TUTI

03 — Randomization

Randomization TI.ITI

» Types of randomized algorithms
 Randomized Quicksort

« Randomized primality test

* Cryptography

» Verifying matrix multiplication

WS 2018/19 © S. Albers 2

1. Types of randomized algorithms TI.ITI

 Las Vegas algorithms
Always correct; expected running time

Example: randomized Quicksort

« Monte Carlo algorithms (mostly correct)

Probably correct; guaranteed running time

Example: randomized primality test

WS 2018/19 © S. Albers 3

2. Quicksort TI.ITI

Input: List S of n distinct elements over a totally ordered universe.
Output: The elements of S in (ascending) sorted order.

ldea of Quicksort: Identify a splitter v € S.
Determine set S, of elements of S that are <v.
Determine set S, of elements of S that are > v.
Sort S,, S, recursively.
Output sorted sequence of S, followed by v,
followed by sorted sequence S..

WS 2018/19 © S. Albers 4

Quicksort TI.ITI

S V

S <v Y S, >v

r

function Quick (S: sequence): sequence,

{returns the sorted sequence S}
begin
If #S < 1 then Quick:=S;
else { choose splitter element v in S;
partition S into S, with elements <,
and S, with elements > v;
Quick:= | Quick(S)|v |Quick(Ss,) }

end;

WS 2018/19 ©S. Albers 5

Worst-case input TI.ITI

n elements

Running time: (n-1) + (n-2) + ... + 2+ 1 =n(n-1)/2

WS 2018/19 © S. Albers 6

Choice of the splitter element TI.ITI

Suppose that a splitter v with [S,| = n/2 and |S,| < n/2
can be found in cn step.

Then T(n)<2T(n/2)+ an, forsomeaz=c, and T(n)<an log n.
T(k) = worst-case number of steps to sort k elements

Problem: Find splitter v with above property.

But: Running time of O(n log n) can be maintained Iif S,, S, have

roughly equal size, i.e. % |S|<|S||, |S,| =% |S] .

Thus randomly chosen splitter is ,good” with probability = 7.

WS 2018/19 © S. Albers 7

Randomized Quicksort TI.ITI

S V

>V

S <v Y S

r

function RandQuick (S: sequence): sequence,

{returns the sorted sequence S}
begin
If #S < 1 then Quick:=S;
else { choose splitter element v in S uniformly at random;
partition S into S, with elements < v,

and S, with elements > v;
RandQuick:=| RandQuick(S)) | v | RandQuick(S,)| }

end:

WS 2018/19 © S. Albers 8

Analysis 1

n elements; let s; be the i-th smallest element

With probability 1/n, s, is the splitter element:

subproblems of sizes 0 and n-1

With probability 1/n, s, is the splitter element:

subproblems of sizes k-1 and n-k

With probability 1/n, s, is the splitter element:

subproblems of sizes n-1 and O

WS 2018/19

© S. Albers 9

Analysis 1 TI.ITI

Expected running time:

T(n)= Ei(T(k ~1)+T(n-k))+0(n)

N\

WS 2018/19 © S. Albers 10

Analysis 2: Representation of QS as a treTuTl

WS 2018/19 © S. Albers 11

Analysis 2: expected #comparisons TI.ITI

Running time is linear in the number of element comparisons.

I

|1 1ifs; Iscompared to s,
|0 otherwise

:Zn: 2 EX]

i=l i

> X,

i=l i

p; = probability that s; is compared 1o s;

E[Xij] =1-p; +0-(1- pij) = Pj;

WS 2018/19 © S. Albers 12

Computing p; TI.ITI

" s;Is compared 1o s; Iff s;0r s; are chosen as pivot element
before any s, , i<I<;.

= Anyelements,, ..., s; is chosen as pivot element with the
same probability. Hence p; = 2 / (J-i+1)

WS 2018/19 © S. Albers 13

Analysis 2 TI.ITI

Expected number of comparisons:
> ThcY T
pij: - .
i—1 j>i il el |

n n—i+12

=2 2

H,=> 1/k~Inn
k=1

WS 2018/19 © S. Albers 14

3. Primality test TI.ITI

Definition:
A natural numberp > 2is primeiff a|p impliesthat a=1or a=p.

