TUTI

05 — Minimum Cuts

1. Minimum cuts TI.ITI

WS 2018/19 © S. Albers 2

Minimum cuts TI.ITI

Input: Undirected graph G = (V,E) n=|V| m = |E]|
Output: V., V,,cV suchthatV,uV,=V, V,nV,=J and the
number of edges between V, and V, is as small as possible.

(G) = # edges of a minimum cut of G

Cmin
A cut is often represented by the set of edges between V,, V, .

Weighted problem: Edge e has weight w(e).
Find a cut of minimum weight.

Reduction to network flow: For all pairs s, t €V, compute a maximum
(s,b)- flow. Time O(n®)

WS 2018/19 © S. Albers 3

2. Randomized algorithm TI.ITI

Multigraph: Multiple edges may exist between any two vertices.
Basic operation: Edge contraction e = {x,y}.

Replace x,y by a meta-vertex z.
For v ¢{x,y} replace {v,x} by {v,z}
replace {v,y} by {v,z}. No self-loops!

> G\ {e}
u y u X,y
E—
S S
VvV \Y

WS 2018/19 4

Contractions

The order of the contractions is irrelevant.

/ /

Each edge contraction can be implemented in time O(n) using
(extended) adjacency lists or matrices.

For each meta-vertex
store the number of edges to other meta-vertices,
store the names of the original vertices it contains.

WS 2018/19

© S. Albers

5

Algorithm Contraction TI.ITI

Algorithm Contraction;

1.H:=G;

2. while H consists of more than two vertices do
3. Choose an edge e in H uniformly at random;
4. H:=H\{e};

5. endwhile;

6. Let V,, V, be the vertex sets represented by the last two vertices in
H.

Running time: O(n?)

WS 2018/19 © S. Albers 6

Properties TI.ITI

Lemma 1: Partition V,, V, Is output by the Contraction if and only if no
edge between V, and V, is ever contracted.

Proof: If an edge {v,,v,} with v, € V, and v, € V, is contracted, partition
V,, V, cannot be output by the algoritm.

If no edge between V, and V, is ever contracted, then this partition
iIndeed survives.

Lemma 2: Let G be a multigraph. If ¢, (G) = k, then all vertices have
degree > k and G has > nk/2 edges.

Proof: If there were a vertex v having degree <k, then {v} and V\{v}
would be a cut with less than k edges, and c,;, (G) < k.

If all edges have degree > k, then the total edge degree, summed over
all vertices, is at least nk. In this total edge degree, each edge is

counted exactly twice.
WS 2018/19 © S. Albers 7

Properties TI.ITI

Lemma 3: Let G be a multigraph. For each edge e in G there holds
Cmin (G) < Cmin (G \ {e})

Proof: Partition V{, V, of G \ {e} with k edges is also a patrtition of G
with k edges.

WS 2018/19 © S. Albers 8

Probability of success TI.ITI

Theorem 1: Let C be a minimum cut in G.
Contraction returns C with probability > 2/n?.

Proof: Letc,, (G)=k.

Consider the i-th iteration of the while-loop.

H hasn =n—1+1vertces.

Suppose that the first i — 1 iterations do not contract an edge of C.
Cisacutof Hand, by Lemma3, c;,(H) =k.

Furthermore, by Lemma 2, H has at least n,k/2 edges.

Prob[i-th iteration contracts an edge of C] < 2/n,

Probli-th iterationen does not contract an edge of C] > 1 — 2/n,

WS 2018/19 © S. Albers 9

Probability of success TI.ITI

Prob[C is output]

WS 2018/19 © S. Albers 10

Increasing the success probability TI.ITI

Repeat Contraction dn? In n times, for some constant d, and select the
smallest cut.

n“dInn
Prob [C is not found] < (1—-) < g2 _ n2d

WS 2018/19 © S. Albers 11

3. Improved running time TI.ITI

Lemma 4: Let C be a minimum cut. Stop Contraction when exactly
t vertices are left. There holds

. t(t-1)
Prob[no edge of C is contracted] > 2(n-1)
Proof:
ntf o 2) mtpn—j-1 o j-2 (t-1)---(n-2)
l__ — — =
H(nij gn—i+1 =t J (t+1)---n
=
n(n-1)

WS 2018/19 © S. Albers 12

Algorithm Fast-Cut TI.ITI

Input: Multigraph G = (V, E).
Output: Partition V = V; U V, or the respective edge set.

1.n:=|V|
2.1f n<6then
3. Compute a minimum cut by complete enumeration;
4. else
5 t:={1+n/\/ﬂ AR
6. Execute Contraction twice so that each time exactly
[vertices remain. Let H; and H, be the resulting graphs;
7. Apply Fast-Cut recursively to H, and H,;
8. Output the smaller cut;
9. endif;

WS 2018/19 © S. Albers 13

Algorithm Fast-Cut TI.ITI

Theorem 2: Fast-Cut has a running time of O(n?log n).

Proof: Contraction has a running time of O(n?).

T(n)=2T([1+n/V2])+0(n?)

WS 2018/19 © S. Albers 14

Success probabillity TI.ITI

Theorem 3: Fast-Cut finds minimum cut with probability Q (1/log n).

Proof: Let C be a minimum cut.
Fast-Cut returns a minimum cut if

- during the reduction to H, or H, no edge of C is contracted and
- Fast-Cut applied to such an H; returns C.

