10 Karmarkars Algorithm

> inequalities Ax < b; m X n matrix A with rows aiT
» P={x|Ax <b}; P°:={x | Ax < b}
> interior point algorithm: x € P° throughout the algorithm
» for x € P° define
si(x)==b;j—alx

as the slack of the i-th constraint

logarithmic barrier function:

m

P(x) = Z n(s;(x))

Penalty for point x; points close to the boundary have a very
large penalty.

lThroughout this section a; denotes the |
| i-th row as a column vector. \



Penalty Function
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Gradient and Hessian

Taylor approximation:

Pp(x+€) =~ px)+Vpx)Te+ %eTvzci)(x)e

Gradient:
m 1
_ s AT
Vo (x) _iélSi(X) a; = Ald,
where d§ =(1/51(x),...,1/sm(x)). (dx vector of inverse slacks)
Hessian:
m 1
Hy :=V°¢(x) lél Si(x)Zalal A' D3 A



Proof for Gradient

0p(x) _ 2

(— Zln(sy(x))>

0x; 0xi
- ; aii <ln(sr(x))> == ; Sy(lx) aii (ST(X)>
T ; Sy (1x) ail (br a aTx) B ; Sy (1X) 0xi (a,?x)
:;&aﬁm

The i-th entry of the gradient vector is >, 1/s,(x) - Ay;. This
gives that the gradient is

Vo(x) = Zl/Sr(X)ar = Ade



Proof for Hessian

o (Fter ) -3 ﬁ) (309

v

Z Api——

Sy (x)2

Note that >, A, ;A = (ATA)iJ'. Adding the additional factors
1/s,(x)? can be done with a diagonal matrix.

Hence the Hessian is
Hy = ATD?A



Properties of the Hessian

Hy is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|DxAull3 = 0

This gives that ¢(x) is convex.

If rank(A) = n, Hy is positive definite for x € P°
u"Hyu = |DyAul|3 > 0 foru # 0

This gives that ¢ (x) is strictly convex.

lullg, := VvulHyu is a (semi-)norm; the unit ball w.r.t. this norm
is an ellipsoid.
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Dikin Ellipsoid
Ex={y|(y-x)THy(y-x)<1}={y |y -xlu, <1}

Points in E, are feasible!!

(y — x)THX(y -x)=(y-x)TATD2A(y - x)
(al (y — x))?
- Z 51 X)2

(change of distance to i-th constraint going from x to y)?
(distance of x to i-th constraint)?

[l
M§:

IA
—_

In order to become infeasible when going from x to v one of the
terms in the sum would need to be larger than 1.



Dikin Ellipsoids
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Analytic Center

Xac i= argmin,.cp. $(x)

> Xxac is solution to

LS|
Vep(x)=> ——a;=0
o silx)

» depends on the description of the polytope

> Xy exists and is unique iff P° is nonempty and bounded
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Central Path

In the following we assume that the LP and its dual are strictly
feasible and that rank(A) = n.

Central Path:
Set of points {x*(t) | t > 0} with

x*(t) = argmin, {tcTx + ¢p(x)}

» t = 0: analytic center

> t = co: optimum solution

x*(t) exists and is unique for all t > 0.
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Different Central Paths
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Central Path

Intuitive Idea:
Find point on central path for large value of t. Should be close to

optimum solution.

Questions:
» |s this really true? How large a t do we need?

» How do we find corresponding point x*(t) on central path?
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The Dual

primal-dual pair:

max —-blz
st. ATz+¢=0
z=0

Assumptions

» primal and dual problems are strictly feasible;
» rank(A) = n.



Force Field Interpretation

Point x* (t) on central path is solutionto tc + V¢ (x) =0

> We can view each constraint as generating a repelling force.
The combination of these forces is represented by V¢ (x).

> In addition there is a force tc pulling us towards the
optimum solution.
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How large should t be?

Point x* (t) on central path is solution to tc + V¢ (x) = 0.

This means
m 1
e+ 2 S @ =0
or
m 1
(a; = ith z/(t) = ——
c+ > zf(bai =0 with z7(t) tsi(x*(t))

i=1

> Z*(t) is strictly dual feasible: (ATz* + ¢ = 0; z* > 0)

> duality gap between x := x*(t) and z := z*(t) is
cIx+bTz=(b-Ax)Tz= %

> if gap is less than 1/2%(%) we can snap to optimum point



How to find x* (1)

First idea:
> start somewhere in the polytope

> use iterative method (Newtons method) to minimize
fr(x) :=tcTx + p(x)
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Newton Method

Quadratic approximation of f;

fr(x +€) = fi(x) + Vfr(x) e+ %eTHfo) €

Suppose this were exact:

filx+€) = fi(x)+ Vfix)Te+ 1

2eTHft(x)e

Then gradient is given by:

Vft(x +€)=Vfi(x)+Hp(x)-€
{ Note that for the one-dimensional case |
1g(€) = f(x)+f (x)e+ 2f”(x)e then |
Lg'(e) = f(x) + f" (x)e.
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1 . .
1 Observe that Hy, (x) = H(x), where H(x) is the Hessian
Newton Method ! for the function ¢(x) (adding a linear term like tcTx |

1 does not affect the Hessian).
1
L Also V fi(x) = tc + Vp(x).

