6.2 Master Theorem #### Lemma 1 Let $a \ge 1, b \ge 1$ and $\epsilon > 0$ denote constants. Consider the recurrence $$T(n) = aT\left(\frac{n}{b}\right) + f(n) .$$ #### Case 1. If $$f(n) = \mathcal{O}(n^{\log_b(a) - \epsilon})$$ then $T(n) = \Theta(n^{\log_b a})$. #### Case 2. If $$f(n) = \Theta(n^{\log_b(a)} \log^k n)$$ then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$, $k \ge 0$. #### Case 3. If $$f(n) = \Omega(n^{\log_b(a) + \epsilon})$$ and for sufficiently large n $af(\frac{n}{b}) \le cf(n)$ for some constant $c < 1$ then $T(n) = \Theta(f(n))$. ### 6.2 Master Theorem We prove the Master Theorem for the case that n is of the form b^{ℓ} , and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1. The running time of a recursive algorithm can be visualized by a recursion tree: f(n) The running time of a recursive algorithm can be visualized by a recursion tree: f(n) $af(\frac{n}{b})$ ### 6.2 Master Theorem This gives $$T(n) = n^{\log_b a} + \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right) .$$ $$T(n) - n^{\log_b a}$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$ $$b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$ $$b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i} = c n^{\log_b a - \epsilon} \sum_{i=0}^{i=0} (b^{\epsilon})^i$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$ $$\underline{b^{-i(\log_b a - \epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}} = c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$ $$\sum_{i=0}^k q^i = \frac{q^{k+1} - 1}{q-1}$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$ $$\underline{b^{-i(\log_b a - \epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}} = c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$ $$\sum_{i=0}^k q^i = \frac{q^{k+1} - 1}{a^{-1}} = c n^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1) / (b^{\epsilon} - 1)$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$ $$\underline{b^{-i(\log_b a - \epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}} = c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$ $$\underline{\sum_{i=0}^k q^i = \frac{q^{k+1} - 1}{q - 1}} = c n^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1) / (b^{\epsilon} - 1)$$ $$= c n^{\log_b a - \epsilon} (n^{\epsilon} - 1) / (b^{\epsilon} - 1)$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$ $$b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i} = c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$ $$\sum_{i=0}^k a^i = \frac{q^{k+1} - 1}{q - 1} = c n^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1) / (b^{\epsilon} - 1)$$ $$= c n^{\log_b a - \epsilon} (n^{\epsilon} - 1) / (b^{\epsilon} - 1)$$ $$= \frac{c}{b^{\epsilon} - 1} n^{\log_b a} (n^{\epsilon} - 1) / (n^{\epsilon})$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$ $$b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i} = c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$ $$\sum_{i=0}^k a^i = \frac{q^{k+1} - 1}{q - 1} = c n^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1) / (b^{\epsilon} - 1)$$ $$= c n^{\log_b a - \epsilon} (n^{\epsilon} - 1) / (b^{\epsilon} - 1)$$ $$= \frac{c}{b^{\epsilon} - 1} n^{\log_b a} (n^{\epsilon} - 1) / (n^{\epsilon})$$ Hence, $$T(n) \le \left(\frac{c}{h^{\epsilon} - 1} + 1\right) n^{\log_b(a)}$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$ $$b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i} = c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$ $$\frac{b^{-t(\log_b a - \epsilon)} = b^{\epsilon t}(b^{\log_b a})^{-t} = b^{\epsilon t}a^{-t}}{\sum_{i=0}^k q^i = \frac{q^{k+1} - 1}{q-1}} = cn^{\log_b a - \epsilon} \left(b^{\epsilon \log_b n} - 1\right) / (b^{\epsilon} - 1)$$ $$= cn^{\log_b a - \epsilon} (n^{\epsilon} - 1) / (b^{\epsilon} - 1)$$ $$= \frac{c}{b^{\epsilon} - 1} n^{\log_b a} (n^{\epsilon} - 1) / (n^{\epsilon})$$ Hence, $$T(n) \le \left(\frac{c}{h^{\epsilon} - 1} + 1\right) n^{\log_b(a)}$$ $$\Rightarrow T(n) = \mathcal{O}(n^{\log_b a}).$$ $$T(n) - n^{\log_b a}$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$ $$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$ $$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$ $$= c n^{\log_b a} \log_b n$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$ $$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$ $$= c n^{\log_b a} \log_b n$$ Hence, $$T(n) = \mathcal{O}(n^{\log_b a} \log_b n)$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$ $$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$ $$= c n^{\log_b a} \log_b n$$ Hence, $$T(n) = \mathcal{O}(n^{\log_b a} \log_b n)$$ $\Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log n).