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ñ P = {x | Ax ≤ b}; P◦ := {x | Ax < b}
ñ interior point algorithm: x ∈ P◦ throughout the algorithm

ñ for x ∈ P◦ define

si(x) := bi − aTi x
as the slack of the i-th constraint

logarithmic barrier function:

φ(x) = −
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i=1

ln(si(x))

Penalty for point x; points close to the boundary have a very

large penalty.
Throughout this section ai denotes the
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Gradient and Hessian

Taylor approximation:

φ(x + ε) ≈ φ(x)+∇φ(x)Tε+ 1
2
εT∇2φ(x)ε

Gradient:

∇φ(x) =
m∑
i=1

1
si(x)

· ai = ATdx

where dTx = (1/s1(x), . . . ,1/sm(x)). (dx vector of inverse slacks)

Hessian:

Hx := ∇2φ(x) =
m∑
i=1

1
si(x)2

aiaTi = ATD2
xA

with Dx = diag(dx).
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Proof for Gradient

∂φ(x)
∂xi

= ∂
∂xi

(
−
∑
r

ln(sr (x))
)
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∂
∂xi

(
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)
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)
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∑
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∂
∂xi

(
aTr x

)
=
∑
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1
sr (x)

Ari

The i-th entry of the gradient vector is
∑
r 1/sr (x) ·Ari. This

gives that the gradient is

∇φ(x) =
∑
r

1/sr (x)ar = ATdx



Proof for Hessian

∂
∂xj

(∑
r

1
sr (x)

Ari
)
=
∑
r
Ari

(
− 1
sr (x)2

)
· ∂
∂xj

(
sr (x)

)
=
∑
r
Ari

1
sr (x)2

Arj

Note that
∑
r AriArj = (ATA)ij. Adding the additional factors

1/sr (x)2 can be done with a diagonal matrix.

Hence the Hessian is

Hx = ATD2A



Properties of the Hessian

Hx is positive semi-definite for x ∈ P◦

uTHxu = uTATD2
xAu = ‖DxAu‖2

2 ≥ 0

This gives that φ(x) is convex.

If rank(A) = n, Hx is positive definite for x ∈ P◦

uTHxu = ‖DxAu‖2
2 > 0 for u ≠ 0

This gives that φ(x) is strictly convex.

‖u‖Hx := √uTHxu is a (semi-)norm; the unit ball w.r.t. this norm

is an ellipsoid.
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Dikin Ellipsoid

Ex = {y | (y − x)THx(y − x) ≤ 1} = {y | ‖y − x‖Hx ≤ 1}

Points in Ex are feasible!!!

(y − x)THx(y − x) = (y − x)TATD2
xA(y − x)

=
m∑
i=1

(aTi (y − x))2
si(x)2

=
m∑
i=1

(change of distance to i-th constraint going from x to y)2

(distance of x to i-th constraint)2

≤ 1

In order to become infeasible when going from x to y one of the

terms in the sum would need to be larger than 1.
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Dikin Ellipsoids
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Analytic Center

xac := arg minx∈P◦ φ(x)

ñ xac is solution to

∇φ(x) =
m∑
i=1

1
si(x)

ai = 0

ñ depends on the description of the polytope

ñ xac exists and is unique iff P◦ is nonempty and bounded
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Central Path

In the following we assume that the LP and its dual are strictly

feasible and that rank(A) = n.

Central Path:

Set of points {x∗(t) | t > 0} with

x∗(t) = argminx{tcTx +φ(x)}

ñ t = 0: analytic center

ñ t = ∞: optimum solution

x∗(t) exists and is unique for all t ≥ 0.
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Different Central Paths

x

y
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Central Path

Intuitive Idea:

Find point on central path for large value of t. Should be close to

optimum solution.

Questions:

ñ Is this really true? How large a t do we need?

ñ How do we find corresponding point x∗(t) on central path?
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The Dual

primal-dual pair:

min cTx

s.t. Ax ≤ b

max −bTz
s.t. ATz + c = 0

z ≥ 0

Assumptions

ñ primal and dual problems are strictly feasible;

ñ rank(A) = n.

Note that the right LP in standard form
is equal to max{−bTy | −ATy = c,x ≥
0}. The dual of this is min{cTx | −Ax ≥
−b} (variables x are unrestricted).