P(n) = Prob[Fast-Cut finds a minimum cut in graphs with n vertices]

WS 2018/19 © S. Albers 15

Success probabillity TI.ITI

P(n)>1-Prob|Fast —Cut does not find C in any of the two trials|

=1—] | Prob[Fast —Cut does not find C in the trial on H; |

1=1,2

=1-J [(1-Prob[Fast - Cut finds C in the trial on H,])

WS 2018/19 © S. Albers 16

Success probabllity

p(l) = lower bound on P if there are | recursive levels

A

p(l +1):1_(1_% p(I)T = p(l)_Ll)2
p(0)=1

We prove that p(l) > 1/d impliesp(l+1)>1/(d+1).

Since p(0) =1 > 1/1 itfollows p(l) > 1/(1 + 1) = Q(1/).

There are O(log n) recursive levels so that P(n) = (1/log n).

WS 2018/19

© S. Albers 17

Success probabillity TI.ITI

f(X) = x — x2/4 is monotonically increasing in [0,1]

Hence p(l) > 1/d, where d > 1, and p(l) € [0,1] imply

1 1
p(|+1)25_4d2

S d+1 4d-1

T d+1 4d?
1 4d*+3d-1
d+1 4d?

1

—

>

WS 2018/19 © S. Albers 18

Increasing the success probability TI.ITI

Repeat Fast-Cut d In? n times, for some constant d, and select the
smallest cut.

din®n
Prob[C not found | < (1—%) < gedinn _ oo
nn

Running time: O(n? log® n)

WS 2018/19 © S. Albers 19

4. Minimum weighted cuts TI.ITI

Weighted problem: Undirected graph G=(V,E) n=|V| m=|E]|
Edge e in G = (V,E) has weight w(e) > 0.
Output: V., V,,cV suchthatV,uV,=V, V,nV,=Y and
Ze:(u,v)elevz w(e) Is as small as possible.

Let c,,, (G) denote the weight of such a minimum cut.

A minimum (s,t)-cut, where s, t e V, isacutV,,V,c V with
V.uV,=V, V.nV,=dand s eV, ,teV, of minimum weight.
This weight is denoted by ¢, (G, s, 1).

WS 2018/19 © S. Albers 20

Minimum weighted cuts

G\ {x,y} = graph if x, y are contracted
The weights of multiple edges add up.

Lemma 5: Lets, t € V be arbitrary. There holds
Cmin(G) = rnin{Cmin (G,S,t), Crin (G \ {S1t})}-

WS 2018/19

© S. Albers 21

Deterministic algorithm TI.ITI

Algorithm Some-(s,t)-Cut;
Input: Graph G
Output: s,t (along with a minimum (s,t)-cut)

1. A .= {arbitrary vertex of V};

2. while A=V do

3. Addvertexv €V — Ato A for which w(v,A) Is maximum;

4. endwhile;

5. Let s be the second to last and t be the last vertex added to A;

w(v,A) = total weight of edges between v and vertices in A

WS 2018/19 © S. Albers 22

Deterministic algorithm TI.ITI

Algorithm Minimum-Cut;

.Min:=oo; n:=|V|;

.whilen>2do

Execute Some-(s,t)-Cut, and obtain s, t and a cut C of weight W,
If W < Min then store C; Min := W; endif;

Contractsandt; n:=n-1;

. endwhile;

Return Min and the cut stored last;

N oo s w0N R

WS 2018/19 © S. Albers 23

Analysis TI.ITI

Theorem 4: Sets V, = {t} and V_ = V — {t} computed by Some-(s,t)-Cut
are a minimum (s,t)-cut.

Proof:

Number the vertices from 1 to n so that vertex i iIs added to A in the i-th
iteration.

s=n-landt=n
Let C be an arbitrary (s,t)-cut.

C, = edges in C having both endpoints in {1,...,1}
w(C,) = total weight of edges in C,

WS 2018/19 © S. Albers 24

Analysis TI.ITI

Vertex i is active (with respect to C) if i and i — 1 belong to different
parts of C.

Claim: For each active vertex i there holds w(i, {1, ..., 1 —1}) < w(C).

nis active and hence w(n, {1, ... ,n—=1}) <w (C).

WS 2018/19 © S. Albers 25

Analysis TI.ITI

Claim: For each active vertex i there holds w(i,{1,.., I — 1}) < w(C)).

Proof: The claim holds for the first active vertex I.

WS 2018/19 © S. Albers 26

Analysis TI.ITI

Suppose the claim holds for active vertex i and the next active vertex is
J.

w(j{1...,j-1}) i ' (3. {i,.... i-1})

WS 2018/19 © S. Albers 27

Analysis TI.ITI

Theorem 5: Minimum-Cut computes a minimum cut in time
O(mn + n? log n).

Proof: Correctness: Induction on the number of vertices.
Algorithm works correctly for multigraphs with n = 2 vertices.

n-1 - n: Some-(s,t)-Cut computes s,t and c,,;, (G,s,t) correctly.
MinimumCut computes c.,;, (G \ {s,t}) correctly.

Some-(s,t)-Cut has a running time of O(m + n log n).

Maintain a priority queue for v eV — A with key(v) = w(v,A).
n DeleteMax and m IncreaseKey operations (Fibonacci Heaps).

WS 2018/19 © S. Albers 28

