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1. Minimum cuts
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Minimum cuts

Input: Undirected graph G = (V,E) n = |V|        m = |E|

Output: V1, V2,  V such that V1  V2 = V,   V1  V2 =  and the

number of edges between V1 and V2 is as small as possible.

cmin (G) =  # edges of a minimum cut of G

A cut is often represented by the set of edges between V1, V2 .

Weighted problem: Edge e has weight w(e).

Find a cut of minimum weight.

Reduction to network flow: For all pairs s, t V, compute a maximum
(s,t)- flow. Time O(n5)
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2. Randomized algorithm

Multigraph: Multiple edges may exist between any two vertices.

Basic operation: Edge contraction e = {x,y}.

Replace x,y by a meta-vertex z.

For v {x,y}  replace {v,x} by {v,z}

replace {v,y} by {v,z}.       No self-loops!

 G \ {e}
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Contractions

The order of the contractions is irrelevant.

Each edge contraction can be implemented in time O(n) using
(extended) adjacency lists or matrices. 

For each meta-vertex 

store the number of edges to other meta-vertices,

store the names of the original vertices it contains. 

e e´
e

e´
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Algorithm Contraction

Algorithm Contraction;

1. H := G;

2. while H consists of more than two vertices do

3. Choose an edge e in H uniformly at random;

4.     H :=H \ {e};

5. endwhile;

6. Let V1, V2 be the vertex sets represented by the last two vertices in 

H. 

Running time: O(n2) 

© S. Albers
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Properties

Lemma 1: Partition V1, V2 is output by the Contraction if and only if no

edge between V1 and V2 is ever contracted. 

Proof: If an edge {v1,v2} with v1 ∈ V1 and v2 ∈ V2 is contracted, partition

V1, V2 cannot be output by the algoritm.

If no edge between V1 and V2 is ever contracted, then this partition

indeed survives.

Lemma 2: Let G be a multigraph. If cmin (G) = k, then all vertices have

degree  k and G has  nk/2 edges.

Proof: If there were a vertex v having degree < k, then {v} and V\{v} 

would be a cut with less than k edges, and cmin (G) < k.

If all edges have degree  k, then the total edge degree, summed over

all vertices, is at least nk. In this total edge degree, each edge is

counted exactly twice. 
© S. Albers
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Properties

Lemma 3: Let G be a multigraph. For each edge e in G there holds

cmin (G)  cmin (G \ {e}).

Proof: Partition V1, V2 of G \ {e} with k edges is also a partition of G

with k edges. 

k
V1 V2

G \ {e}
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Probability of success

Theorem 1: Let C be a minimum cut in G.

Contraction returns C with probability  2/n2.

Proof: Let cmin (G) = k. 

Consider the i-th iteration of the while-loop.

H has ni = n – i + 1 vertices. 

Suppose that the first i – 1 iterations do not contract an edge of C.

C is a cut of H and, by Lemma 3, cmin ( H ) = k.

Furthermore, by Lemma 2, H has at least nik/2 edges.

Prob[i-th iteration contracts an edge of C]  2/ni

Prob[i-th iterationen does not contract an edge of C]  1 – 2/ni

© S. Albers
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Probability of success

Prob[C is output]
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Increasing the success probability

Repeat Contraction dn2 ln n times, for some constant d, and select the

smallest cut.
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3. Improved running time

Lemma 4: Let C be a minimum cut.   Stop Contraction when exactly

t vertices are left. There holds

Proof:

 
 

 

1
Prob no edge of  is contracted .

1

t t
C

n n






   
 

 
 1

1

1

212

1

12
1

11 1


























  











nn

tt

nt

nt

j

j

in

in

n

n

tj

tn

i

tn

ii 



© S. Albers



13WS 2018/19

Algorithm Fast-Cut

Input: Multigraph G = (V, E).

Output: Partition V = V1  V2 or the respective edge set.

1. n := |V|;

2. if n  6 then

3. Compute a minimum cut by complete enumeration; 

4. else

5.

6. Execute Contraction twice so that each time exactly

t vertices remain. Let H1 and H2 be the resulting graphs;

7. Apply Fast-Cut recursively to H1 and H2;

8.      Output the smaller cut;

9. endif;
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Algorithm Fast-Cut

Theorem 2: Fast-Cut has a running time of O(n2log n ).

Proof: Contraction has a running time of O(n2).

