
Splay Trees

Disadvantage of balanced search trees:

− worst case; no advantage for easy inputs

− additional memory required

− complicated implementation

Splay Trees:

+ after access, an element is moved to the root; splay(x)
repeated accesses are faster

− only amortized guarantee

− read-operations change the tree

Ernst Mayr, Harald Räcke 162

Splay Trees

find(x)
ñ search for x according to a search tree

ñ let x̄ be last element on search-path

ñ splay(x̄)

7.3 Splay Trees

Ernst Mayr, Harald Räcke 163

Splay Trees

insert(x)
ñ search for x; x̄ is last visited element during search

(successer or predecessor of x)

ñ splay(x̄) moves x̄ to the root

ñ insert x as new root

x̄

A B

x̄

x

A
B

The illustration shows the case when x̄ is
the predecessor of x.

7.3 Splay Trees

Ernst Mayr, Harald Räcke 164

Splay Trees

delete(x)
ñ search for x; splay(x); remove x
ñ search largest element x̄ in A
ñ splay(x̄) (on subtree A)

ñ connect root of B as right child of x̄

x

A B

x̄

A′ B

x̄

A′ B

7.3 Splay Trees

Ernst Mayr, Harald Räcke 165

Move to Root

x

p

A

B C

x

p

A B

C

How to bring element to root?

ñ one (bad) option: moveToRoot(x)

ñ iteratively do rotation around parent of x until x is root

ñ if x is left child do right rotation otw. left rotation

7.3 Splay Trees

Ernst Mayr, Harald Räcke 166

Splay: Zig Case

x

p

A

B C

x

p

A B

C

better option splay(x):

ñ zig case: if x is child of root do left rotation or right

rotation around parent

Note that moveToRoot(x) does the same.

7.3 Splay Trees

Ernst Mayr, Harald Räcke 167

Splay: Zigzag Case

g

p

x

A
D

B C

gp

x

A B C D

better option splay(x):

ñ zigzag case: if x is right child and parent of x is left child

(or x left child parent of x right child)

ñ do double right rotation around grand-parent (resp. double

left rotation)

Note that moveToRoot(x) does the same.

7.3 Splay Trees

Ernst Mayr, Harald Räcke 168

Double Rotations

x

y

z

A

B C

D

Le
ftR

ot
at

e(
y)

RightRotate(x)

DoubleRightRotate(x)

x

y

z

A B

C

D

z

y x

A B C D

Splay: Zigzig Case

g

p

x

D

C

A B

g

p

x

A

B

C D

better option splay(x):

ñ zigzig case: if x is left child and parent of x is left child (or

x right child, parent of x right child)

ñ do right roation around grand-parent followed by right

rotation around parent (resp. left rotations)

This case is different between
moveToRoot(x) and splay(x).

7.3 Splay Trees

Ernst Mayr, Harald Räcke 170

Splay vs. Move to Root
a

b

c

d

e

f

x

A B

C

D

E

F

G

H

Input tree on which splay(x) and
moveToRoot(x) is executed.

7.3 Splay Trees

Ernst Mayr, Harald Räcke 171

Splay vs. Move to Root

a

b

c

d

e

f

x

A

B C

D

E

F

G

H

Result after moveToRoot(x).

7.3 Splay Trees

Ernst Mayr, Harald Räcke 171

Splay vs. Move to Root

a

b

c

d

e

f

x

A

B

C D

E F

G H

Result after splay(x).

7.3 Splay Trees

Ernst Mayr, Harald Räcke 172

Static Optimality

Suppose we have a sequence of m find-operations. find(x)
appears hx times in this sequence.

The cost of a static search tree T is:

cost(T) =m+
∑
x
hx depthT (x)

The total cost for processing the sequence on a splay-tree is

O(cost(Tmin)), where Tmin is an optimal static search tree.

depthT (x) is the number of edges on a
path from the root of T to x.

Theorem given without proof.

7.3 Splay Trees

Ernst Mayr, Harald Räcke 173

Dynamic Optimality

Let S be a sequence with m find-operations.

Let A be a data-structure based on a search tree:

ñ the cost for accessing element x is 1+ depth(x);
ñ after accessing x the tree may be re-arranged through

rotations;

Conjecture:

A splay tree that only contains elements from S has cost

O(cost(A, S)), for processing S.

7.3 Splay Trees

Ernst Mayr, Harald Räcke 174

Lemma 1

Splay Trees have an amortized running time of O(logn) for all

operations.

7.3 Splay Trees

Ernst Mayr, Harald Räcke 175

Amortized Analysis

Definition 2

A data structure with operations op1(), . . . ,opk() has amortized

running times t1, . . . , tk for these operations if the following

holds.

Suppose you are given a sequence of operations (starting with

an empty data-structure) that operate on at most n elements,

and let ki denote the number of occurences of opi() within this

sequence. Then the actual running time must be at most∑
i ki · ti(n).

7.3 Splay Trees

Ernst Mayr, Harald Räcke 176

Potential Method

Introduce a potential for the data structure.

ñ Φ(Di) is the potential after the i-th operation.

ñ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑
i=1

ci ≤
k∑
i=1

ci + Φ(Dk)− Φ(D0) =
k∑
i=1

ĉi

This means the amortized costs can be used to derive a bound

on the total cost.

7.3 Splay Trees

Ernst Mayr, Harald Räcke 177

Example: Stack

Stack

ñ S. push()
ñ S. pop()
ñ S.multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the

stack.

ñ The user has to ensure that pop and multipop do not

generate an underflow.

Actual cost:

ñ S. push(): cost 1.

ñ S. pop(): cost 1.

