6.2 Master Theorem

Lemma 1
Leta >1,b > 1 and € > 0 denote constants. Consider the
recurrence n

T(n) = aT(E) + fn) .

Case 1.
If f(n) = O(n'°%@-€) then T(n) = O(nlosra),

Case 2.
If f(n) = ©(nl°8 (@ logk n) then T(n) = O(n'°8 2 1og"*! n),
k>0.

Case 3.
If f(n) = Q(nlo8 (D +¢) and for sufficiently large n

af(%) < cf(n) for some constantc <1 thenT(n) = O(f(n)).

=)
m Ernst Mayr, Harald Racke

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b!, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

®

m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem =]
Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

=
g

@
1

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

@
1

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Réacke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Réacke

6.2 Master Theorem

This gives
log, n—1

T(n) =nlo8a 4+ > a#(%) :

i=0

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

T(n) - nlogb a

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1

T -l =3 aif (%)

i=0

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1

T -l =3 aif (%)

i=0
log, n—1

¢ 3 ai

i=0

IA

n

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,
log, n—1 n
T(n) —n'osra = Z alf<ﬁ>
i=0
log, n—1

logy, a—€
[n
e 3 a(y)

i=0

IA

p-ilogpa—e) — bei(blogh u)—i = peig—i |

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T(n) — nlosra = Z alf<ﬁ>
i=0

logy n-1 logy, a—e

<C a bi

i=0

log, n—1]
p-illogy a—e) _ pei(plogpay—i — beia—il = cnlogpa—c Z (b€)?

i=0

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T(n) —n'osra = Z alf<ﬁ>
i=0
log, n—1 logy, a—e¢
- Z i 2 Sb
<C a bi
i=0
log, n—1]
p-ilogpa—e) — bei(blogh u)—i = peig—i | — Cnlogb a—e Z (be)l
i=0

k+1,1
Zl Oq q-1

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T -l =3 aif (%)
i=0
log, n—1 logy, a—e¢
- z i(n b
<cC a bi
i=0
log, n—1]
p-ilogpa—e) — bei(blogh u)—i = peig—i | — Cnlogb a—e Z (be)l
i=0
gkl | log, a—e belogbn -1 hE — 1
Stoai=tt|=cn (/()

m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T(n) —n'osra = Z alf<ﬁ>

i=0

log, n—1 logy, a—e¢
- Z i 2 Sb
<C a bi

i=0
log, n—1]
p-ilogpa—e) — bei(blogh u)—i = peig—i | — Cnlogb a—e Z (be)l

i=0
Zl oq ’:1;1 _ Cnlogba—E(belogbn . 1)/(be -1)
= cnlo8ra=€(n€ — 1)/ (b€ - 1)

m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

T(n) —

p-ilogya-e) — bei(blogh u)—i = peig-i | — Cnlogbu

Zl Oq

m Ernst Mayr,

Harald Racke

logp n—1
nloga - % aif<%>
i=0
log, n—1 log, a—€
s 3y ()
i=0
log, n—-1)
—e Z (be)l
i=0
1:11,1 _ Cnlogba—E(bEI(’gb" -1)/(b -1)
— OB A€ (n€ _ 1)/ (b — 1)
C logy, a (.,€ €
= ——n%%n" -1)/(n
e ()/ (n®)
6.2 Master Theorem “ B

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
ron - ome =S aty(2)
, bt
i=0
logy, n—1 o\ logpa-e
e 3 a(y)
i=0
log, n—1 ‘
p-illogy a—€) _ peiplogyay—i _ peig—i | = cnlogpa—c Z (be)l
i=0
Zl oq ’:1;1 _ Cnlogba—E(belogbn . 1)/(be -1)
= cnlo8ra=€(pc _ 1)/(b€ - 1)
¢ logy, a(.,€ €
=——mn"%4mnm*-1)/(n
pe e~ 1)/ (n)
Hence,
C
T(n) < < + 1>n10gb(ll)
(n) he 1
6.2 Master Theorem =] = =

m Ernst Mayr, Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T(n) —n'osra = Z alf<ﬁ>
i=0
log, n—1 logy, a—e¢
- Z ; 2 Sb
<C a bi
i=0
log, n—1]
p-ilogpa—e) — bei(blogh u)—i = peig—i | — Cnlogb a—e Z (be)l
i=0

Sk gqi = BL | — cplogs a-e(pelogn _ 1)/ (pe — 1)

q-1
=cnlo8 ¢ (€ —1)/(b° - 1)

= e (e = 1)/ (n)

Hence,

T(n) < <

peg) > T(n) = 08 9).

