
03 – Randomization

2WS 2018/19

Randomization

• Types of randomized algorithms

• Randomized Quicksort

• Randomized primality test

• Cryptography

• Verifying matrix multiplication

© S. Albers

3WS 2018/19

1. Types of randomized algorithms

• Las Vegas algorithms

Always correct; expected running time

Example: randomized Quicksort

• Monte Carlo algorithms (mostly correct)

Probably correct; guaranteed running time

Example: randomized primality test

© S. Albers

4WS 2018/19

2. Quicksort

Input: List S of n distinct elements over a totally ordered universe.

Output: The elements of S in (ascending) sorted order.

Idea of Quicksort: Identify a splitter v ∈ S.

Determine set Sl of elements of S that are < v.

Determine set Sr of elements of S that are > v.

Sort Sl, Sr recursively.

Output sorted sequence of Sl, followed by v,

followed by sorted sequence Sr.

© S. Albers

5WS 2018/19

function Quick (S: sequence): sequence;

{returns the sorted sequence S}

begin

if #S ≤ 1 then Quick:=S;

else { choose splitter element v in S;

partition S into Sl with elements < v,

and Sr with elements > v;

Quick:= }

end;

Quicksort

S

Sl < v v Sr > v

v

Quick(Sl) v Quick(Sr)

© S. Albers

6WS 2018/19

Worst-case input

n elements

Running time: (n-1) + (n-2) + … + 2 + 1 = n(n-1)/2

© S. Albers

7WS 2018/19

Choice of the splitter element

Suppose that a splitter v with |Sl| ≤ n/2 and |Sr| ≤ n/2

can be found in cn step.

Then T(n) ≤ 2 T(n/2) + an, for some a ≥ c, and T(n) ≤ an log n.

T(k) = worst-case number of steps to sort k elements

Problem: Find splitter v with above property.

But: Running time of O(n log n) can be maintained if Sl, Sr have

roughly equal size, i.e. ¼ |S| ≤ |Sl|, |Sr| ≤ ¾ |S| .

Thus randomly chosen splitter is „good“ with probability ≥ ½.

© S. Albers

8WS 2018/19

function RandQuick (S: sequence): sequence;

{returns the sorted sequence S}

begin

if #S ≤ 1 then Quick:=S;

else { choose splitter element v in S uniformly at random;

partition S into Sl with elements < v,

and Sr with elements > v;

RandQuick:= }

end;

Randomized Quicksort

S

Sl < v v Sr > v

v

RandQuick(Sl) v RandQuick(Sr)

© S. Albers

9WS 2018/19

With probability 1/n, s1 is the splitter element:

subproblems of sizes 0 and n-1

With probability 1/n, sk is the splitter element:

subproblems of sizes k-1 and n-k

Analysis 1

n elements; let si be the i-th smallest element

With probability 1/n, sn is the splitter element:

subproblems of sizes n-1 and 0

© S. Albers

10WS 2018/19

Analysis 1

Expected running time:

        

   

 nnO

nkT
n

nknTkT
n

nT

n

k

n

k

log

1
2

1
1

1

1















© S. Albers

11WS 2018/19

Analysis 2: Representation of QS as a tree

s6

s5

s1

s3

s4

s2

s7

s8

s9

© S. Albers

12WS 2018/19

Analysis 2: expected #comparisons

Running time is linear in the number of element comparisons.













ij

ij

n

iij

ij

n

i

XEXE][
11

ijijijij pppXE )1(01][

pij = probability that si is compared to sj


 


1 if is compared to

0 otherwise

i j

ij

s s
X

© S. Albers

13WS 2018/19

Computing pij

 si is compared to sj iff si or sj are chosen as pivot element

before any sl , i<l<j.

{si … sl … sj}

 Any element si , … , sj is chosen as pivot element with the

same probability. Hence pij = 2 / (j-i+1)

© S. Albers

14WS 2018/19

Analysis 2

Expected number of comparisons:




























n

k

n

k

n

i

in

k

n

i

ij

n

iij

ij

n

i

k
n

k

k

ij
p

1

11

1

21

11

1
2

1
2

2

1

2

nkH
n

k

n ln/1
1




© S. Albers

15WS 2018/19

Definition:

A natural number p  2 is prime iff a | p implies that a = 1 or a = p.