We consider primality tests for numbers n > 2.

Algorithm: Deterministic primality test (naive approach)

Input: Natural numbern> 2
Output: Answer to the question ,Is n prime?“

If n =2 then return true;
If n even then return false;
fori=1to |vn/2|do
If 21+ 1 divides n
then return false;
return true;

Running time: ®(/n)

WS 2018/19 © S. Albers 15

Primality test TI.ITI

Goal:

Randomized algorithm
* Polynomial running time.
« If it returns “not prime”, then n is not prime.

« If it returns “prime”, then with probability at most p, p>0,
n is composite.

After k iterations: If algorithm always returns “prime”, then with
probability at most p*, n is composite.

WS 2018/19 © S. Albers 16

Simple primality test TI.ITI

Fact: For any odd prime number p: 2P-'mod p = 1.

Examples: p=17, 219—-1 = 65535 =17 *3855
p=23, 222 —1= 4194303 =23 *182361

Simple primality test:

1 Compute z = 21 mod n;
2 1fz=1

3 then nis possibly prime
4 else nis composite

Advantage: polynomial running time.

WS 2018/19 © S. Albers 17

Simple primality test TI.ITI

Definition:
A natural number n > 2 is a base-2 pseudoprime if n is composite and
2" mod n = 1.

Example: n=11*31=341

2340 mod 341 =1

WS 2018/19 © S. Albers 18

Randomized primality test TI.ITI

Theorem: (Fermat's little theorem)
If p is prime and 0 < a < p, then
at mod p = 1.

Example: n=341, a=3: 3%9mod341=56=1

Algorithm: Randomized primality test
1 Choose a in the range [2, n-1] uniformly at random;
2 Compute a™! mod n;

3 ifatmodn=1

4 then nis probably prime

5 else n is composite

Prob(n is composite buta™ modn=1) ?

WS 2018/19 © S. Albers 19

Problem: Carmichael numbers TI.ITI

Definition:
A natural number n > 2 is a base-a pseudoprime if n is composite and
amodn = 1.

Definition: Anumber n > 2 is a Carmichael number if n is composite
and for any a with GCD(a, n) = 1 we have

al modn=1.

Example:
Smallest Carmichael number: 561 =3* 11 * 17

WS 2018/19 © S. Albers 20

Randomized primality test TI.ITI

Theorem: If pis prime and O < a < p, then the equation
amodp =1
has exactly the two solutionsa=1anda=p - 1.

Definition: A number a is a non-trivial square root mod n if
a2modn=1anda=1,n-1.

Example: n=35 62mod 35= 1

ldea: While computing a™*, where 0 < a < n is chosen uniformly at
random, check if a non-trivial square root mod n exists.

WS 2018/19 © S. Albers 21

Fast exponentiation

Method for computing a":

Case 1: [nis even]
an = an/2 * an/2

Case 2: [n is odd]
an = a(n-l)/2 * a(n-l)/2 * g

Running time: O(logZa" log n)

WS 2018/19

© S. Albers 22

Fast exponentiation TI.ITI

Example:
962 = (a31)2
a3l = (a15)2 *
a15 — (a7)2 * q
a’ = (a3)2 * g
a> =(a)y*a

WS 2018/19 © S. Albers 23

Fast exponentiation TI.ITI

boolean isProbablyPrime;

function power(int a, int p, int n){

[* computes aP mod n and checks if a number x with x> mod n =1
and x # 1, n-1 occurs during the computation */

If p=0then return 1,

X ;= power(a, p div 2, n);

result ;= x *x mod n;

[*check if x2modn=1and x =1, n-1*/

If result=1and x # 1 and x # n =1 then isProbablyPrime := false;
If pmod 2 =1 then result := a * result mod n;

return result;