     22 1 / 2T n T n O n   
 
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Success probability

Theorem 3: Fast-Cut finds minimum cut with probability  (1/log n).

Proof: Let C be a minimum cut.

Fast-Cut returns a minimum cut if

- during the reduction to H1 or H2 no edge of C is contracted and

- Fast-Cut applied to such an Hi returns C.

P(n) = Prob[Fast-Cut finds a minimum cut in graphs with n vertices]

© S. Albers
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Success probability
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Success probability

p(l) = lower bound on P if there are l recursive levels

We prove that p(l)  1/d implies p(l + 1)  1/ (d + 1) .

Since p(0) = 1  1/1  it follows p(l)  1/(l + 1) = (1/l).

There are O(log n) recursive levels so that P(n) = (1/log n).
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Success probability

f(x) = x – x2/4 is monotonically increasing in [0,1]

Hence p(l)  1/d, where d  1, and p(l)  [0,1] imply
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Increasing the success probability

Repeat Fast-Cut d ln2 n times, for some constant d, and select the

smallest cut.

Running time: O(n2 log3 n)
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4. Minimum weighted cuts

Weighted problem: Undirected graph G = (V,E) n = |V|    m = |E|

Edge e in G = (V,E) has weight w(e)  0.

Output: V1, V2,  V such that V1  V2 = V,   V1  V2 =  and

is as small as possible. 

Let cmin (G) denote the weight of such a minimum cut.

A minimum (s,t)-cut, where s, t  V, is a cut Vs ,Vt  V with

Vs  Vt = V,    Vs  Vt =  and s  Vs ,t  Vt of minimum weight. 

This weight is denoted by cmin (G, s, t).

© S. Albers
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Minimum weighted cuts

G \ {x,y} =  graph if x, y are contracted

The weights of multiple edges add up.

Lemma 5: Let s, t  V be arbitrary. There holds

cmin(G) = min{cmin (G,s,t), cmin (G \ {s,t})}. 

© S. Albers
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Deterministic algorithm

Algorithm Some-(s,t)-Cut;

Input: Graph G

Output: s, t (along with a minimum (s,t)-cut)

1. A := {arbitrary vertex of V};

2. while A  V do

3. Add vertex v V – A to A for which w(v,A) is maximum;

4. endwhile;

5. Let s be the second to last and t be the last vertex added to A; 

w(v,A) = total weight of edges between v and vertices in A

© S. Albers
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Deterministic algorithm

Algorithm Minimum-Cut;

1. Min := ; n := |V |;

2. while n  2 do

3.     Execute Some-(s,t)-Cut, and obtain s, t and a cut C of weight W;

4.  if W < Min then store C; Min := W; endif;

5.  Contract s and t;    n := n – 1;

6.  endwhile;

7.  Return Min and the cut stored last;

© S. Albers
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Analysis

Theorem 4: Sets Vt = {t} and Vs = V – {t} computed by Some-(s,t)-Cut
are a minimum (s,t)-cut.

Proof:

Number the vertices from 1 to n so that vertex i is added to A in the i-th
iteration.

s = n – 1 and t = n

Let C be an arbitrary (s,t)-cut.

Ci = edges in C having both endpoints in {1,...,i} 

w(Ci) = total weight of edges in Ci

© S. Albers



25WS 2018/19

Analysis

Vertex i is active (with respect to C) if i and i – 1 belong to different 

parts of C.

Claim: For each active vertex i there holds w(i, {1, ..., i – 1})  w(Ci).

n is active and hence w(n, {1, ... , n – 1})  w (C).

© S. Albers
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Analysis

Claim: For each active vertex i there holds w(i,{1,.., i – 1})  w(Ci).

Proof: The claim holds for the first active vertex i.

© S. Albers
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Analysis

Suppose the claim holds for active vertex i and the next active vertex is

j.
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Analysis

Theorem 5: Minimum-Cut computes a minimum cut in time 

O(mn + n2 log n).

Proof: Correctness: Induction on the number of vertices.

Algorithm works correctly for multigraphs with n = 2 vertices.

n-1  n: Some-(s,t)-Cut computes s,t and cmin (G,s,t) correctly.    

MinimumCut computes cmin (G \ {s,t}) correctly.

Some-(s,t)-Cut has a running time of O(m + n log n).

Maintain a priority queue for v V – A with key(v) = w(v,A).

n DeleteMax and m IncreaseKey operations (Fibonacci Heaps).  
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