We consider primality tests for numbers n  2.

Algorithm: Deterministic primality test (naive approach)

Input: Natural number n  2

Output: Answer to the question „Is n prime?“

if n = 2 then return true;

if n even then return false;

for i = 1 to 𝑛/2 do

if 2i + 1 divides n

then return false;

return true;

Running time:  𝑛

3. Primality test

© S. Albers

16WS 2018/19

Primality test

Goal:

Randomized algorithm

• Polynomial running time.

• If it returns “not prime”, then n is not prime.

• If it returns “prime”, then with probability at most p, p>0,

n is composite.

After k iterations: If algorithm always returns “prime”, then with

probability at most pk , n is composite.

© S. Albers

17WS 2018/19

Simple primality test

Fact: For any odd prime number p: 2p-1 mod p = 1.

Examples: p = 17, 216 – 1 = 65535 = 17 * 3855

p = 23, 222 – 1 = 4194303 = 23 * 182361

Simple primality test:

1 Compute z = 2n-1 mod n;

2 if z = 1

3 then n is possibly prime

4 else n is composite

Advantage: polynomial running time.

© S. Albers

18WS 2018/19

Simple primality test

Definition:

A natural number n  2 is a base-2 pseudoprime if n is composite and

2n-1 mod n = 1.

Example: n = 11 * 31 = 341

2340 mod 341 = 1

© S. Albers

19WS 2018/19

Randomized primality test

Theorem: (Fermat‘s little theorem)

If p is prime and 0 < a < p, then

ap-1 mod p = 1.

Example: n = 341, a = 3: 3340 mod 341 = 56  1

Algorithm: Randomized primality test

1 Choose a in the range [2, n-1] uniformly at random;

2 Compute an-1 mod n;

3 if an-1 mod n = 1

4 then n is probably prime

5 else n is composite

Prob(n is composite but an-1 mod n = 1) ?

© S. Albers

20WS 2018/19

Problem: Carmichael numbers

Definition:

A natural number n  2 is a base-a pseudoprime if n is composite and

an-1 mod n = 1.

Definition: A number n  2 is a Carmichael number if n is composite

and for any a with GCD(a, n) = 1 we have

an-1 mod n = 1.

Example:

Smallest Carmichael number: 561 = 3 * 11 * 17

© S. Albers

21WS 2018/19

Randomized primality test

Theorem: If p is prime and 0 < a < p, then the equation

a2 mod p = 1

has exactly the two solutions a = 1 and a = p – 1.

Definition: A number a is a non-trivial square root mod n if

a2 mod n = 1 and a  1, n – 1.

Example: n = 35 62 mod 35 = 1

Idea: While computing an-1, where 0 < a < n is chosen uniformly at

random, check if a non-trivial square root mod n exists.

© S. Albers

22WS 2018/19

Fast exponentiation

Method for computing an:

Case 1: [n is even]

an = an/2 * an/2

Case 2: [n is odd]

an = a(n-1)/2 * a(n-1)/2 * a

Running time: O(log2an log n)

© S. Albers

23WS 2018/19

Fast exponentiation

Example:

a62 = (a31)2

a31 = (a15)2 * a

a15 = (a7)2 * a

a7 = (a3)2 * a

a3 = (a)2 * a

© S. Albers

24WS 2018/19

Fast exponentiation

boolean isProbablyPrime;

function power(int a, int p, int n){

/* computes ap mod n and checks if a number x with x2 mod n = 1
and x  1, n-1 occurs during the computation */

if p = 0 then return 1;

x := power(a, p div 2, n);

result := x * x mod n;

/* check if x2 mod n = 1 and x  1, n-1 */

if result = 1 and x ≠ 1 and x ≠ n –1 then isProbablyPrime := false;

if p mod 2 = 1 then result := a * result mod n;

return result;

}

Running time: O(log p ∙ log n ∙ log (max{a,n}))

© S. Albers

25WS 2018/19

Miller Rabin primality test

primeTest(int n) {

/* executes the randomized primality test for a chosen at random */

a := random(2, n-1);

isProbablyPrime: = true;

result := power(a, n-1, n);

if result ≠ 1 or !isProbablyPrime then

return false;

else return true;

}

© S. Albers

26WS 2018/19

Miller Rabin primality test

Theorem:

If n is composite, then there are at most

numbers 0 < a < n for which the algorithm primeTest fails.