$ $$T(n) - n^{\log_b a}$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\geq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\geq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$ $$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\geq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$ $$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$ $$= c n^{\log_b a} \log_b n$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\geq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$ $$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$ $$= c n^{\log_b a} \log_b n$$ Hence, $$T(n) = \mathbf{\Omega}(n^{\log_b a} \log_b n)$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\geq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$ $$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$ $$= c n^{\log_b a} \log_b n$$ Hence, $$T(n) = \mathbf{\Omega}(n^{\log_b a} \log_b n)$$ $\Rightarrow T(n) = \mathbf{\Omega}(n^{\log_b a} \log n).$ $$T(n) - n^{\log_b a}$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$ $$n=b^\ell\Rightarrow\ell=\log_b n$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$ $$\boxed{n = b^\ell \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^\ell}{b^i}\right)\right)^k$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$ $$\boxed{n = b^{\ell} \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k$$ $$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$ $$\boxed{n = b^\ell \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^\ell}{b^i}\right)\right)^k$$ $$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$ $$= c n^{\log_b a} \sum_{i=0}^{\ell} i^k$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$ $$\boxed{n = b^{\ell} \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k$$ $$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$ $$= c n^{\log_b a} \sum_{i=0}^{\ell} \ell \leq \frac{1}{k} \ell^{k+1}$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$ $$\boxed{n = b^{\ell} \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k$$ $$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$ $$= c n^{\log_b a} \sum_{i=1}^{\ell} i^k$$ $$\approx \frac{c}{b} n^{\log_b a} \ell^{k+1}$$ $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$ $$\boxed{n = b^{\ell} \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k$$ $$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$ $$= c n^{\log_b a} \sum_{i=1}^{\ell} i^k$$ $$\approx \frac{c}{b} n^{\log_b a} \ell^{k+1} \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log^{k+1} n).$$ From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large. From this we get $a^if(n/b^i) \le c^if(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large. $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ From this we get $a^if(n/b^i) \le c^if(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large. $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$ From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large. $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$ $$q < 1: \sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q} \le \frac{1}{1 - q}$$ From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large. $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$ $$q < 1: \sum_{i=0}^n q^i = \frac{1 - q^{n+1}}{1 - q} \leq \frac{1}{1 - c} f(n) + \mathcal{O}(n^{\log_b a})$$ From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large. $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$ $$q < 1: \sum_{i=0}^n q^i = \frac{1 - q^{n+1}}{1 - q} \leq \frac{1}{1 - c} f(n) + \mathcal{O}(n^{\log_b a})$$ Hence, $$T(n) \leq \mathcal{O}(f(n))$$ From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large. $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$ $$q < 1: \sum_{i=0}^n q^i = \frac{1 - q^{n+1}}{1 - q} \leq \frac{1}{1 - c} f(n) + \mathcal{O}(n^{\log_b a})$$ Hence, $$T(n) \leq \mathcal{O}(f(n))$$ $$\Rightarrow T(n) = \Theta(f(n)).