}
Running time: O(log p - log n - log (max{a,n}))

WS 2018/19 © S. Albers 24

Miller Rabin primality test TI.ITI

primeTest(int n) {

[* executes the randomized primality test for a chosen at random */
a :=random(2, n-1);

ISProbablyPrime: = true;

result := power(a, n-1, n);

If result # 1 or lisProbablyPrime then

return false;
else return true;

WS 2018/19 © S. Albers 25

Miller Rabin primality test TI.ITI

Theorem:

If n is composite, then there are at most

n-9
4
numbers 0 < a < n for which the algorithm primeTest fails.

WS 2018/19 © S. Albers 26

4. Application TI.ITI

Public-Key Cryptosystems

WS 2018/19 © S. Albers 27

Secret key cryptosystems TI.ITI

Traditional encryption of messages
Disadvantages:

1. Prior to transmission of the message, the key k has to be
exchanged between the parties A und B.

2. For encryption of messages between n parties, n(n-1)/2 keys are
required.

A B
ZNSSINN

C

I A D
W7

N

WS 2018/19 © S. Albers 28

Secret key encryption systems TI.ITI

Advantage:

Encryption and decryption are fast.

WS 2018/19 © S. Albers 29

Public-key cryptosystems TI.ITI

Diffie and Hellman (1976)
Idea: Each participant A holds two keys:

1. Apublic key P,, accessible to all other participants.
2. Asecretkey S, that is kept secret.

WS 2018/19 © S. Albers 30

Public-key cryptosystems TI.ITI

D = Set of all valid messages,
e.g. set of all bitstrings of finite length

P()S.():D>D

A

Three constraints:
1. P,(), S,() efficiently computable
2. SA(PA(M)) = M and P,(S,(M)) = M

3. Sa() is not computable from P,() (with realistic effort)

WS 2018/19 © S. Albers 31

Encryption in a public-key system

A sends a message M to B:

Dear Bob,

I just saw
the brand-
new ...

¥k- 17,
@- | #E-8
{07 -853
{44178

WS 2018/19

Dear Bob,

I just saw
the brand-
new ...

© S. Albers 32

Encryption in a public key system TI.ITI

1. Areceives B's public key Pg from a public directory or
directly from B.

2. A computes the ciphertext C = Pgz(M) and sends it to B.

3. After receiving message C, B decrypts the message using
his secret key Sg: M = S;(C)

WS 2018/19 © S. Albers 33

Generating a digital signature TI.ITI

A sends a digitally signed message M" to B:
1. A computes the digital signature o for M" using her
secret key:
o= SA(M)

2. A sends the pair (M", o) to B.

3. After receiving (M, o), B checks the digital signature:
Pa(o) = M’

Anybody is able to check o using P, (e.g. for bank checks).

WS 2018/19 © S. Albers 34

RSA cryptosystem TI.ITI

R. Rivest, A. Shamir, L. Adleman

Generating the public and secret keys:

1. Select at random two large primes p and g of I+1 bits (I > 2000).

2. Compute n = pq.

3. Select a natural number e is that is relatively prime to (p —1)(q — 1).

4. Compute d = el
d*e =1 (mod (p—1)(q-1))

WS 2018/19 © S. Albers 35

RSA cryptosystem TI.ITI

5. Publish P = (e, n) as public key.

6. Keep S = (d, n) as secret key.

Split the (binary coded) message into blocks of length 2l.
Interpret each block M as a binary number: 0 <M < 22

PM)=Mémodn S(C)=CYmodn

WS 2018/19 © S. Albers 36

Recovering a message TI.ITI

To show: S,(PA(M)) = PA(SA(M)) = Med mod n = M, forany 0 <M < 22,

Theorem: (Fermat's little theorem)
If p Is prime, then for any integer a that is not divisible by p,
at mod p = 1.

Since d-e=1 mod (p — 1)(q —1) there holds ed = 1+k(p-1)(g-1), for
some integer k.

