(T3) each internal node ( root) has at least two children

(T4) leaf (non-empty) suffix of .

Let n = | | > 1.

̂

(T4)

(T3)

 n

 n 1

 (n)



 

 





number of leaves

number of internal nodes

 space requirement in

© S. Albers

16WS 2018/19

Construction of suffix trees

Definitions

Partial path: Path from the root to a node in T.

Path: A partial path ending at a leaf.

Location of a string  : Node where the partial path corresponding

to  ends (if it exists).

ab

abc abc

b

c c

c

T

© S. Albers

 = bab (has no location)

17WS 2018/19

Construction of suffix trees

Extension of a string  : string with prefix 

Extended location of a string : location of the shortest extension of

 whose location is defined

Contracted location of a string : location of the longest prefix of 
whose location is defined

ab

abc abc

b

c c

c

T

© S. Albers

 = bab (has no location)

18WS 2018/19

Construction of suffix trees

Definitions:

sufi : suffix of  beginning at position i, e.g. suf1 = , sufn = $.

headi : longest prefix of sufi that is also a prefix of sufj for some j < i.

Example:  = bbabaabc

suf4 = baabc

head4 = ba

© S. Albers

19

Construction of suffix trees

a

abc

abc

c

b

aabc

b

baabc

a
c

babaabc

c

 = bbabaabc

© S. AlbersWS 2018/19

20WS 2018/19

Naive suffix tree construction

Start with the empty tree T0 .

The tree Ti+1 is constructed from Ti by inserting the suffix sufi+1.

Algorithm suffix-tree

Input: string 

Output: suffix tree T for 

1 n := ||; T0 := ;

2 for i := 0 to n – 1do

3 insert sufi+1 into Ti, store the result in Ti+1 ;

4 endfor;

© S. Albers

21

Naive suffix tree construction

All suffixes sufj with j ≤ i have a location in Ti .

 headi+1 = longest prefix of sufi+1 that is a prefix of sufj, with j < i+1

Definition:

taili+1 := sufi+1 – headi+1 i.e. sufi+1 = headi+1 taili+1.

taili+1  
)1(S

© S. AlbersWS 2018/19

22

Naive suffix tree construction

Example:  = ababc

suf3 = abc

head3 = ab

tail3 = c

T0

T1

T2

ababc

ababc babc

© S. AlbersWS 2018/19

23WS 2018/19

Naive suffix tree construction

Ti+1 can be constructed from Ti as follows:

1. Determine the extended location of headi+1 in Ti and split the last

edge leading to this location into two new edges by inserting a new

node.

2. Insert a new leaf as location for sufi+1 .

x = extended location

of headi+1

x

v

headi+1

taili+1

© S. Albers

24

Naive suffix tree construction

Example:  = ababc

babc

c

babcababc

abc

ab

T3

T2

head3 = ab

tail3 = c

© S. AlbersWS 2018/19

25WS 2018/19

Naive suffix tree construction

Algorithm suffix-insertion

Input: tree Ti and suffix sufi+1

Output: tree Ti+1

1 v := root of Ti ;

2 j := i;

3 repeat

4 find child w of v with w.l = j+1;

5 if w ≠ nil then

6 k := w.l ; j := j + 1;

7 while k < w.u and k+1 = j+1 do

8 k := k +1; j := j + 1;

9 endwhile;

10 endif;

© S. Albers

26WS 2018/19

Naive suffix tree construction

11 if k = w.u then v := w;

12 until k < w.u or w = nil; /* v is the contracted location of headi+1 */

13 insert the location of headi+1 and taili+1 below v into Ti ;

Running time of suffix-insertion : O(n-i)

Total time required for the naive construction: O(n2)

© S. Albers

27WS 2018/19

The algorithm MCC

(McCreight, 1976)

Idea: Extended location of headi+1 in Ti is determined in constant

amortized time. (Additional information required!)

When the extended location of headi+1 in Ti has been found:

Creating a new node and splitting an edge takes O(1) time.

Theorem 1

Algorithm MCC constructs a suffix tree for  with | | leaves and

at most | | - 1 internal nodes in time O(| |).

© S. Albers

28WS 2018/19

Suffix links

Definition:

Let x? be an arbitrary string where x is a single character and ? some

(possibly empty) substring.

