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Randomization

• Types of randomized algorithms

• Randomized Quicksort

• Randomized primality test

• Cryptography

• Verifying matrix multiplication
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1. Types of randomized algorithms

• Las Vegas algorithms

Always correct; expected running time

Example: randomized Quicksort

• Monte Carlo algorithms (mostly correct) 

Probably correct; guaranteed running time

Example: randomized primality test
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2. Quicksort

Input: List S of n distinct elements over a totally ordered universe.

Output: The elements of S in (ascending) sorted order. 

Idea of Quicksort: Identify a splitter v ∈ S.

Determine set Sl of elements of S that are < v.

Determine set Sr of elements of S that are > v.

Sort Sl, Sr recursively. 

Output sorted sequence of Sl, followed by v,

followed by sorted sequence Sr. 
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function Quick (S: sequence): sequence;

{returns the sorted sequence S}

begin

if #S ≤ 1 then Quick:=S;

else { choose splitter element v in S;

partition S into Sl with elements < v,

and Sr with elements > v;

Quick:=                                       }

end;

Quicksort

S

Sl < v v Sr > v

v

Quick(Sl) v Quick(Sr)
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Worst-case input

n elements

Running time: (n-1) + (n-2) + … + 2 + 1 = n(n-1)/2
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Choice of the splitter element

Suppose that a splitter v with |Sl| ≤ n/2 and |Sr| ≤ n/2 

can be found in cn step.    

Then T(n) ≤ 2 T(n/2) + an,  for some a ≥ c,  and T(n) ≤ an log n.  

T(k) = worst-case number of steps to sort k elements

Problem: Find splitter v with above property. 

But: Running time of O(n log n) can be maintained if Sl, Sr have

roughly equal size, i.e.  ¼ |S| ≤ |Sl|, |Sr| ≤ ¾ |S| .

Thus randomly chosen splitter is „good“ with probability ≥ ½. 
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function RandQuick (S: sequence): sequence;

{returns the sorted sequence S}

begin

if #S ≤ 1 then Quick:=S;

else { choose splitter element v in S uniformly at random;

partition S into Sl with elements < v,

and Sr with elements > v;

RandQuick:=                                     }

end;

Randomized Quicksort

S

Sl < v v Sr > v

v

RandQuick(Sl) v  RandQuick(Sr)
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With probability 1/n,  s1 is the splitter element: 

subproblems of sizes 0 and n-1

With probability 1/n,  sk is the splitter element: 

subproblems of sizes k-1 and n-k

Analysis 1

n elements; let si be the i-th smallest element

With probability 1/n,  sn is the splitter element: 

subproblems of sizes n-1 and 0
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Analysis 1

Expected running time:
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Analysis 2: Representation of QS as a tree
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Analysis  2: expected #comparisons

Running time is linear in the number of element comparisons.
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Computing pij

 si is compared to sj iff si or sj are chosen as pivot element

before any sl , i<l<j.

{si …  sl …  sj} 

 Any element si , … , sj is chosen as pivot element with the

same probability. Hence pij = 2 / (j-i+1)
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Analysis 2

Expected number of comparisons:
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Definition:

A natural number p  2 is prime iff a | p  implies that a = 1 or a = p.

We consider primality tests for numbers n  2.

Algorithm: Deterministic primality test (naive approach)

Input: Natural number n  2

Output: Answer to the question „Is n prime?“

if n = 2 then return true;

if n even then return false;

for i = 1 to 𝑛/2 do

if 2i + 1 divides n

then return false;

return true;

Running time:  𝑛

3. Primality test

© S. Albers
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Primality test

Goal:

Randomized algorithm

• Polynomial running time.

• If it returns “not prime”, then n is not prime.

• If it returns “prime”, then with probability at most p, p>0,

n is composite.

After k iterations: If algorithm always returns “prime”, then with

probability at most pk , n is composite.

© S. Albers
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Simple primality test

Fact:  For any odd prime number p: 2p-1 mod p = 1.

Examples: p = 17, 216 – 1  =  65535 = 17 * 3855

p = 23, 222 – 1 = 4194303 = 23 * 182361

Simple primality test:

1 Compute z = 2n-1 mod n;

2 if z = 1

3 then n is possibly prime

4 else n is composite

Advantage: polynomial running time.

© S. Albers



18WS 2018/19

Simple primality test

Definition:

A natural number n  2 is a base-2 pseudoprime if n is composite and

2n-1 mod n = 1.

Example: n = 11 * 31 = 341

2340 mod 341 = 1
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Randomized primality test

Theorem: (Fermat‘s little theorem)

If p is prime and 0 < a < p, then

ap-1 mod p = 1.

Example: n = 341,  a = 3:    3340 mod 341 = 56  1

Algorithm: Randomized primality test

1 Choose a in the range [2, n-1] uniformly at random;

2 Compute an-1 mod n;

3 if an-1 mod n = 1

4 then n is probably prime

5 else n is composite

Prob(n is composite but an-1 mod n = 1 ) ? 
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Problem: Carmichael numbers

Definition:

A natural number n  2 is a base-a pseudoprime if n is composite and

an-1 mod n = 1.

