
05 – Minimum Cuts

2WS 2018/19

1. Minimum cuts

© S. Albers

3WS 2018/19

Minimum cuts

Input: Undirected graph G = (V,E) n = |V| m = |E|

Output: V1, V2,  V such that V1  V2 = V, V1  V2 =  and the

number of edges between V1 and V2 is as small as possible.

cmin (G) = # edges of a minimum cut of G

A cut is often represented by the set of edges between V1, V2 .

Weighted problem: Edge e has weight w(e).

Find a cut of minimum weight.

Reduction to network flow: For all pairs s, t V, compute a maximum
(s,t)- flow. Time O(n5)

© S. Albers

4WS 2018/19

2. Randomized algorithm

Multigraph: Multiple edges may exist between any two vertices.

Basic operation: Edge contraction e = {x,y}.

Replace x,y by a meta-vertex z.

For v {x,y} replace {v,x} by {v,z}

replace {v,y} by {v,z}. No self-loops!

 G \ {e}

u y

s

w

x

v



u x,y

w

v

s

5WS 2018/19

Contractions

The order of the contractions is irrelevant.

Each edge contraction can be implemented in time O(n) using
(extended) adjacency lists or matrices.

For each meta-vertex

store the number of edges to other meta-vertices,

store the names of the original vertices it contains.

e e´
e

e´

© S. Albers

6WS 2018/19

Algorithm Contraction

Algorithm Contraction;

1. H := G;

2. while H consists of more than two vertices do

3. Choose an edge e in H uniformly at random;

4. H :=H \ {e};

5. endwhile;

6. Let V1, V2 be the vertex sets represented by the last two vertices in

H.

Running time: O(n2)

© S. Albers

7WS 2018/19

Properties

Lemma 1: Partition V1, V2 is output by the Contraction if and only if no

edge between V1 and V2 is ever contracted.

Proof: If an edge {v1,v2} with v1 ∈ V1 and v2 ∈ V2 is contracted, partition

V1, V2 cannot be output by the algoritm.

If no edge between V1 and V2 is ever contracted, then this partition

indeed survives.

Lemma 2: Let G be a multigraph. If cmin (G) = k, then all vertices have

degree  k and G has  nk/2 edges.

Proof: If there were a vertex v having degree < k, then {v} and V\{v}

would be a cut with less than k edges, and cmin (G) < k.

If all edges have degree  k, then the total edge degree, summed over

all vertices, is at least nk. In this total edge degree, each edge is

counted exactly twice.
© S. Albers

8WS 2018/19

Properties

Lemma 3: Let G be a multigraph. For each edge e in G there holds

cmin (G)  cmin (G \ {e}).

Proof: Partition V1, V2 of G \ {e} with k edges is also a partition of G

with k edges.

k
V1 V2

G \ {e}

© S. Albers

9WS 2018/19

Probability of success

Theorem 1: Let C be a minimum cut in G.

Contraction returns C with probability  2/n2.

Proof: Let cmin (G) = k.

Consider the i-th iteration of the while-loop.

H has ni = n – i + 1 vertices.

Suppose that the first i – 1 iterations do not contract an edge of C.

C is a cut of H and, by Lemma 3, cmin (H) = k.

Furthermore, by Lemma 2, H has at least nik/2 edges.

Prob[i-th iteration contracts an edge of C]  2/ni

Prob[i-th iterationen does not contract an edge of C]  1 – 2/ni

© S. Albers

10WS 2018/19

Probability of success

Prob[C is output]

 

  2

2

1 3

2

1

2

1

2

3

212

1

12
1

nnn

n

n

j

j

in

in

n

n

i

n

j

n

i i


























  



 



 



© S. Albers

11WS 2018/19

Increasing the success probability

Repeat Contraction dn2 ln n times, for some constant d, and select the

smallest cut.

 

2 ln

2 ln 2

2

2
Prob is not found 1

n d n

d n dC e n
n

  
    
 

© S. Albers

12WS 2018/19

3. Improved running time

Lemma 4: Let C be a minimum cut. Stop Contraction when exactly

t vertices are left. There holds

Proof:

 
 

 

1
Prob no edge of is contracted .

1

t t
C

n n






   
 

 
 1

1

1

212

1

12
1

11 1


























  











nn

tt

nt

nt

j

j

in

in

n

n

tj

tn

i

tn

ii 



© S. Albers

13WS 2018/19

Algorithm Fast-Cut

Input: Multigraph G = (V, E).

Output: Partition V = V1  V2 or the respective edge set.

1. n := |V|;

2. if n  6 then

3. Compute a minimum cut by complete enumeration;

4. else

5.

6. Execute Contraction twice so that each time exactly

t vertices remain. Let H1 and H2 be the resulting graphs;

7. Apply Fast-Cut recursively to H1 and H2;

8. Output the smaller cut;

9. endif;

 

 

1 1
/*

1 2
 : 1 / 2 t t

n n
t n 




 
  

 

© S. Albers

14WS 2018/19

Algorithm Fast-Cut

Theorem 2: Fast-Cut has a running time of O(n2log n).

Proof: Contraction has a running time of O(n2).

     22 1 / 2T n T n O n   
 

© S. Albers

15WS 2018/19

Success probability

Theorem 3: Fast-Cut finds minimum cut with probability  (1/log n).

Proof: Let C be a minimum cut.

Fast-Cut returns a minimum cut if

- during the reduction to H1 or H2 no edge of C is contracted and

- Fast-Cut applied to such an Hi returns C.