___________________________________

We want to move to a point where this gradient is O:

Newton Step at x € P°

Axnt = —Hp' () V fi (x)
—Hp! (x)(tc + V(x))

—(ATD2A) Y(tc + ATdy)

Newton Iteration:
X =X+ AXnt



Measuring Progress of Newton Step

Newton decrement:

Ar(x) = IDxAAxnell

= ||A-xnt||Hx

Square of Newton decrement is linear estimate of reduction if we
do a Newton step:

“At(x)% = Vi (x0) T Axne

> Ai(x) =0 iff x = x*(t)

> A:(x) is measure of proximity of x to x*(t)



Convergence of Newtons Method

Theorem 2
If A (x) <1 then

> X, =X+ Axpt € P° (new point feasible)
> Ar(xs) < Ar(x)?

This means we have quadratic convergence. Very fast.



Convergence of Newtons Method

feasibility:
> At (x) = [[Axnellg, < 1; hence x. lies in the Dikin ellipsoid
around x.



Convergence of Newtons Method

bound on A;(x7):
we use D := D, = diag(dy) and D := Dy+ = diag(d+)

At(x)? = IDyAAX 1
< IDLAAXLII? + IDy AAX + (I — DI'D)DAAX |2
= | = DI'D)DAAXnI?

To see the last equality we use Pythagoras
lall® + lla + b||* = b

if al (a + b) = 0.



Convergence of Newtons Method

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D(D~'T-D;')
= (I -D:'D)1

al(a+Db)
= AxaATD, (D4 AAx + (I - DY'D)DAAXy )
= Axd (ATD2 AAXG, — ATD2AAx¢ + ATD DAAXn)
= Axd (HyAxgy — HAxpe + ATD, T - ATDT)
= AT (= V) + V) + Vb (xT) - V(x))
-0



Convergence of Newtons Method

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := D+ = diag(dx+)

At(x™)? = IDyAAX L |I?
< |IDLAAXKLI? + 1Dy AAX + (I — D' D)DAAX |2
= | (I - D'D)DAAX |2
= (I - Dy'D)*1|1?
<lU-D'D)I|*
= [[DAAXQ|I*
= Ar(x)?

The second inequality follows from > ; v < (Z,iyiz)2



If A;(x) is large we do not have a guarantee.

Try to avoid this case!!!
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Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing

1: start at analytic center

2: while solution not good enough do

3: make step to improve objective function
4: recenter to return to central path




Short Step Barrier Method

simplifying assumptions:
> a first central point x*(tg) is given
> x*(t) is computed exactly in each iteration

€ is approximation we are aiming for

start at t = tg, repeat until m/t <e
> compute x*(ut) using Newton starting from x* (t)
> t:=put

where y=1+1/(2ym)



Short Step Barrier Method

gradient of f;+ at (x = x*(t))

Vfi+(x) = Vfi(x) + (u—-1tc
= —(u-1ATDx1

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is
A+ (x)% = Ve 0O)TH IV fi+ (x)
= (u-1)°21TB(BTB)"'BTT B=DIA
<(u-1)°m
=1/4

This means we are in the range of quadratic convergence!!!



. ! Explanatlon for previous slide :
Number of Iterations P = BBTB)"'BT is a symmet- |
 ric real-valued matrix; it has n!
'Ilnearly independent Elgenvec |

the number of Newton iterations per outer |tors Since it is a projection ma-
iteration is very small; in practise only 1 or 21 tx (P* = P) it can only ha"e'
IE|genvalues 0 and 1 (because

. i \ the Eigenvalues of P2 are A?,
Number of outer iterations: ' where A; is Eigenvalue of P).

We need ty = ukto = m/e. This holds when ! The expression

1
1
1
1
1
1
1
vTpy |
1
1
1
1
1
1

. log(m/(ety)) e
log(u) . vy
! gives the largest Eigenvalue for
i 1TpT < 171 =
We get a bound of 1P.Hence, I'P1<1'1=m
m
(0] <\/n710g —)
€lp

We show how to get a starting point with to = 1/2L. Together
with € ~ 2L we get O(L./m) iterations.
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Damped Newton Method

|We assume that the polytope (not jUStl
i "the LP) is bounded. Then Av < 0 is not .
i possible. y

For x € P° and direction v # O define

Observation:

T

ox (V)= mlax sl(x)

1 ]
.aiTv is the change on the left:

"' hand side of the i-th constraint
! when moving in direction of v. :
\ If ox(v) > 1 then for one coor-
' dinate this change is larger than |
:the slack in the constraint at po-:
| sition x. ]
' By downscaling v we can en—:

I

1
I sure to stay in the polytope.

x+oveP forxe{0,1/ox(v)}
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Damped Newton Method

Suppose that we move from x to x + xv. The linear estimate
says that f; (x) should change by V f; (x)T axv.