4

9n

© S. Albers

27WS 2018/19

4. Application

Public-Key Cryptosystems

© S. Albers

28WS 2018/19

Secret key cryptosystems

Traditional encryption of messages

Disadvantages:

1. Prior to transmission of the message, the key k has to be

exchanged between the parties A und B.

2. For encryption of messages between n parties, n(n-1)/2 keys are

required.

© S. Albers

29WS 2018/19

Secret key encryption systems

Advantage:

Encryption and decryption are fast.

© S. Albers

30WS 2018/19

Public-key cryptosystems

Diffie and Hellman (1976)

Idea: Each participant A holds two keys:

1. A public key PA , accessible to all other participants.

2. A secret key SA that is kept secret.

© S. Albers

31WS 2018/19

Public-key cryptosystems

D = Set of all valid messages,

e.g. set of all bitstrings of finite length

    DDSP
AA

11

:,




Three constraints:

1. PA(), SA() efficiently computable

2. SA(PA(M)) = M and PA(SA(M)) = M

3. SA() is not computable from PA() (with realistic effort)

© S. Albers

32WS 2018/19

Encryption in a public-key system

A sends a message M to B:

Dear Bob,

I just saw
the brand-
new …

Dear Bob,

I just saw
the brand-
new …

© S. Albers

33WS 2018/19

Encryption in a public key system

1. A receives B`s public key PB from a public directory or

directly from B.

2. A computes the ciphertext C = PB(M) and sends it to B.

3. After receiving message C, B decrypts the message using

his secret key SB: M = SB(C)

© S. Albers

34WS 2018/19

Generating a digital signature

A sends a digitally signed message M´ to B:

1. A computes the digital signature  for M´ using her

secret key:

 = SA(M´)

2. A sends the pair (M´, ) to B.

3. After receiving (M´, ), B checks the digital signature:

PA() = M´

Anybody is able to check  using PA (e.g. for bank checks).

© S. Albers

35WS 2018/19

RSA cryptosystem

R. Rivest, A. Shamir, L. Adleman

Generating the public and secret keys:

1. Select at random two large primes p and q of l+1 bits (l  2000).

2. Compute n = pq.

3. Select a natural number e is that is relatively prime to (p –1)(q – 1).

4. Compute d = e-1

d*e  1 (mod (p – 1)(q –1))

© S. Albers

36WS 2018/19

RSA cryptosystem

5. Publish P = (e, n) as public key.

6. Keep S = (d, n) as secret key.

Split the (binary coded) message into blocks of length 2l.

Interpret each block M as a binary number: 0  M < 22l

P(M) = Me mod n S(C) = Cd mod n

© S. Albers

37WS 2018/19

Recovering a message

To show: SA(PA(M)) = PA(SA(M)) = Med mod n = M, for any 0  M < 22l.

Theorem: (Fermat‘s little theorem)

If p is prime, then for any integer a that is not divisible by p,

ap-1 mod p = 1.

Since d∙e  1 mod (p – 1)(q –1) there holds ed = 1+k(p-1)(q-1), for

some integer k.

Suppose that M mod p ≠ 0. Then by Fermat’s little theorem,

Mp-1 mod p = 1 and thus Mk(p-1)(q-1) mod p = 1.

Hence Med mod p = M1+k(p-1)(q-1) mod p = M mod p, and Med - M = l1p, for

some integer l1.

If M mod p = 0, then again Med - M = l2p, for some integer l2.

© S. Albers

38WS 2018/19

Recovering a message

In any case, for any M, Med - M = l∙p, for some integer l.

Similarly, for any M, Med - M = l’∙q, for some integer l’.

Since p and q are prime numbers, Med - M = l*pq, for some integer l*.

We conclude that, for any M, there holds Med mod n = M.

© S. Albers

39WS 2018/19

Multiplicative inverse

Theorem: (GCD recursion theorem)

For any numbers a and b with b>0:

GCD(a,b) = GCD(b, a mod b).