Suppose that M mod p # 0. Then by Fermat’s little theorem,
MP-1 mod p = 1 and thus MkP-D(@1) mod p = 1.

Hence Meéd mod p = M¥*k(P-1)(@-1) mod p = M mod p, and Med - M = |,p, for
some integer ;.

If M mod p =0, then again Me? - M = |,p, for some integer L.

WS 2018/19 © S. Albers 37

Recovering a message TI.ITI

In any case, for any M, Med - M = |-p, for some integer |.
Similarly, for any M, Med - M = I'-q, for some integer I'.

Since p and g are prime numbers, Med - M = |*pg, for some integer I*.

We conclude that, for any M, there holds Méd mod n = M.

WS 2018/19 © S. Albers 38

Multiplicative inverse

Theorem: (GCD recursion theorem)
For any numbers a and b with b>0:

GCD(a,b) = GCD(b, a mod b).

Algorithm: Euclid
Input: Two integers a and b with b >0
Output: GCD(a,b)

ifb=0

then return a

else return Euclid(b, a mod b)

WS 2018/19

© S. Albers 39

Multiplicative inverse TI.ITI

Algorithm: extended-Euclid
Input: Two integers a and b with b >0
Output: GCD(a,b) and two integers x and y with
xa + yb = GCD(a,b)
If b=0 then return (a, 1, 0);
(d, X', y’) := extended-Euclid(b, a mod b);
x:=y; y:=x -lably;
return (d, X, y);

Application: a=(p-1)(g-1),b=e
The algorithm returns numbers x and y with
X(p-1)(g-1) + ye = GCD((p-1)(g-1).e) = 1

WS 2018/19 © S. Albers 40

5. Verifying matrix multiplication TI.ITI

Problem: Three n X n matrices A, B and C. Verify whether or not
AB=C.

Simple solution: Multiply A, B and compare to C.
O(n3) multiplications/operations, can be reduced to roughly O(n?37).

Goal: Design fast verification algorithm that may err with a certain
probability.

WS 2018/19 © S. Albers 41

Verifying matrix multiplication TI.ITI

Algorithm: Choose 7 = (1, ..., ;) € {0,1}" uniformly at random.
Compute AB7 by first computing Br and then A(B7).
Then compute C7.

If A(Br) # C7, then return AB # C. Otherwise return AB = C.
Running time: O(n?)

Theorem: If AB # C and if 7 is chosen uniformly at random from
{0,1}", then Pr[AB7 = Cr] < Y.

We next prove this theorem.

WS 2018/19 © S. Albers 42

Analysis TI.ITI

Law of Total Probability: Let Q be a probability space and A,,...,A, be
mutually disjoint events. Let B be an event with B € Ui~ 4;. Then

PriB]=>" PrBAA]=>" Pr[B|A]PIA]

By assumption AB # C. Hence D := AB — C # 0 and the matrix D
contains at least one non-zero entry d; # 0.

On the other hand, AB7 = Cr translates to D7 = 0.
Let P = D7 = (py, .,).

There holds p; = Y, dix 1, = d;;7; +y, for some constant y.

WS 2018/19 © S. Albers 43

Analysis TI.ITI

Hence
Pr[P =0]
<Pr{p, =0]=Pr[p, =0|y =0]-Prly =0]+Pr[p, =0| y #0]-Pr[y =0].

There holds:
Pr[p;=0 | y=0] = Pr[r=0] = ¥
Prip=0 |y # 0] = Pr[r=1 A d; = -y] = Pr[r=1] = %.

We conclude

Pr[P =0] < Pr[p,=0] <% -Prly =0] + % - Pr[y = O]
=% -Prly =0] + Y2 - (1- Pr[y = Q]) = %.

WS 2018/19 © S. Albers 44

Analysis TI.ITI

Repeating the algorithm k times reduces the error probability to 1/2,
using a running time of O(kn?).

For k=100, the error probability is upper bounded by 1/2%, while the
running time is still O(n?).

WS 2018/19 © S. Albers 45