P(n) = Prob[Fast-Cut finds a minimum cut in graphs with n vertices]

© S. Albers

16WS 2018/19

Success probability

   

 

  

 

1,2

1,2

2

1 Prob does not find in any of the two trials

1 Prob does not find in the trial on

1 1 Pr ob finds in the trial on

1
1 1

2

i

i

i

i

P n Fast Cut C

Fast Cut C H

Fast Cut C H

P t





  

  

   

 
   

 





© S. Albers

17WS 2018/19

Success probability

p(l) = lower bound on P if there are l recursive levels

We prove that p(l)  1/d implies p(l + 1)  1/ (d + 1) .

Since p(0) = 1  1/1 it follows p(l)  1/(l + 1) = (1/l).

There are O(log n) recursive levels so that P(n) = (1/log n).

     
 

 

22
1

1 1 1
2 4

 0 1

p l
p l p l p l

p

 
      

 



© S. Albers

18WS 2018/19

Success probability

f(x) = x – x2/4 is monotonically increasing in [0,1]

Hence p(l)  1/d, where d  1, and p(l)  [0,1] imply

  2

2

2

2

1 1
1

4

1 4 1

1 4

1 4 3 1

1 4

1
.

1

p l
d d

d d

d d

d d

d d

d

  

 
 



 







© S. Albers

19WS 2018/19

Increasing the success probability

Repeat Fast-Cut d ln2 n times, for some constant d, and select the

smallest cut.

Running time: O(n2 log3 n)

 

2ln

lnProb not found 1
ln

d n

cd n cdc
C e n

n

  
    
 

© S. Albers

20WS 2018/19

4. Minimum weighted cuts

Weighted problem: Undirected graph G = (V,E) n = |V| m = |E|

Edge e in G = (V,E) has weight w(e)  0.

Output: V1, V2,  V such that V1  V2 = V, V1  V2 =  and

is as small as possible.

Let cmin (G) denote the weight of such a minimum cut.

A minimum (s,t)-cut, where s, t  V, is a cut Vs ,Vt  V with

Vs  Vt = V, Vs  Vt =  and s  Vs ,t  Vt of minimum weight.

This weight is denoted by cmin (G, s, t).

© S. Albers

1 2(,)
()

e u v V V
w e

  

21WS 2018/19

Minimum weighted cuts

G \ {x,y} = graph if x, y are contracted

The weights of multiple edges add up.

Lemma 5: Let s, t  V be arbitrary. There holds

cmin(G) = min{cmin (G,s,t), cmin (G \ {s,t})}.

© S. Albers

22WS 2018/19

Deterministic algorithm

Algorithm Some-(s,t)-Cut;

Input: Graph G

Output: s, t (along with a minimum (s,t)-cut)

1. A := {arbitrary vertex of V};

2. while A  V do

3. Add vertex v V – A to A for which w(v,A) is maximum;

4. endwhile;

5. Let s be the second to last and t be the last vertex added to A;

w(v,A) = total weight of edges between v and vertices in A

© S. Albers

23WS 2018/19

Deterministic algorithm

Algorithm Minimum-Cut;

1. Min := ; n := |V |;

2. while n  2 do

3. Execute Some-(s,t)-Cut, and obtain s, t and a cut C of weight W;

4. if W < Min then store C; Min := W; endif;

5. Contract s and t; n := n – 1;

6. endwhile;

7. Return Min and the cut stored last;

© S. Albers

24WS 2018/19

Analysis

Theorem 4: Sets Vt = {t} and Vs = V – {t} computed by Some-(s,t)-Cut
are a minimum (s,t)-cut.

Proof:

Number the vertices from 1 to n so that vertex i is added to A in the i-th
iteration.

s = n – 1 and t = n

Let C be an arbitrary (s,t)-cut.

Ci = edges in C having both endpoints in {1,...,i}

w(Ci) = total weight of edges in Ci

© S. Albers

25WS 2018/19

Analysis

Vertex i is active (with respect to C) if i and i – 1 belong to different

parts of C.

Claim: For each active vertex i there holds w(i, {1, ..., i – 1})  w(Ci).

n is active and hence w(n, {1, ... , n – 1})  w (C).

© S. Albers

26WS 2018/19

Analysis

Claim: For each active vertex i there holds w(i,{1,.., i – 1})  w(Ci).

Proof: The claim holds for the first active vertex i.

© S. Albers

27WS 2018/19

Analysis

Suppose the claim holds for active vertex i and the next active vertex is

j.

        

     

    

 

, 1, , 1 , 1, , 1 , , , 1

, 1, , 1 , , , 1

, , , 1i

j

w j j w j i w j i j

w i i w j i j

w C w j i j

w C

    

   

  



i

j - 1
j

i - 1

© S. Albers

28WS 2018/19

Analysis

Theorem 5: Minimum-Cut computes a minimum cut in time

O(mn + n2 log n).

Proof: Correctness: Induction on the number of vertices.

Algorithm works correctly for multigraphs with n = 2 vertices.

n-1  n: Some-(s,t)-Cut computes s,t and cmin (G,s,t) correctly.

MinimumCut computes cmin (G \ {s,t}) correctly.

Some-(s,t)-Cut has a running time of O(m + n log n).

Maintain a priority queue for v V – A with key(v) = w(v,A).

n DeleteMax and m IncreaseKey operations (Fibonacci Heaps).

© S. Albers