Algorithm: Euclid

Input: Two integers a and b with b  0

Output: GCD(a,b)

if b = 0

then return a

else return Euclid(b, a mod b)

© S. Albers

40WS 2018/19

Multiplicative inverse

Algorithm: extended-Euclid

Input: Two integers a and b with b  0

Output: GCD(a,b) and two integers x and y with

xa + yb = GCD(a,b)

if b = 0 then return (a, 1, 0);

(d, x’, y’) := extended-Euclid(b, a mod b);

x := y’; y := x’ – a/b y’;

return (d, x, y);

Application: a = (p-1)(q-1), b = e

The algorithm returns numbers x and y with

x(p-1)(q-1) + ye = GCD((p-1)(q-1),e) = 1

© S. Albers

41WS 2018/19

5. Verifying matrix multiplication

Problem: Three 𝑛 × 𝑛 matrices A, B and C. Verify whether or not

AB=C.

Simple solution: Multiply A, B and compare to C.

O(n3) multiplications/operations, can be reduced to roughly O(n2.37).

Goal: Design fast verification algorithm that may err with a certain

probability.

© S. Albers

42WS 2018/19

Verifying matrix multiplication

Algorithm: Choose Ԧ𝑟 = (𝑟1, … , 𝑟𝑛) ∈ {0,1}𝑛 uniformly at random.

Compute 𝐴𝐵Ԧ𝑟 by first computing 𝐵Ԧ𝑟 and then 𝐴(𝐵Ԧ𝑟).
Then compute 𝐶 Ԧ𝑟.

If 𝐴 𝐵Ԧ𝑟 ≠ 𝐶 Ԧ𝑟, then return 𝐴𝐵 ≠ 𝐶. Otherwise return 𝐴𝐵 = 𝐶.

Running time: O(n2)

Theorem: If 𝐴𝐵 ≠ 𝐶 and if Ԧ𝑟 is chosen uniformly at random from

{0,1}𝑛, then Pr[𝐴𝐵Ԧ𝑟 = 𝐶 Ԧ𝑟] ≤ ½.

We next prove this theorem.

© S. Albers

43WS 2018/19

Analysis

Law of Total Probability: Let Ω be a probability space and A1,…,An be

mutually disjoint events. Let B be an event with B ⊆ 𝑖=1ڂ
𝑛 𝐴𝑖. Then

By assumption 𝐴𝐵 ≠ 𝐶. Hence 𝐷 ≔ 𝐴𝐵 − 𝐶 ≠ 0 and the matrix 𝐷
contains at least one non-zero entry dij ≠ 0.

On the other hand, 𝐴𝐵Ԧ𝑟 = 𝐶 Ԧ𝑟 translates to 𝐷Ԧ𝑟 = 0.

Let 𝑃 = 𝐷𝑟 = (𝑝1, … , 𝑝𝑛)
𝑇 .

There holds 𝑝𝑖 = σ𝑘=1
𝑛 𝑑𝑖𝑘 𝑟𝑘 = 𝑑𝑖𝑗𝑟𝑗 + y, for some constant y.

 
   1 1

Pr[] Pr[] Pr[|]Pr[].
n n

i i ii i
B B A B A A

© S. Albers

44WS 2018/19

Analysis

Hence

There holds:

Pr[pi=0 | y=0] = Pr[ri=0] = ½

Pr[pi=0 | y  0] = Pr[ri=1  dij = -y] ≤ Pr[ri=1] = ½.

We conclude

Pr[P = 0] ≤ Pr[pi = 0] ≤ ½ ∙Pr[y = 0] + ½ ∙ Pr[y  0]

= ½ ∙Pr[y = 0] + ½ ∙ (1- Pr[y = 0]) = ½.

© S. Albers



           

Pr[0]

Pr[0] Pr[0 | 0] Pr[0] Pr[0 | 0] Pr[0].i i i

P

p p y y p y y

45WS 2018/19

Analysis

Repeating the algorithm k times reduces the error probability to 1/2k,

using a running time of O(kn2).

For k=100, the error probability is upper bounded by 1/2k, while the

running time is still O(n2).

© S. Albers