For an internal node v with edge labels x? the following holds:

If there exists a node s(v) with edge label ?, then there

is a pointer from v to s(v) that is called a suffix link.

s(v)

v

© S. Albers

29

Suffix links

The idea is as follows:

By following the suffix links, we do not have to start each search for a

splitting point at the root node. Instead, we can use the suffix links in

order to determine these nodes more efficiently, i.e. in constant

amortized time.

s(v)

v

© S. AlbersWS 2018/19

30

Suffix tree: example

T0 T1 bbabaabc

suf1 = bbabaabc suf2 = babaabc

head2 = b

© S. AlbersWS 2018/19

31

Suffix tree: example

T2 b

abaabc babaabc

T3

abaabc b

abaabc babaabc

suf3 = abaabc suf4 = baabc

head3 =  head4 = ba

© S. AlbersWS 2018/19

32

Suffix tree: example

T4 abaabc b

babaabc
a

abc
baabc location of head4

suf5 = aabc

head5 = a

© S. AlbersWS 2018/19

33

Suffix tree: example

babaabc
a

abc
baabc

location of head5

abc

a b

T5

suf6 = abc

head6 = ab

baabc

© S. AlbersWS 2018/19

34

Suffix tree: example

babaabc
a

abc
baabc

location of head6

abc

a b

T6

b

caabc

suf7 = bc

head7 = b

© S. AlbersWS 2018/19

35

Suffix tree: example

babaabc
a

abc
baabc

abc

a b

T7 =

b

caabc

c

suf8 = c

© S. AlbersWS 2018/19

36

Suffix tree: example

babaabc
a

abc
baabc

abc

a b

T7 =

b

caabc

c

suf8 = c

© S. AlbersWS 2018/19

37

Suffix tree: example

babaabc
a

abc
baabc

abc

a b

T8 =

b

caabc

c

c

© S. AlbersWS 2018/19

38WS 2018/19

The algorithm MCC

Iteration i + 1: Given Ti, construct Ti+1:

Invariant: In Ti all internal nodes have a suffix link, except for the

internal node possibly inserted into Ti in iteration i.

Lemma: If aγ has a location in Ti, so does γ in Ti+1.

Proof: Note that a string α has a location inTi if and only if there exist

two suffixes sufj and sufk, where 1≤ j ≠ k ≤ i, such that α is the longest

common prefix of sufj and sufk.

Thus if aγ is the longest common prefix of sufj and sufk, with 1≤ j ≠ k ≤ i,

then γ is the longest common prefix of sufj+1 and sufk+1, where

1≤ j+1≤ i+1 and 1≤ k+1 ≤ i+1.

Hence γ has a location inTi+1.

© S. Albers

39WS 2018/19

Iteration i +1

w

x

βi

aiαi αi

headi u

v

sufi

βi

y

sufi+1

headi+1
rescan

scan

new link

MCC traverses the suffix link of the nearest ancestor of sufi having such a

link. Then it identifies headi+1, using rescan and scan operations, and sets a

new suffix link if required.
© S. Albers

40WS 2018/19

Analysis

Iteration i +1:

γi = longest prefix of sufi having a location with suffix link in Ti.

Cost rescan: It is not necessary to scan all the characters of βi. Since

βi is in the tree, starting at node w, it suffices to traverse the respective

edges by inspecting the edge labels. Thus the cost is poportional to

number of edges traversed. Whenever an edge is fully traversed, the

edge label adds to γi+1. The rescan starts at a string of length |γi|-1.

Therefore the cost is a constant factor times |γi+1| - (|γi|-1) +1.

Cost scan: Proportional to number of character comparisons. The

scan starts at a string of length |headi|-1. Thus the cost is a constant

factor times |headi+1| - (|headi|-1) + 1.

© S. Albers

41WS 2018/19

Analysis

Summation over all iterations

Σ0≤i≤n-1 (|γi+1| - (|γi|-1) +1) = |γn| - |γ0| + 2n ≤ 3n

Σ0≤i≤n-1 (|headi+1| - (|headi|-1) + 1) = |headn| - |head0| +2n ≤ 3n

© S. Albers

42WS 2018/19

Suffix tree: application

Usage of a suffix tree T:

1 Search for a string :

Follow the path with edge labels  (takes O(||) time).

leaves of the subtree occurrences of 

2 Search for the longest substring occurring at least twice:

Find the location of a substring with maximum weighted

depth that is an internal node.

3 Prefix search:

All occurrences of strings with prefix  are represented by

the nodes of the subtree rooted at the extended location of  in T.

̂

© S. Albers

43WS 2018/19

Suffix tree: application

4 Range search for [, ] :

range boundaries

© S. Albers