The following argument shows that f; is well behaved. For small
« the reduction of f;(x) is close to linear estimate.

fr(x +ov) = fi(x) =tcTav + p(x + av) — p(x)

d(x + av) — Pp(x)

= > log(si(x + aw)) + > log(si(x))
- Zilog(si(x +av)/si(x))
= - > log(1 — af av/si(x))

______________________________

|sl(x+ow) bi—alx-alov =si(x) —alov!
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fr(x +av) - fi(x) - Vi) Tov

Vfi(x)T v :
= (tcT + Siaf 1six) Jow
=tcTav + 3 aw; :

- Zi((xwi +log(1 — oxwy;))

24,2
X“W:
< - > (ow; +1og(l — awy)) + > L
2
w;>0 w;<0
2 2 2
w: (xo) w;
< - Z —;(0((7+10g(1—o<0)>+ Z —5
o 2 o
w;>0 w;<0
For|x|<1,x<0: oo :
2 Bl 4 ) B o2
D ox+log(l-x) =-% - % - % — -27’(7=7y7% :
L o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o 1
:For|x|<1,0<xsy: :
2 2 B2
! x+log(1—x):—%2—§—’i—4— --zf}—i(—%—%—%— ) |
1
! 2 2 8] 4 2
! z%(—%—%—%—...)=%(y+log(l—y)) E



Damped Newton Method

- Z w—§<o<0 +log(1 — o«r))

—anllﬁx(ao +log(1 - ao))

Damped Newton Iteration:
In a damped Newton step we choose

+ -
1+ ox(Axnt)

.Thls means that in the above expressions we choose « = HIU and v = Axnt. Note that

| itwouldn’t make sense to choose « larger than 1 as this would mean that our real target '
(x + Axny) is inside the polytope but we overshoot and go further than this target. |
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Damped Newton Method

Theorem:
In a damped Newton step the cost decreases by at least

At(x) —log(1 + Ar(x))

Proof: The decrease in cost is
1
-V i) Tv + FHUH%X(O(O' +1log(1l — xo))

Choosing o = ﬁ and v = Axnt gives

1 » A(x)2 [ o o
1+cr)\t(x)Jr o? 1+U+log(1 1+(r>

Ar(x)?
- tgz (U

—log(1 + (T))
'With v = Axn we have llwllz = [Vl = Ar(x); further !
g recall that o = [w|l«; hence o < A¢(x). |

__________________________________



IThe first mequahty follows since thel

Damped Newton MEthOd .functlon z(x log(1+x)) is monoton- .

| ically decreasing. ;

> Ar(x) —log(1 + A¢(x))
> 0.09

for A¢(x) = 0.5

Centering Algorithm:

Input: precision §; starting point x
1. compute Axpe and Ay (x)
2. if As(x) < 6 return x
3. set x := X + &xAxnt with

1
o= 1+0x(Axnt) At =1/2
1 otw.
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Centering

Lemma 3
The centering algorithm starting at xo reaches a point with

Ai(x) < O after

Sft(x0) — miny, f; (y)

0.09 + O(loglog(1/6))

iterations.

This can be very, very slow...
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How to get close to analytic center?

Let P = {Ax < b} be our (feasible) polyhedron, and x( a feasible
point.

We change b — b + % -1, where L = (A) + (b) + (c) (encoding

length) and A = 22L. Recall that a basis is feasible in the old LP
iff it is feasible in the new LP.

‘m 10 Karmarkars Algorithm
Harald Racke 255/258



Lemma [without proof]
The inverse of a matrix M can be represented with rational
numbers that have denominators z;; = det(M).

For two basis solutions xg, xj, the cost-difference c¢'xp — ¢’ x;
can be represented by a rational number that has denominator
z = det(Ap) - det(Ap).

This means that in the perturbed LP it is sufficient to decrease
the duality gap to 1/2%L (i.e., t = 2%L). This means the previous
analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the
objective value ¢’ x is at most n2M2L where M < L is the
encoding length of the largest entry in C.
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How to get close to analytic center?

Start at xo. : This holds since the slack in every constraint
1at xo is at least A = 1/22L, and the gradient |
Choose ¢ := -V (x). | is the vector of inverse slacks. )

x0 = x*(1) is point on central path for ¢ and t = 1.

You can travel the central path in both directions. Go towards 0
until t =~ 1/29W0) This requires O(./mL) outer iterations.

Let x¢ denote this point.
Let x. denote the point that minimizes
t-clx+¢p(x)

(i.e., same value for t but different ¢, hence, different central
path).



How to get close to analytic center?

Clearly,
t-ETxe+p(xe) <t-ETxe+ Pp(xe)

The difference between f;(x¢) and fi(x.) is

teTxe + plxe) —teTxe — Pplxe)
<tcTxs+¢Txe —Txs—c
< 4tn23L

TXC)

For t = 1/2%(L) the last term becomes constant. Hence, using
damped Newton we can move from x; to x. quickly.

In total for this analysis we require @ (,/mL) outer iterations for
the whole algorithm.

One iteration can be implemented in ® (m3) time.
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