Definition: A number n  2 is a Carmichael number if n is composite

and for any a with GCD(a, n) = 1 we have

an-1 mod n = 1.

Example: 

Smallest Carmichael number: 561 = 3 * 11 * 17

© S. Albers
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Randomized primality test

Theorem: If p is prime and 0 < a < p, then the equation

a2 mod p =  1

has exactly the two solutions a = 1 and a = p – 1.

Definition: A number a is a non-trivial square root mod n if

a2 mod n = 1 and a  1, n – 1.

Example: n = 35 62 mod 35 = 1

Idea: While computing an-1, where 0 < a < n is chosen uniformly at 

random, check if a non-trivial square root mod n exists.

© S. Albers
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Fast exponentiation

Method for computing an:

Case 1: [n is even]

an = an/2 * an/2

Case 2: [n is odd]

an = a(n-1)/2 * a(n-1)/2 * a

Running time: O(log2an log n)

© S. Albers
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Fast exponentiation

Example:

a62 = (a31)2

a31 = (a15)2 * a

a15 = (a7)2 * a

a7 = (a3)2 * a

a3 = (a)2 * a

© S. Albers
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Fast exponentiation

boolean isProbablyPrime;

function power(int a, int p, int n){

/* computes ap mod n and checks if a number x with x2 mod n = 1 
and x  1, n-1 occurs during the computation */

if p = 0 then return 1;

x := power(a, p div 2, n);

result := x * x mod n;

/* check if x2 mod n = 1 and x  1, n-1 */

if result = 1 and x ≠ 1 and x ≠ n –1 then isProbablyPrime := false;

if p mod 2 = 1 then result := a * result mod n; 

return result; 

}

Running time: O(log p ∙ log n ∙ log (max{a,n}) )

© S. Albers
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Miller Rabin primality test

primeTest(int n) {

/* executes the randomized primality test for a chosen at random */

a := random(2, n-1);

isProbablyPrime: = true;

result := power(a, n-1, n);

if result ≠ 1 or !isProbablyPrime then

return false;

else return true;

}

© S. Albers
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Miller Rabin primality test

Theorem:

If n is composite, then there are at most

numbers 0 < a < n for which the algorithm primeTest fails.

4

9n

© S. Albers
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4. Application

Public-Key Cryptosystems

© S. Albers
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Secret key cryptosystems

Traditional encryption of messages

Disadvantages: 

1. Prior to transmission of the message, the key k has to be

exchanged between the parties A und B.

2. For encryption of messages between n parties, n(n-1)/2 keys are

required.

© S. Albers
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Secret key encryption systems

Advantage: 

Encryption and decryption are fast.

© S. Albers
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Public-key cryptosystems

Diffie and Hellman (1976)

Idea: Each participant A holds two keys:

1. A public key PA , accessible to all other participants. 

2. A secret key SA that is kept secret.

© S. Albers
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Public-key cryptosystems

D = Set of all valid messages,

e.g. set of all bitstrings of finite length

    DDSP
AA

11

:,




Three constraints:

1. PA(), SA() efficiently computable

2. SA(PA(M)) = M and PA(SA(M)) = M

3. SA() is not computable from PA() (with realistic effort)  

© S. Albers
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Encryption in a public-key system

A sends a message M to B:

Dear Bob,

I just saw 
the brand-
new …

Dear Bob,

I just saw 
the brand-
new …

© S. Albers
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Encryption in a public key system

1. A receives B`s public key PB from a public directory or

directly from B.

2. A computes the ciphertext C = PB(M) and sends it to B.

3. After receiving message C, B decrypts the message using

his secret key SB: M = SB(C) 

© S. Albers
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Generating a digital signature

A sends a digitally signed message M´ to B:

1. A computes the digital signature  for M´ using her

secret key:

 = SA(M´)

2. A sends the pair (M´,  ) to B.

3. After receiving (M´,  ), B checks the digital signature: 

PA() = M´

Anybody is able to check  using PA (e.g. for bank checks).

© S. Albers
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RSA cryptosystem

R. Rivest, A. Shamir, L. Adleman

Generating the public and secret keys:

1.   Select at random two large primes p and q of l+1 bits (l  2000).

2.   Compute n = pq.

3.   Select a natural number e is that is relatively prime to (p –1)(q – 1).

4.   Compute d = e-1

d*e  1 (mod (p – 1)(q –1 ))

© S. Albers
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RSA cryptosystem

5.   Publish P = (e, n) as public key.

6.   Keep S = (d, n) as secret key.

Split the (binary coded) message into blocks of length 2l. 

Interpret each block M as a binary number: 0  M < 22l

P(M) = Me mod n S(C) = Cd mod n

© S. Albers
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Recovering a message

To show:  SA(PA(M)) = PA(SA(M)) = Med mod n = M, for any 0  M < 22l.    

Theorem: (Fermat‘s little theorem)

If p is prime, then for any integer a that is not divisible by p, 

ap-1 mod p = 1.