m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

T(n) - nlogh a

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1

T(n) — nlogra = Z aif(%)

i=0

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1 n
_ logya _ i had
T(n)—no°srd = Z af(bi)
i=0
log, n—1

log, a
i(n
E. i
c a <bi>
i=0

IA

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1

_ logya _ i ﬁ

T(n) - n% = 3, f(bl)
i=0

log, n—1 log, a

<cC a bi
i=0

log, n—1

=cnlogra X

i=0

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1

_ logya _ i ﬁ

T(n) - n% = 3, f(bl)
i=0

log, n—1 log, a

<cC a bi
i=0

log, n—1

=cnlogra X

i=0
cnlog log, n

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1

_ logya _ i 2
T(n) - n% = 3, f(bl)
i=0
log, n—1 log, a
12 gp
<c > a =
i=0
log, n—-1
=cnlogra X
i=0

cnlog log, n

Hence,
T(n) = O(n'°% *log, n)

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1

_ logya _ i 2
T(n) - n% = 3, f(bl)
i=0
log, n—1 lo
i n gpa
<c > a i
i=0
log, n—-1
=cnlogra X
i=0

cnlog log, n

Hence,

T(n) = O(n'°&%log,n) |= T(n) = O 2logn).

m 6.2 Master Theorem =] = =
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

T(n) — nlogb a

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1

T(n) — nlogra = Z aif(%)

i=0

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
_ ,logpa _ i e
T(n) —nost= Z “f<bi)
i=0
logp n—1

log, a
i(n
2 i
=C a (bi)
i=0

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nloswe =Y atp(r)
i=0
logp n—1 log, a
lﬁ Sh
2c > a i
i=0
log, n—-1
=cnlo®a X
i=0

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nloswe =Y atp(r)
i=0
logp n—1 log, a
lﬁ Zb
2c > a i
i=0
log, n—-1
=cnlo®a X
i=0
= cnl°® %log, n

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T(n) —nlogra = Z alf<ﬁ)
i=0
logp n—1 log, a
i E Sh
>c > a i
i=0
log, n—1
=cnlo®a X
i=0
= cnl°® %log, n

Hence,
T(n) = Q(n'°% %log, n)

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T(n) —nlogra = Z alf<ﬁ)
i=0
logp n—1 log, a
i n Sh
>c > a i
i=0
log, n—1
=cnlo®a X
i=0
= cnl°® %log, n

Hence,

T(n) = Q% %log,n) |= T(n) = Qn'°%2logn).

m 6.2 Master Theorem =] = =
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

T(n) — nlosra

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1

T(n) - nloma= Y aif(%)

i=0

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1 n
o) —nlowd =3 aif (1)
i=0
logy n—1 log, a
8 ()™
i=0

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1 ’ n
T(Tl) _ nlogba _ Z alf(ﬁ)
i=0
log, n—1 log, a k
(o) (om (57))
<c g(:) a(bl logp (3,7

n:h€=>€:logbn|

m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1

T(n) - nloma= Y aif(it)

i=0

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1 n
T(n)-nlo&a =% alf(ﬁ)
i=0
log, n—1 log, a k
[n n
e 3 al(y) - (om (5))
i=0

-1 bl k
n:h€=>€:logbn| = cnlogra Z (logb (ﬁ))
i=0

£-1
= cnlo8ra 3 (¢ - i)k
i=0

m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1 n
T(Tl) _ nlogba _ Z alf(ﬁ)
i=0
log, n—1 log, a k
(o) (om (57))
<c g(:) a(bi 0gp | 4,7
£-1

b# k
n:h€=>€:logbn| = cnlogra Z (logb (ﬁ))
i=0

-1
= cnlo8ra 3 (¢ - i)k
i=0
4
— cnlogra Z ik
i=1

m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

T(n) — nlogra =

n:h€=>€:logbn|

logp n—1

> alf(y
bi

i=0

log, n—1

S) o (1)

i=0

-1 bl k
()

i=0

£-1
= cnlo8ra 3 (¢ - i)k
i=0

4
= cnloss uz ik~ %#I«rl
i=1

m Ernst Mayr, Harald Racke

6.2 Master Theorem &

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1 n
T(Tl) _ nlogba _ Z alf(ﬁ)
i=0
log, n—1 log, a k
(o) (om (57))
<c g(:) a(bi 0gp | 4,7
£-1

b# k
n:h€=>€:logbn| = cnlogra Z (logb (ﬁ))
i=0

£-1
= cnlo8ra 3 (¢ - i)k
i=0
4
— cnlogra Z ik
i=1
~ %nlogh a€k+1

m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1 n
T(?’l) _ nlogba _ Z alf(ﬁ)
i=0
log, n—1 log, a k
(o) (om (57))
<c g(:) a(bi 0gp | 4,7
£-1

b# k
n:b€=>€:logbn| = cnlogra Z (logb (ﬁ))
i=0

-1

= cnlosra Z (0 — i)k
i=0
4

— cnlogra Z ik

i=1
C

~ Enlogb apk+l = T(n) = O(n'°% 4 1ogk 1 n).