ñ S.multipop(k): cost min{size, k} = k.

7.3 Splay Trees

Ernst Mayr, Harald Räcke 178

Example: Stack

Note that the analysis
becomes wrong if pop() or
multipop() are called on an
empty stack.

Use potential function Φ(S) = number of elements on the stack.

Amortized cost:
ñ S. push(): cost

Ĉpush = Cpush +∆Φ = 1+ 1 ≤ 2 .

ñ S. pop(): cost

Ĉpop = Cpop +∆Φ = 1− 1 ≤ 0 .

ñ S.multipop(k): cost

Ĉmp = Cmp +∆Φ =min{size, k} −min{size, k} ≤ 0 .

7.3 Splay Trees

Ernst Mayr, Harald Räcke 179

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs

one time-unit.

Incrementing an n-bit binary counter may require to examine

n-bits, and maybe change them.

Actual cost:

ñ Changing bit from 0 to 1: cost 1.

ñ Changing bit from 1 to 0: cost 1.

ñ Increment: cost is k+ 1, where k is the number of

consecutive ones in the least significant bit-positions (e.g,

001101 has k = 1).

7.3 Splay Trees

Ernst Mayr, Harald Räcke 180

Example: Binary Counter
Choose potential function Φ(x) = k, where k denotes the

number of ones in the binary representation of x.

Amortized cost:

ñ Changing bit from 0 to 1:

Ĉ0→1 = C0→1 +∆Φ = 1+ 1 ≤ 2 .

ñ Changing bit from 1 to 0:

Ĉ1→0 = C1→0 +∆Φ = 1− 1 ≤ 0 .

ñ Increment: Let k denotes the number of consecutive ones in

the least significant bit-positions. An increment involves k
(1→ 0)-operations, and one (0→ 1)-operation.

Hence, the amortized cost is kĈ1→0 + Ĉ0→1 ≤ 2.

Splay Trees

potential function for splay trees:

ñ size s(x) = |Tx|
ñ rank r(x) = log2(s(x))
ñ Φ(T) =∑v∈T r(v)

amortized cost = real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1

plus the number of rotations.

7.3 Splay Trees

Ernst Mayr, Harald Räcke 182

Splay: Zig Case

x

p

A

B C

x

p

A B

C

∆Φ = r ′(x)+ r ′(p)− r(x)− r(p)
= r ′(p)− r(x)
≤ r ′(x)− r(x)

costzig ≤ 1+ 3(r ′(x)− r(x))

7.3 Splay Trees

Ernst Mayr, Harald Räcke 183

Splay: Zigzig Case

g

p

x

D

C

A B

g

p

x

A

B

C D

∆Φ = r ′(x)+ r ′(p)+ r ′(g)− r(x)− r(p)− r(g)
= r ′(p)+ r ′(g)− r(x)− r(p)
≤ r ′(x)+ r ′(g)− r(x)− r(x)
= r ′(x)+ r ′(g)+ r(x)− 3r ′(x)+ 3r ′(x)− r(x)− 2r(x)

= −2r ′(x)+ r ′(g)+ r(x)+ 3(r ′(x)− r(x))
≤ −2+ 3(r ′(x)− r(x)) ⇒ costzigzig ≤ 3(r ′(x)− r(x))

Last inequality follows
from next slide.

Splay: Zigzig Case

g

p

x

D

C

A B

g

p

x

A

B

C D

1
2

(
r(x)+ r ′(g)− 2r ′(x)

)
= 1

2

(
log(s(x))+ log(s′(g))− 2 log(s′(x))

)
= 1

2
log

(s(x)
s′(x)

)
+ 1

2
log

(s′(g)
s′(x)

)
≤ log

(1
2
s(x)
s′(x)

+ 1
2
s′(g)
s′(x)

)
≤ log

(1
2

)
= −1

The last inequality holds
because log is a concave
function.

Splay: Zigzag Case

g

p

x

A
D

B C

gp

x

A B C D

∆Φ = r ′(x)+ r ′(p)+ r ′(g)− r(x)− r(p)− r(g)
= r ′(p)+ r ′(g)− r(x)− r(p)
≤ r ′(p)+ r ′(g)− r(x)− r(x)
= r ′(p)+ r ′(g)− 2r ′(x)+ 2r ′(x)− 2r(x)

≤ −2+ 2(r ′(x)− r(x)) ⇒ costzigzag ≤ 3(r ′(x)− r(x))

7.3 Splay Trees

Ernst Mayr, Harald Räcke 185

Splay: Zigzag Case

g

p

x

A
D

B C

gp

x

A B C D

1
2

(
r ′(p)+ r ′(g)− 2r ′(x)

)
= 1

2

(
log(s′(p))+ log(s′(g))− 2 log(s′(x))

)
≤ log

(1
2
s′(p)
s′(x)

+ 1
2
s′(g)
s′(x)

)
≤ log

(1
2

)
= −1

7.3 Splay Trees

Ernst Mayr, Harald Räcke 185

Amortized cost of the whole splay operation:

≤ 1+ 1+
∑

steps t
3(rt(x)− rt−1(x))

= 2+ r(root)− r0(x)

≤ O(logn)

The first one is added due to the fact that so far for each step
of a splay-operation we have only counted the number of
rotations, but the cost is 1+#rotations.

The second one comes from the zig-operation. Note that we
have at most one zig-operation during a splay.

7.3 Splay Trees

Ernst Mayr, Harald Räcke 186

Splay Trees

Bibliography

??????????????????????????????????????

7.3 Splay Trees

Ernst Mayr, Harald Räcke 187

	Splay Trees