Force Field Interpretation

Point x∗(t) on central path is solution to tc +∇φ(x) = 0

ñ We can view each constraint as generating a repelling force.

The combination of these forces is represented by ∇φ(x).
ñ In addition there is a force tc pulling us towards the

optimum solution.
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How large should t be?

Point x∗(t) on central path is solution to tc +∇φ(x) = 0.

This means

tc +
m∑
i=1

1
si(x∗(t))

ai = 0

or

c +
m∑
i=1

z∗i (t)ai = 0 with z∗i (t) =
1

tsi(x∗(t))

ñ z∗(t) is strictly dual feasible: (ATz∗ + c = 0; z∗ > 0)

ñ duality gap between x := x∗(t) and z := z∗(t) is

cTx + bTz = (b −Ax)Tz = m
t

ñ if gap is less than 1/2Ω(L) we can snap to optimum point
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How to find x∗(t)

First idea:

ñ start somewhere in the polytope

ñ use iterative method (Newtons method) to minimize

ft(x) := tcTx +φ(x)
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Newton Method

Quadratic approximation of ft

ft(x + ε) ≈ ft(x)+∇ft(x)Tε+ 1
2
εTHft(x) ε

Suppose this were exact:

ft(x + ε) = ft(x)+∇ft(x)Tε+ 1
2
εTHft(x) ε

Then gradient is given by:

∇ft(x + ε) = ∇ft(x)+Hft(x) · ε
Note that for the one-dimensional case
g(ε) = f(x)+f ′(x)ε+ 1

2f
′′(x)ε2, then

g′(ε) = f ′(x)+ f ′′(x)ε.
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Newton Method

We want to move to a point where this gradient is 0:

Newton Step at x ∈ P◦

∆xnt = −H−1
ft (x)∇ft(x)

= −H−1
ft (x)(tc +∇φ(x))

= −(ATD2
xA)−1(tc +ATdx)

Newton Iteration:

x := x +∆xnt

Observe that Hft (x) = H(x), where H(x) is the Hessian
for the function φ(x) (adding a linear term like tcTx
does not affect the Hessian).

Also ∇ft(x) = tc +∇φ(x).



Measuring Progress of Newton Step

Newton decrement:

λt(x) = ‖DxA∆xnt‖
= ‖∆xnt‖Hx

Square of Newton decrement is linear estimate of reduction if we

do a Newton step:

−λt(x)2 = ∇ft(x)T∆xnt

ñ λt(x) = 0 iff x = x∗(t)
ñ λt(x) is measure of proximity of x to x∗(t)

Recall that ∆xnt fulfills −H(x)∆xnt = ∇ft().
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Convergence of Newtons Method

Theorem 2

If λt(x) < 1 then

ñ x+ := x +∆xnt ∈ P◦ (new point feasible)

ñ λt(x+) ≤ λt(x)2

This means we have quadratic convergence. Very fast.



Convergence of Newtons Method

feasibility:

ñ λt(x) = ‖∆xnt‖Hx < 1; hence x+ lies in the Dikin ellipsoid

around x.



Convergence of Newtons Method

bound on λt(x+):
we use D := Dx = diag(dx) and D+ := Dx+ = diag(dx+)

λt(x+)2 = ‖D+A∆x+nt‖2

≤ ‖D+A∆x+nt‖2 + ‖D+A∆x+nt + (I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)DA∆xnt‖2

To see the last equality we use Pythagoras

‖a‖2 + ‖a+ b‖2 = ‖b‖2

if aT (a+ b) = 0.
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Convergence of Newtons Method
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∑
iy4
i ≤

(∑
iy2
i
)2
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If λt(x) is large we do not have a guarantee.

Try to avoid this case!!!
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Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing
1: start at analytic center

2: while solution not good enough do

3: make step to improve objective function

4: recenter to return to central path



Short Step Barrier Method

simplifying assumptions:

ñ a first central point x∗(t0) is given

ñ x∗(t) is computed exactly in each iteration

ε is approximation we are aiming for

start at t = t0, repeat until m/t ≤ ε
ñ compute x∗(µt) using Newton starting from x∗(t)
ñ t := µt

where µ = 1+ 1/(2
√
m)



Short Step Barrier Method

gradient of ft+ at (x = x∗(t))

∇ft+(x) = ∇ft(x)+ (µ − 1)tc

= −(µ − 1)ATDx~1

This holds because 0 = ∇ft(x) = tc +ATDx~1.