m 6.2 Master Theorem =] = =
Ernst Mayr, Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

‘m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

Ton) -l =3 aif ()

i=0

‘m 6.2 Master Theorem =]
Ernst Mayr, Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

T(n) — nlogha _ Z aif ﬂl
> af(5)
log, n—-1
< > cifm) +0omosne)
i=0

‘m 6.2 Master Theorem =]
Ernst Mayr, Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1 n
_ logpa _ i A
T(n)—nosrd = Z af(bi>
i=0
log, n—-1
< > cifm) +0omosne)
i=0
7’ _gn+l
q<1:zl?'=0qlzllq_q sﬁ

‘m 6.2 Master Theorem =]
Ernst Mayr, Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1 n
T(n) — nlogha _ Z alf(ﬁ)

i=0

log, n—-1

< > cifm) +0omosne)
i=0
e 1
a<1:3foqi= 190" < 1| < oS+ O(nlosr4)

‘m 6.2 Master Theorem =]
Ernst Mayr, Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

(N
Ton) -l =3 aif ()
i=0
log, n—-1
< > cifm) +0omosne)
i=0
n i _an+1]- l
a<1:3",q" = llq_q sﬁ Sl _Cf(n) + O (n'°sr)
Hence,

T(n) <0(f(n))

‘m 6.2 Master Theorem =]
Ernst Mayr, Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1
ron - nowe =S aif (R
3 ar(y)
log, n—-1
< > cifm) +0omosne)
i=0
a<1:3hoqi=500 <L) < 1 i cf(n) + O (nlosra)
Hence,
T(n) <0(f(n) > T(n) = ®(f(n))_‘

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

‘m 6.2 Master Theorem =) =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1T1T01T1T010(1| A
10001001|1] B

L

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1T1T01T1T010(1| A
10001001|1 B

ol

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B

o

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B
0/0

cl

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

oo

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

0/0 0

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101100101 A
10001(0/011 B

" jooo

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
1000

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T01{(1/101 01 A
1000100]0]]]] B

" J1000

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T01{(1/101 01 A
10001100]0]]]] B

0/1000

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110(1l10101 A
100(01,001 1 B
' jo1000

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110(1l10101 A
100/0/1,001 1 B
0/01000

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11f0j110101 A
100010011 B
' Joo1000

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11f0j110101 A
100010011 B
11001000

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1llo110101 A
1100010011 B
/1001000

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1llo110101 A
1/0/00 10011 B
111001000

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
/11001000

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
Jjooo1001 1 B
011001000

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
/1,0001001 1 B
' Jo11001000

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
/1,0001001 1 B
1011001000

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
. 1,00010011 B
1011001000

This gives that two n-bit integers can be added in time O(n).

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11

‘m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 x101(1)

‘m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 x101(1)
10001

‘m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 XxX10(J1
10001

‘m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 XxX10(J1
10001
0

‘m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 XxX10(J1
10001
100010

‘m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010

‘m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010

00

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1(011
10001
100010
00000O0O

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X011
10001
100010
00000O0O

‘m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X011
10001
100010
00000O0O
00O

‘m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X011
10001
100010
00000O0O
1T0001000O0

‘m 6.2 Master Theorem =]
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010
00000O0O
1T0001000O0

‘m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

‘m 6.2 Master Theorem =]
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:

‘m 6.2 Master Theorem =]
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:
» Computing intermediate results: O(nm).

‘m 6.2 Master Theorem =]
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n:
O((m+n)m) = O(nm).