$$ Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. For this we first need to be able to add two integers A and B: Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. For this we first need to be able to add two integers A and B: Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. For this we first need to be able to add two integers \mathbf{A} and \mathbf{B} : Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. For this we first need to be able to add two integers \mathbf{A} and \mathbf{B} : Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. For this we first need to be able to add two integers \mathbf{A} and \mathbf{B} : Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. For this we first need to be able to add two integers \mathbf{A} and \mathbf{B} : Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. For this we first need to be able to add two integers \mathbf{A} and \mathbf{B} : This gives that two n-bit integers can be added in time $\mathcal{O}(n)$. Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$). 1 0 0 0 1 × 1 0 1 1 Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$). 1 0 0 0 1 × 1 0 1 1 | _ | 1 | 0 | 0 | 0 | 1 | X | 1 | 0 | 1 | 1 | |---|---|---|---|---|---|---|---|---|---|---| | | | | | | | 1 | 0 | 0 | 0 | 1 | | | | | | | 1 | 0 | 0 | 0 | 1 | 0 | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | _1 | 0 | 0 | 0 | 1 | X | 1 | 0 | 1 | 1 | |----|---|---|---|---|---|---|---|---|---| | | | | | | 1 | 0 | 0 | 0 | 1 | | | | | | 1 | 0 | 0 | 0 | 1 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | 0 | 0 | 0 | | 1 | 0 | 0 | 0 | 1 | X | 1 | 0 | 1 | 1 | |---|---|---|---|---|---|---|---|---|---| | | | | | | 1 | 0 | 0 | 0 | 1 | | | | | | 1 | 0 | 0 | 0 | 1 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | _1 | 0 | 0 | 0 | 1 | × | 1 | 0 | 1 | 1 | |----|---|---|---|---|---|---|---|---|---| | | | | | | 1 | 0 | 0 | 0 | 1 | | | | | | 1 | 0 | 0 | 0 | 1 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | _ | 1 | 0 | 0 | 0 | 1 | X | 1 | 0 | 1 | 1 | |---|---|---|---|---|---|---|---|---|---|---| | | | | | | | 1 | 0 | 0 | 0 | 1 | | | | | | | 1 | 0 | 0 | 0 | 1 | 0 | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | | | | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$). Time requirement: Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$). | 1 | 0 | 0 | 0 | 1 | × | 1 | 0 | 1 | 1 | |---|---|---|---|---|---|---|---|---|---| | | | | | | 1 | 0 | 0 | 0 | 1 | | | | | | 1 | 0 | 0 | 0 | 1 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | | | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | #### Time requirement: ▶ Computing intermediate results: O(nm). Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$). | 1 | 0 | 0 | 0 | 1 | × | 1 | 0 | 1 | 1 | |---|---|---|---|---|---|---|---|---|---| | | | | | | 1 | 0 | 0 | 0 | 1 | | | | | | 1 | 0 | 0 | 0 | 1 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | | | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | #### Time requirement: - ▶ Computing intermediate results: O(nm). - ► Adding m numbers of length $\leq 2n$: $\mathcal{O}((m+n)m) = \mathcal{O}(nm)$. #### A recursive approach: #### A recursive approach: #### A recursive approach: #### A recursive approach: $$b_{n-1}$$ \cdots $b_{\frac{n}{2}}$ $b_{\frac{n}{2}-1}$ \cdots b_{0} \times a_{n-1} \cdots $a_{\frac{n}{2}}$ $a_{\frac{n}{2}-1}$ \cdots a_{0} #### A recursive approach: | B_1 | B ₀ | × | A_1 | A_0 | |-------|-----------------------|---|-------|-------| |-------|-----------------------|---|-------|-------| #### A recursive approach: Suppose that integers **A** and **B** are of length $n = 2^k$, for some k. Then it holds that $$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$ and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$ #### A recursive approach: Suppose that integers **A** and **B** are of length $n = 2^k$, for some k. Then it holds that $$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$ and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$ Hence, $$A \cdot B = A_1 B_1 \cdot 2^n + (A_1 B_0 + A_0 B_1) \cdot 2^{\frac{n}{2}} + A_0 B_0$$ #### **Algorithm 3** mult(A, B) 1: if |A| = |B| = 1 then 2: return $a_0 \cdot b_0$ 3: split A into A_0 and A_1 4: split B into B_0 and B_1 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ 6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$ 7: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ Ernst Mayr, Harald Räcke #### **Algorithm 3** mult(A, B) #### **Algorithm 3** mult(A, B) $$\mathcal{O}(1)$$ #### **Algorithm 3** mult(A, B) Algorithm 3 mult(A, B) 1: if |A| = |B| = 1 then 2: return $a_0 \cdot b_0$ 3: split A into A_0 and A_1 4: split B into B_0 and B_1 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ 6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$ 7: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ 0(1) 0(1) 0(n) $T(\frac{n}{2})$ $T(\frac{n}{2})$ 0(n) | Algorithm 3 $mult(A, B)$ | | |-----------------------------------------------------------------------------------|------------------------------------| | 1: if $ A = B = 1$ then | $\mathcal{O}(1)$ | | 2: return $a_0 \cdot b_0$ | $\mathcal{O}(1)$ | | 3: $splitA$ into A_0 and A_1 | $\mathcal{O}(n)$ | | 4: split B into B_0 and B_1 | $\mathcal{O}(n)$ | | $5: Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$ | $T(\frac{n}{2})$ | | 6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$ | $2T(\frac{n}{2}) + \mathcal{O}(n)$ | | 7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$ | $T(\frac{n}{2})$ | | 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ | $\mathcal{O}(n)$ | We get the following recurrence: $$T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$ **Master Theorem:** Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$. - ► Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$ - ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ - Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$ **Master Theorem:** Recurrence: $T[n] = aT(\frac{n}{h}) + f(n)$. - ► Case 1: $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$ - ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ - Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$ In our case a = 4, b = 2, and $f(n) = \Theta(n)$. Hence, we are in Case 1. since $n = \mathcal{O}(n^{2-\epsilon}) = \mathcal{O}(n^{\log_b a - \epsilon})$. **Master Theorem:** Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$. - ► Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$ - ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ - Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$ In our case a=4, b=2, and $f(n)=\Theta(n)$. Hence, we are in Case 1, since $n=\mathcal{O}(n^{2-\epsilon})=\mathcal{O}(n^{\log_b a-\epsilon})$. We get a running time of $\mathcal{O}(n^2)$ for our algorithm. **Master Theorem:** Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$. - ► Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$ - ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ - Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$ In our case a=4, b=2, and $f(n)=\Theta(n)$. Hence, we are in Case 1, since $n=\mathcal{O}(n^{2-\epsilon})=\mathcal{O}(n^{\log_b a-\epsilon})$. We get a running time of $\mathcal{O}(n^2)$ for our algorithm. ⇒ Not better then the "school method". $$Z_1 = A_1 B_0 + A_0 B_1$$ $$Z_1 = A_1 B_0 + A_0 B_1$$ = $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$ $$Z_1 = A_1 B_0 + A_0 B_1$$ = Z_2 = Z_0 = $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$ We can use the following identity to compute Z_1 : $$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$ = $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$ Hence, We can use the following identity to compute Z_1 : $$Z_1 = A_1 B_0 + A_0 B_1$$ = Z_2 = Z_0 = $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$ Hence, #### **Algorithm 4** mult(A, B) 1: **if** |A| = |B| = 1 **then** 2: return $a_0 \cdot b_0$ 3: split A into A_0 and A_1 4: split B into B_0 and B_1 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ 6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ We can use the following identity to compute Z_1 : $$Z_1 = A_1 B_0 + A_0 B_1$$ = Z_2 = Z_0 = $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$ Hence, #### **Algorithm 4** mult(A, B) 1: **if** |A| = |B| = 1 **then** 2: **return** $a_0 \cdot b_0$ 3: split A into A_0 and A_1 4: split B into B_0 and B_1 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ 6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ We can use the following identity to compute Z_1 : $$Z_1 = A_1 B_0 + A_0 B_1$$ = $Z_2 = Z_0$ = $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$ Hence, #### **Algorithm 4** mult(A, B) 1: **if** |A| = |B| = 1 **then** 2: **return** $a_0 \cdot b_0$ 3: split A into A_0 and A_1 4: split A into A_0 and B_1 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ 6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ We can use the following identity to compute Z_1 : $$Z_1 = A_1 B_0 + A_0 B_1$$ = Z_2 = Z_0 = $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$ Hence, #### **Algorithm 4** mult(A, B) 1: **if** |A| = |B| = 1 **then** 2: **return** $a_0 \cdot b_0$ 3: split A into A_0 and A_1 4: split A into A_0 and B_1 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ 6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ $$\mathcal{O}(1)$$ We can use the following identity to compute Z_1 : $$Z_1 = A_1 B_0 + A_0 B_1$$ = Z_2 = Z_0 = $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$ Hence, #### **Algorithm 4** mult(A, B) 1: **if** |A| = |B| = 1 **then** 2: **return** $a_0 \cdot b_0$ 3: split A into A_0 and A_1 4: split A into A_0 and B_1 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ 6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ $$\mathcal{O}(1)$$ $$\mathcal{O}(1)$$ $$\mathcal{O}(n)$$ We can use the following identity to compute Z_1 : $$Z_1 = A_1 B_0 + A_0 B_1$$ = Z_2 = Z_0 = $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$ Hence, #### **Algorithm 4** mult(A, B) 1: **if** |A| = |B| = 1 **then** 2: **return** $a_0 \cdot b_0$ 3: split A into A_0 and A_1 3: Split A into A_0 and B_1 4: split B into B_0 and B_1 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ 6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ $$\mathcal{O}(1)$$ $$\mathcal{O}(1)$$ $$\mathcal{O}(n)$$ $$\mathcal{O}(n)$$ $$T(\frac{n}{2})$$ We can use the following identity to compute Z_1 : $$Z_1 = A_1 B_0 + A_0 B_1$$ = $Z_2 = Z_0$ = $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$ #### Hence, # **Algorithm 4** mult(A, B) 1: **if** |A| = |B| = 1 **then** 2: **return** $a_0 \cdot b_0$ 2: **return** $a_0 \cdot b_0$ 3: split A into A_0 and A_1 4: split B into B_0 and B_1 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ 6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ $$\mathcal{O}(1)$$ $$\mathcal{O}(1)$$ $$\mathcal{O}(n)$$ $$\mathcal{O}(n)$$ $$\Gamma(\frac{n}{2})$$ $$T(\frac{n}{2})$$ We can use the following identity to compute Z_1 : $$Z_1 = A_1 B_0 + A_0 B_1$$ = Z_2 = Z_0 = $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$ #### Hence, # **Algorithm 4** mult(A, B)1: **if** |A| = |B| = 1 **then** 2: **return** $a_0 \cdot b_0$ 5. Split A into A_0 and A_1 4: split B into B_0 and B_1 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ 6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ We can use the following identity to compute Z_1 : $$Z_1 = A_1 B_0 + A_0 B_1$$ = Z_2 = Z_0 = $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$ Hence, | Algorithm 4 $mult(A, B)$ | | |--------------------------------------------------------------------|-----------------------------------------| | 1: if $ A = B = 1$ then | $\mathcal{O}(1)$ | | 2: return $a_0 \cdot b_0$ | $\mathcal{O}(1)$ | | 3: $splitA$ into A_0 and A_1 | $\mathcal{O}(n)$ | | 4: split B into B_0 and B_1 | $\mathcal{O}(n)$ | | 5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$ | $T(\frac{n}{2})$ | | 6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$ | $T(\frac{n}{2})$ | | 7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ | $T(\frac{\bar{n}}{2}) + \mathcal{O}(n)$ | | 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ | $\mathcal{O}(n)$ | We get the following recurrence: $$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) \ .$$ **Master Theorem:** Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$. ► Case 1: $$f(n) = O(n^{\log_b a - \epsilon})$$ $T(n) = O(n^{\log_b a})$ • Case 2: $$f(n) = \Theta(n^{\log_b a} \log^k n)$$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ ► Case 3: $$f(n) = \Omega(n^{\log_b a + \epsilon})$$ $T(n) = \Theta(f(n))$ Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$. We get the following recurrence: $$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$ **Master Theorem:** Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$. ► Case 1: $$f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$$ $T(n) = \Theta(n^{\log_b a})$ ► Case 2: $$f(n) = \Theta(n^{\log_b a} \log^k n)$$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ ► Case 3: $$f(n) = \Omega(n^{\log_b a + \epsilon})$$ $T(n) = \Theta(f(n))$ Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$. We get the following recurrence: $$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$ **Master Theorem:** Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$. - ► Case 1: $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$ - ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ - Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$ Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$. We get the following recurrence: $$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$ **Master Theorem:** Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$. - ► Case 1: $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$ - ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ - Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$ Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.