The Newton decrement is

λt+(x)2 = ∇ft+(x)TH−1∇ft+(x)
= (µ − 1)2~1TB(BTB)−1BT~1 B = DTxA
≤ (µ − 1)2m

= 1/4

This means we are in the range of quadratic convergence!!!
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Number of Iterations

the number of Newton iterations per outer

iteration is very small; in practise only 1 or 2

Number of outer iterations:

We need tk = µkt0 ≥m/ε. This holds when

k ≥ log(m/(εt0))
log(µ)

We get a bound of

O
(√
m log

m
εt0

)

We show how to get a starting point with t0 = 1/2L. Together

with ε ≈ 2−L we get O(L√m) iterations.

Explanation for previous slide
P = B(BTB)−1BT is a symmet-
ric real-valued matrix; it has n
linearly independent Eigenvec-
tors. Since it is a projection ma-
trix (P2 = P ) it can only have
Eigenvalues 0 and 1 (because
the Eigenvalues of P2 are λ2

i ,
where λi is Eigenvalue of P ).
The expression

max
v
vTPv
vTv

gives the largest Eigenvalue for
P . Hence, ~1TP~1 ≤ ~1T~1 =m
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Damped Newton Method

For x ∈ P◦ and direction v ≠ 0 define

σx(v) :=max
i

aTi v
si(x)

Observation:

x +αv ∈ P for α ∈ {0,1/σx(v)}

We assume that the polytope (not just
the LP) is bounded. Then Av ≤ 0 is not
possible.

aTi v is the change on the left
hand side of the i-th constraint
when moving in direction of v.

If σx(v) > 1 then for one coor-
dinate this change is larger than
the slack in the constraint at po-
sition x.

By downscaling v we can en-
sure to stay in the polytope.
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Damped Newton Method

Suppose that we move from x to x +αv. The linear estimate

says that ft(x) should change by ∇ft(x)Tαv.

The following argument shows that ft is well behaved. For small

α the reduction of ft(x) is close to linear estimate.

ft(x +αv)− ft(x) = tcTαv +φ(x +αv)−φ(x)

φ(x +αv)−φ(x) = −
∑
i log(si(x +αv))+

∑
i log(si(x))

= −
∑
i log(si(x +αv)/si(x))

= −
∑
i log(1− aTi αv/si(x))

si(x +αv) = bi −aTi x −aTi αv = si(x)−aTi αv
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Damped Newton Method

Define wi = aTi v/si(x) and σ =maxiwi. Then

ft(x +αv)− ft(x)−∇ft(x)Tαv
= −

∑
i(αwi + log(1−αwi))

≤ −
∑
wi>0

(αwi + log(1−αwi))+
∑
wi≤0

α2w2
i

2

≤ −
∑
wi>0

w2
i
σ2

(
ασ + log(1−ασ)

)
+ (ασ)

2

2

∑
wi≤0

w2
i
σ2

∇ft(x)Tαv
=
(
tcT +∑i aTi /si(x))αv

= tcTαv +∑i αwi

For |x| < 1, x ≤ 0 :

x + log(1− x) = −x2

2 − x3

3 − x4

4 − · · · ≥ −x
2

2 = −
y2

2
x2

y2

Note that ‖w‖ = ‖v‖Hx .

For |x| < 1, 0 < x ≤ y :

x + log(1− x) = −x2

2 − x3

3 − x4

4 − · · · = x2

y2

(
− y2

2 −
y2x

3 − y2x2

4 − . . .
)

≥ x2

y2

(
− y2

2 −
y3

3 −
y4

4 − . . .
)
= x2

y2 (y + log(1−y))
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Damped Newton Method
For x ≥ 0
x2

2 ≤ x2

2 + x3

3 + x4

4 + · · · = −
(
x + log(1− x)

)

≤ −
∑
i

w2
i
σ2

(
ασ + log(1−ασ)

