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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

‘m 6 Degeneracy Revisited
Harald Racke 117/132



Degenerate Example
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If a basis variable is 0 in the basic feasible solution then we may
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{c’x, Ax = b;x > 0}. Change it into
LP' := max{cTx,Ax = b’,x = 0} such that
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{c’x, Ax = b;x > 0}. Change it into
LP" := max{cTx,Ax = b’,x = 0} such that
I. LP’ is feasible
Il. If a set B of basis variables corresponds to an infeasible
basis (i.e. Az'b # 0) then B corresponds to an infeasible

basis in LP’" (note that columns in Ag are linearly
independent).
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{c’x, Ax = b;x > 0}. Change it into
LP" := max{cTx,Ax = b’,x = 0} such that
I. LP’ is feasible
Il. If a set B of basis variables corresponds to an infeasible
basis (i.e. Az'b # 0) then B corresponds to an infeasible

basis in LP’" (note that columns in Ag are linearly
independent).

I1l. LP’ has no degenerate basic solutions
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Perturbation

Let B be index set of some basis with basic solution

X§ =Ag'b = 0,x35 =0 (i.e. Bis feasible)
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Perturbation

Let B be index set of some basis with basic solution

X§ =Ag'b = 0,x35 =0 (i.e. Bis feasible)

Fix

b':=b+Apg| ! | fore>0.

é-m

This is the perturbation that we are using.
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Property |

The new LP is feasible because the set B of basis variables
provides a feasible basis:
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Property |

The new LP is feasible because the set B of basis variables
provides a feasible basis:

Agl|b+Ap| : =xj+| 1 ]|=20.
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Property Il

Let B be a non-feasible basis. This means (Alglb)i < 0 for some
row i.
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Property Il

Let B be a non-feasible basis. This means (Alglb)i < 0 for some
row i.

Then for small enough € > 0

&
Azl | b+ Ap

em
i
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Property Il

Let B be a non-feasible basis. This means (Alglb)i < 0 for some
row i.

Then for small enough € > 0

& &
AN b+ Ap| = (Az'h)i+ | Azl Ap | <0

gm gm
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Property Il

Let B be a non-feasible basis. This means (Alglb)i < 0 for some
row i.

Then for small enough € > 0

& &
Azl |b+Ag| = (Az'D)i + | Az'Ap | <0

Em m

i i

M

Hence, B is not feasible.
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Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.
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Property lll

Let B be a basis. It has an associated solution
£
*x _ A—1 -1
XB - AB b + AB AB
E’I’l’l

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.
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We can view each component of the vector as a polynom with
variable € of degree at most m.

AlglAB has rank m. Therefore no polynom is 0.
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Property lll

Let B be a basis. It has an associated solution
£

| -1

*
B
em

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

AlglAB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots
(Nullstellen).
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variable € of degree at most m.

AlglAB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots
(Nullstellen).

Hence, € > 0 small enough gives that no component of the
above vector is 0.
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Property lll
Let B be a basis. It has an associated solution
£

* _ Al -1
XB _AB b+AB AB

Em
in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

AlglAB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots
(Nullstellen).

Hence, € > 0 small enough gives that no component of the
above vector is 0. Hence, no degeneracies.
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Since, there are no degeneracies Simplex will terminate when
run on LP'.
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Since, there are no degeneracies Simplex will terminate when
run on LP’.

> If it terminates because the reduced cost vector fulfills
¢=(ct-cfAgla) <0

then we have found an optimal basis.
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Since, there are no degeneracies Simplex will terminate when
run on LP'.

> If it terminates because the reduced cost vector fulfills

™

= (cl —cfAgta) <0

then we have found an optimal basis. Note that this basis is
also optimal for LP, as the above constraint does not
depend on b.
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Since, there are no degeneracies Simplex will terminate when
run on LP’.

> If it terminates because the reduced cost vector fulfills

(cT —cfAgtA) <0

™
Il

then we have found an optimal basis. Note that this basis is
also optimal for LP, as the above constraint does not
depend on b.

> If it terminates because it finds a variable x; with ¢; > 0 for
which the j-th basis direction d, fulfills d = 0 we know that
LP is unbounded. The basis direction does not depend on
b. Hence, we also know that LP is unbounded.
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Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.
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Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.

Idea:
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Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.

Idea:
Simulate behaviour of LP” without explicitly doing a perturbation.
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Lexicographic Pivoting
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Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).
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Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).

If we do not have a choice for the leaving variable then LP" and
LP do the same (i.e., choose the same variable).
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Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).

If we do not have a choice for the leaving variable then LP" and
LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.
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Lexicographic Pivoting

In the following we assume that b > 0. This can be obtained by
replacing the initial system (A | b) by (A3'A | Az'b) where B is
the index set of a feasible basis (found e.g. by the first phase of
the Two-phase algorithm).
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Lexicographic Pivoting

In the following we assume that b > 0. This can be obtained by
replacing the initial system (A | b) by (A3'A | Az'b) where B is
the index set of a feasible basis (found e.g. by the first phase of
the Two-phase algorithm).

Then the perturbed instance is

b"=b+

Em
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Matrix View
Let our linear program be

ckxp + chxy = Z
Apxp + ANXN = D
XB y xy = 0
The simplex tableaux for basis B is
(cf —ctAR*AN)XN = Z-ciAR'D
Ixp + AglAnxn = A,;lb
XB ’ XN > O

The BFS is given by xy = 0,xp = Az'b.

If (cf; — cfAgtAN) < 0 we know that we have an optimum
solution.
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Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has A, > 0 and
minimizes
Op
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Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has A, > 0 and
minimizes R

_ by
Aﬁe

0p
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Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has A, > 0 and
minimizes R
by (Ap'b)y

9€ = = T 1. . -
Age (AglA*e)e
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Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has A, > 0 and
minimizes
0 = ?i _ M ]

Ao (Ap'Ase)y
{ is the index of a leaving variable within B. This means if e.qg.
B ={1,3,7,14} and leaving variable is 3 then £ = 2.
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Lexicographic Pivoting

Definition 2
U <jex v if and only if the first component in which u and v
differ fulfills u; < v;.
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Lexicographic Pivoting

LP’ chooses an index that minimizes
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Lexicographic Pivoting

LP’ chooses an index that minimizes

&
Agl| b+
0 74
‘- (Ap'Ase)g
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Lexicographic Pivoting

LP’ chooses an index that minimizes

1
& 1 &
Ar (b |1
Agl| b+ g (P10 :
0, - ) )y _ "))
(At Ase)y (AptAse)y
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Lexicographic Pivoting

LP’ chooses an index that minimizes

1
£ " £
As
Agl| b+ g (P10 :
gm / gm P
0p = -1 = 1
(AB A*e)€ (AB A*e)€
_ {-throwof Ag'(b | 1) | €
(AglA*e)E :
Em
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Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
£-th row of AgY(b | )

(AglAse)p

is lexicographically minimal.
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Lexicographic Pivoting

This means you can choose the variable/row £ for which the
vector
£-th row of AgY(b | )
(Ap'Axe)p

is lexicographically minimal.

Of course only including rows with (AEIA*(;){/ > 0.
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Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
£-th row of AgY(b | )

(AglAse)p

is lexicographically minimal.

Of course only including rows with (AglA*e)g > 0.

This technique guarantees that your pivoting is the same as in
the perturbed case. This guarantees that cycling does not occur.
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