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Greedy-algorithm:

» start with f(e) = 0 everywhere

» find an s-t path with f(e) < c(e) on every edge

» augment flow along the path

> repeat as long as possible
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Greedy-algorithm:
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start with f'(e) = 0 everywhere

» find an s-t path with f(e) < c(e) on every edge
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Greedy-algorithm:
» start with f(e) = 0 everywhere
» find an s-t path with f(e) < c(e) on every edge
» augment flow along the path
> repeat as long as possible
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Greedy-algorithm:

» start with f(e) = 0 everywhere

» find an s-t path with f(e) < c(e) on every edge

» augment flow along the path

> repeat as long as possible
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The Residual Graph

From the graph G = (V,E, c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):
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The Residual Graph

From the graph G = (V,E, c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):

» Suppose the original graph has edges e¢; = (u,v), and
e» = (v,u) between u and v.
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The Residual Graph

From the graph G = (V,E, c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):

» Suppose the original graph has edges e¢; = (u,v), and
e» = (v,u) between u and v.

» G has edge e} with capacity max{0,c(e1) — f(e1) + f(e2)}
and e, with with capacity max{0,c(ez) — f(e2) + f(e1)}.
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The Residual Graph

From the graph G = (V,E, c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):

» Suppose the original graph has edges e¢; = (u,v), and
e» = (v,u) between u and v.

» Gy has edge e} with capacity max{0,c(e;) — f(e1) + f(e2)}
and e, with with capacity max{0,c(ez) — f(e2) + f(e1)}.
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Augmenting Path Algorithm

Definition 1

An augmenting path with respect to flow f, is a path from s to t
in the auxiliary graph G that contains only edges with non-zero
capacity.
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Augmenting Path Algorithm

Definition 1

An augmenting path with respect to flow f, is a path from s to t
in the auxiliary graph G that contains only edges with non-zero
capacity.

Algorithm 1 FordFulkerson(G = (V,E,c))

1: Initialize f(e) < O for all edges.

2: while 3 augmenting path p in G do

3: augment as much flow along p as possible.
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Augmenting Path Algorithm
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Augmenting Path Algorithm

2 0|4 :@\
G !
0]2 Ys

Q (7)
A 0l6 0

N U

Flow value = 0

,,,,,, 4—>Q

6 O\
N
,,,,,, 9>‘>0 104\@

‘m 11.1 The Generic Augmenting Path Algorithm =
Ernst Mayr, Harald Racke



Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm
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Augmenting Path Algorithm

Theorem 2
A flow f is a maximum flow iff there are no augmenting paths.
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Augmenting Path Algorithm

Theorem 2
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum
cut.
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Augmenting Path Algorithm

Theorem 2
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A, B such that val(f) = cap(A, B).
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Augmenting Path Algorithm

Theorem 2
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A, B such that val(f) = cap(A, B).

2. Flow f is a maximum flow.
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Augmenting Path Algorithm

Theorem 2
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A, B such that val(f) = cap(A, B).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f.
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Augmenting Path Algorithm
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Augmenting Path Algorithm

1. = 2.
This we already showed.
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Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.

Contradiction.
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Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.

If there were an augmenting path, we could improve the flow.

Contradiction.

3. = 1.

> Let f be a flow with no augmenting paths.
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Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.
Contradiction.

3. = 1.

» Let f be a flow with no augmenting paths.

» Let A be the set of vertices reachable from s in the residual
graph along non-zero capacity edges.
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Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.
Contradiction.

3. = 1.

» Let f be a flow with no augmenting paths.

» Let A be the set of vertices reachable from s in the residual
graph along non-zero capacity edges.

» Since there is no augmenting path we have s € Aand t ¢ A.
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Augmenting Path Algorithm

val(f)
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Augmenting Path Algorithm

val(f) = > fle)— > fle)

ecout(A) ecinto(A)
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Augmenting Path Algorithm

val(f) = > fle— >  fle)
ecout(A) ecinto(A)
= z c(e)
ecout(A)
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Augmenting Path Algorithm

val(f) = > fle— >  fle)
ecout(A) ecinto(A)
= z c(e)
ecout(A)
=cap(A,V\ A)
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Augmenting Path Algorithm

val(f) = > fle— >  fle)
ecout(A) ecinto(A)
= Z c(e)
ecout(A)
=cap(A,V\ A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the
second exploits the fact that the flow along incoming edges

must be 0 as the residual graph does not have edges leaving A.
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Analysis

Assumption:
All capacities are integers between 1 and C.
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Analysis

Assumption:
All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity cy(e) remains
integral troughout the algorithm.
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Lemma 4

The algorithm terminates in at most val(f*) < nC iterations,
where f* denotes the maximum flow. Each iteration can be
implemented in time O (m). This gives a total running time of
O(mmcC).
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Lemma 4

The algorithm terminates in at most val(f*) < nC iterations,
where f* denotes the maximum flow. Each iteration can be
implemented in time O (m). This gives a total running time of
O(mmcC).

Theorem 5
If all capacities are integers, then there exists a maximum flow
for which every flow value f(e) is integral.
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A Bad Input

Problem: The running time may not be polynomial.
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A Bad Input

Problem: The running time may not be polynomial.
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A Bad Input
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A Bad Input

Problem: The running time may not be polynomial.

\999

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke



A Bad Input
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A Bad Input

Problem: The running time may not be polynomial.
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Question:

Can we tweak the algorithm so that the running time is
polynomial in the input length?
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A Pathological Input

Let v = %(\/ﬁ— 1). Then ¥"+2 =y — g+l
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A Pathological Input
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A Pathological Input

Letr = %(\/ﬁ_ 1). Then ¥"+2 = yn —pntl,
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A Pathological Input

Letr = %(\/ﬁ_ 1). Then ¥"+2 = yn —pntl,
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A Pathological Input
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A Pathological Input

Letr = %(\/ﬁ_ 1). Then ¥"+2 = yn —pntl,

AN ™
pd

N

R
i i///

‘m 11.1 The Generic Augmenting Path Algorithm =
Ernst Mayr, Harald Racke



A Pathological Input
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A Pathological Input

Letr = %(\/ﬁ_ 1). Then ¥"+2 = yn —pntl,
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Running time may be infinite!!!
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How to choose augmenting paths?
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How to choose augmenting paths?

» We need to find paths efficiently.
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How to choose augmenting paths?

» We need to find paths efficiently.

» We want to guarantee a small number of iterations.
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How to choose augmenting paths?

» We need to find paths efficiently.

» We want to guarantee a small number of iterations.
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How to choose augmenting paths?

» We need to find paths efficiently.

» We want to guarantee a small number of iterations.

Several possibilities:

» Choose path with maximum bottleneck capacity.
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How to choose augmenting paths?
» We need to find paths efficiently.

» We want to guarantee a small number of iterations.

Several possibilities:

» Choose path with maximum bottleneck capacity.

» Choose path with sufficiently large bottleneck capacity.
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How to choose augmenting paths?
» We need to find paths efficiently.

» We want to guarantee a small number of iterations.

Several possibilities:

» Choose path with maximum bottleneck capacity.

» Choose path with sufficiently large bottleneck capacity.

» Choose the shortest augmenting path.
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