Since d∙e  1 mod (p – 1)(q –1) there holds ed = 1+k(p-1)(q-1), for

some integer k. 

Suppose that M mod p ≠ 0. Then by Fermat’s little theorem,

Mp-1 mod p = 1 and thus Mk(p-1)(q-1) mod p = 1. 

Hence Med mod p = M1+k(p-1)(q-1) mod p = M mod p, and Med - M = l1p, for 

some integer l1.  

If M mod p = 0, then again Med - M = l2p, for some integer l2.  

© S. Albers
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Recovering a message

In any case, for any M, Med - M = l∙p, for some integer l.  

Similarly, for any M, Med - M = l’∙q, for some integer l’.  

Since p and q are prime numbers, Med - M = l*pq, for some integer l*. 

We conclude that, for any M, there holds Med mod n = M. 

© S. Albers
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Multiplicative inverse

Theorem: (GCD recursion theorem)

For any numbers a and b with b>0:

GCD(a,b) = GCD(b, a mod b).

Algorithm: Euclid

Input: Two integers a and b with b  0

Output: GCD(a,b)

if b = 0

then return a

else return Euclid(b, a mod b)
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Multiplicative inverse

Algorithm: extended-Euclid

Input: Two integers a and b with b  0

Output: GCD(a,b) and two integers x and y with 

xa + yb = GCD(a,b)

if b = 0 then return (a, 1, 0);

(d, x’, y’) := extended-Euclid(b, a mod b);

x := y’;  y := x’ – a/b y’;

return (d, x, y);

Application: a = (p-1)(q-1), b = e

The algorithm returns numbers x and y with 

x(p-1)(q-1) + ye = GCD((p-1)(q-1),e) = 1

© S. Albers
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5. Verifying matrix multiplication

Problem: Three 𝑛 × 𝑛 matrices A, B and C. Verify whether or not 

AB=C.

Simple solution: Multiply A, B and compare to C. 

O(n3) multiplications/operations, can be reduced to roughly O(n2.37).

Goal: Design fast verification algorithm that may err with a certain 

probability. 
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Verifying matrix multiplication

Algorithm: Choose Ԧ𝑟 = (𝑟1, … , 𝑟𝑛) ∈ {0,1}𝑛 uniformly at random. 

Compute 𝐴𝐵Ԧ𝑟 by first computing 𝐵Ԧ𝑟 and then 𝐴(𝐵Ԧ𝑟).
Then compute 𝐶 Ԧ𝑟.  

If 𝐴 𝐵Ԧ𝑟 ≠ 𝐶 Ԧ𝑟, then return 𝐴𝐵 ≠ 𝐶. Otherwise return 𝐴𝐵 = 𝐶.

Running time: O(n2)

Theorem: If 𝐴𝐵 ≠ 𝐶 and if  Ԧ𝑟 is chosen uniformly at random from 

{0,1}𝑛, then Pr[𝐴𝐵Ԧ𝑟 = 𝐶 Ԧ𝑟] ≤ ½.  

We next prove this theorem. 

© S. Albers
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Analysis

Law of Total Probability: Let Ω be a probability space and A1,…,An be

mutually disjoint events. Let B be an event with B ⊆ 𝑖=1ڂ
𝑛 𝐴𝑖. Then

By assumption 𝐴𝐵 ≠ 𝐶. Hence 𝐷 ≔ 𝐴𝐵 − 𝐶 ≠ 0 and the matrix 𝐷
contains at least one non-zero entry dij ≠ 0.

On the other hand, 𝐴𝐵Ԧ𝑟 = 𝐶 Ԧ𝑟 translates to 𝐷Ԧ𝑟 = 0. 

Let 𝑃 = 𝐷𝑟 = (𝑝1, … , 𝑝𝑛)
𝑇 .

There holds 𝑝𝑖 = σ𝑘=1
𝑛 𝑑𝑖𝑘 𝑟𝑘 = 𝑑𝑖𝑗𝑟𝑗 + y, for some constant y.

 
   1 1

Pr[ ] Pr[ ] Pr[ | ]Pr[ ].
n n

i i ii i
B B A B A A
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Analysis

Hence

There holds: 

Pr[pi=0 | y=0] = Pr[ri=0] = ½    

Pr[pi=0 | y  0] = Pr[ri=1  dij = -y] ≤ Pr[ri=1] = ½.

We conclude 

Pr[P = 0] ≤ Pr[pi = 0] ≤ ½ ∙Pr[y = 0] + ½ ∙ Pr[y  0] 

= ½ ∙Pr[y = 0] + ½ ∙ (1- Pr[y = 0]) = ½. 

© S. Albers



           

Pr[ 0]

Pr[ 0] Pr[ 0 | 0] Pr[ 0] Pr[ 0 | 0] Pr[ 0].i i i

P

p p y y p y y



45WS 2018/19

Analysis

Repeating the algorithm k times reduces the error probability to 1/2k, 

using a running time of O(kn2).

For k=100, the error probability is upper bounded by 1/2k, while the 

running time is still O(n2). 
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