‘m 6.2 Master Theorem =]
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B x| A

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

b,, bo‘x‘aﬂ ao

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

b”_1 b% b%_l bo‘x‘an_l a% a%_l ao

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X \ A; Ao

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X | A; Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + By

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X | A; Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + By

Hence,

A-B=A1B;-2"+ (A1Bo + AoBy) - 27 + AoBo

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bg

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Aq, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7y

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then

2 return ag - bg

3: split A into Ag and A,

4: split B into By and B;

5: Zo — mult(Ay,B;)

6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)

8: return Z - 2" + 7, - 27 4 Zo

o(1)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bg

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Aq, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7y

o(1)
O(1)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

1. if |A| = |B] =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A, On)
4: split B into By and B;
5: Zo — mult(Ay,B;)
6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)
8: return Z» - 2" + 7Z; - 27 VA
P -

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

1. if |A| = |B] =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(Ay,B;)
6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)
8: return Z» - 2" + 7Z; - 27 VA
P -

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

1. if |A| = |B] =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(Ay,B;) T(%)
6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)
8: return Z» - 2" + 7Z; - 27 VA
P -

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(Ay,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg)

8: return Z» - 2" + 7Z; - 27 VA

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(Ay,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8: return Z» - 2" + 7Z; - 27 VA

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B| =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(Ay,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8 return Z - 2" + 71 - 22 + 7 O(n)

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |JA| = |B| =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(Ay,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8 return Z - 2" + 71 - 22 + 7 O(n)

We get the following recurrence:

T(n) = 4T<%) +OMm) .

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlogr a)
» Case 2: f(n) = O(n°%r2loghn) T(n) = O(nlograloght! n)
> Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlogr a)
» Case 2: f(n) = O(n°%r2loghn) T(n) = O(nlograloght! n)
> Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))

Inourcasea =4, b =2,and f(n) = O(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra—c),

‘m 6.2 Master Theorem =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlogr a)
» Case 2: f(n) = O(n°%r2loghn) T(n) = O(nlograloght! n)
> Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))

Inourcasea =4, b =2,and f(n) = O(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra—c),

We get a running time of ©@(n?) for our algorithm.

‘m 6.2 Master Theorem =]
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nosra-c) T(n) = O(nlogr a)
» Case 2: f(n) =08 alogkn) T(n) = O(n'°% 41og"*! n)
» Case 3: f(n) = Q(nlograte) T(n) = O(f(n))

Inourcasea =4, b =2,and f(n) = O(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra—c),

We get a running time of ©@(n?) for our algorithm.

=> Not better then the “school method”.

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy
= (Ao + A1) - (Bo + B1) — A1B1 — AoBo

'Ml 6.2 Master Theorem
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =7 =1Z

—t
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

'Ml 6.2 Master Theorem
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =7 =1Z

—t
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1

Hence,

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =72 =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Hence,

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag+ A1,By+B1) — Z>— Zo
8: return Zp - 2" + Z; - 2% & Zo

o)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =72 =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Hence,

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag+ A1,By+B1) — Z>— Zo
8: return Zp - 2" + Z; - 2% & Zo

o)
O(1)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =72 =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Hence,

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag+ A1,By+B1) — Z>— Zo
8: return Zp - 2" + Z; - 2% & Zo

o)
O(1)
O(n)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =72 =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
5: Z» — mult(Aq,Bq)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag+ A1,By+B1) — Z>— Zo

8: return Zp - 2" + Z; - 2% & Zo

P -

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =72 =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
5: Zo — mult(A1, By) T(%)
6: Zo — mult(Ag, By)

7: Z1 — mult(Ag+ A1,By+B1) — Z>— Zo

8: return Zp - 2" + Z; - 2% & Zo

P =

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =72 =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
5: Zo — mult(A1, By) T(%)
6: Zo — mult(Ag, By) T(%)
7: Z1 — mult(Ag+ A1,By+B1) — Z>— Zo

8: return Zp - 2" + Z; - 2% & Zo

P =

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Hence,

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

o(1)
O(1)
o)
O(n)
T(%)
T(%)
T(%) +0(n)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1

Hence,

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

O(1)
O(1)
O(n)
O(n)
T(%)
T(%)
T(%) +0(n)
O(n)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Réacke

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +0Mm) .

m 6.2 Master Theorem
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T(%) +OMm) .

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlogr a)
» Case 2: f(n) = O(nl%%ralogn) T(n) = O(nlogralogh+! n)
> Case 3: f(n) = Q(nloBate) T(n) =0(f(n)

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlogr a)
» Case 2: f(n) = O(nl%%ralogn) T(n) = O(nlogralogh+! n)
> Case 3: f(n) = Q(nloBate) T(n) = 0(f(n))

Again we are in Case 1. We get a running time of
@(nlog2 3) ~ @(1’11‘59).

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlogr a)
» Case 2: f(n) = O(nl%%ralogn) T(n) = O(nlogralogh+! n)
> Case 3: f(n) = Q(nloBate) T(n) = 0(f(n))

Again we are in Case 1. We get a running time of
@(nlog2 3) ~ @(1’11‘59).

A huge improvement over the “school method”.

‘m 6.2 Master Theorem =] =
Ernst Mayr, Harald Racke

	Master Theorem