)
= − 1

σ2 ‖v‖2
Hx

(
ασ + log(1−ασ)

)

Damped Newton Iteration:

In a damped Newton step we choose

x+ = x + 1
1+ σx(∆xnt)

∆xnt

This means that in the above expressions we choose α = 1
1+σ and v = ∆xnt. Note that

it wouldn’t make sense to choose α larger than 1 as this would mean that our real target
(x +∆xnt) is inside the polytope but we overshoot and go further than this target.
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Damped Newton Method

Theorem:

In a damped Newton step the cost decreases by at least

λt(x)− log(1+ λt(x))

Proof: The decrease in cost is

−α∇ft(x)Tv + 1
σ2 ‖v‖2

Hx(ασ + log(1−ασ))

Choosing α = 1
1+σ and v = ∆xnt gives

1
1+ σ λt(x)

2+λt(x)
2

σ2

(
σ

1+ σ + log
(
1− σ

1+ σ
))

=λt(x)
2

σ2

(
σ − log(1+ σ)

)
With v = ∆xnt we have ‖w‖2 = ‖v‖Hx = λt(x); further
recall that σ = ‖w‖∞; hence σ ≤ λt(x).
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Damped Newton Method

≥ λt(x)− log(1+ λt(x))
≥ 0.09

for λt(x) ≥ 0.5

Centering Algorithm:

Input: precision δ; starting point x
1. compute ∆xnt and λt(x)
2. if λt(x) ≤ δ return x
3. set x := x +α∆xnt with

α =
{ 1

1+σx(∆xnt)
λt ≥ 1/2

1 otw.

The first inequality follows since the
function 1

x2 (x− log(1+x)) is monoton-
ically decreasing.
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Centering

Lemma 3

The centering algorithm starting at x0 reaches a point with

λt(x) ≤ δ after

ft(x0)−miny ft(y)
0.09

+O(log log(1/δ))

iterations.

This can be very, very slow...
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How to get close to analytic center?

Let P = {Ax ≤ b} be our (feasible) polyhedron, and x0 a feasible

point.

We change b → b + 1
λ · ~1, where L = 〈A〉 + 〈b〉 + 〈c〉 (encoding

length) and λ = 22L. Recall that a basis is feasible in the old LP

iff it is feasible in the new LP.
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Lemma [without proof]

The inverse of a matrix M can be represented with rational

numbers that have denominators zij = det(M).

For two basis solutions xB, xB̄, the cost-difference cTxB − cTxB̄
can be represented by a rational number that has denominator

z = det(AB) · det(AB̄).

This means that in the perturbed LP it is sufficient to decrease

the duality gap to 1/24L (i.e., t ≈ 24L). This means the previous

analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the

objective value c̄Tx is at most n2M2L, where M ≤ L is the

encoding length of the largest entry in c̄.
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How to get close to analytic center?
Note that an entry in ĉ fulfills |ĉi| ≤ 22L.
This holds since the slack in every constraint
at x0 is at least λ = 1/22L, and the gradient
is the vector of inverse slacks.

Start at x0.

Choose ĉ := −∇φ(x).

x0 = x∗(1) is point on central path for ĉ and t = 1.

You can travel the central path in both directions. Go towards 0

until t ≈ 1/2Ω(L). This requires O(
√
mL) outer iterations.

Let xĉ denote this point.

Let xc denote the point that minimizes

t · cTx +φ(x)

(i.e., same value for t but different c, hence, different central

path).
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Let xĉ denote this point.

Let xc denote the point that minimizes

t · cTx +φ(x)

(i.e., same value for t but different c, hence, different central

path).



How to get close to analytic center?

Clearly,

t · ĉTxĉ +φ(xĉ) ≤ t · ĉTxc +φ(xc)

The difference between ft(xĉ) and ft(xc) is

tcTxĉ +φ(xĉ)− tcTxc −φ(xc)
≤ t(cTxĉ + ĉTxc − ĉTxĉ − cTxc)
≤ 4tn23L

For t = 1/2Ω(L) the last term becomes constant. Hence, using

damped Newton we can move from xĉ to xc quickly.

In total for this analysis we require O(√mL) outer iterations for

the whole algorithm.

One iteration can be implemented in Õ(m3) time.
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