
13.3 Highest Label

Algorithm 6 highest-label(G, s, t)
1: initialize preflow

2: foreach u ∈ V \ {s, t} do

3: u.current-neighbour ← u.neighbour-list-head

4: while ∃ active node u do

5: select active node u with highest label

6: discharge(u)
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Lemma 1

When using highest label the number of non-saturating pushes is

only O(n3).

A push from a node on level ` can only “activate” nodes on levels

strictly less than `.

This means, after a non-saturating push from u a relabel is

required to make u active again.

Hence, after n non-saturating pushes without an intermediate

relabel there are no active nodes left.

Therefore, the number of non-saturating pushes is at most

n(#relabels + 1) = O(n3).
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Since a discharge-operation is terminated by a non-saturating

push this gives an upper bound of O(n3) on the number of

discharge-operations.

The cost for relabels and saturating pushes can be estimated in

exactly the same way as in the case of the generic push-relabel

algorithm.

Question:

How do we find the next node for a discharge operation?
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Maintain lists Li, i ∈ {0, . . . ,2n}, where list Li contains active

nodes with label i (maintaining these lists induces only constant

additional cost for every push-operation and for every

relabel-operation).

After a discharge operation terminated for a node u with label k,

traverse the lists Lk, Lk−1, . . . , L0, (in that order) until you find a

non-empty list.

Unless the last (non-saturating) push was to s or t the list k− 1

must be non-empty (i.e., the search takes constant time).
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Hence, the total time required for searching for active nodes is

at most

O(n3)+n(#non-saturating-pushes-to-s-or-t)

Lemma 2

The number of non-saturating pushes to s or t is at most O(n2).

With this lemma we get

Theorem 3

The push-relabel algorithm with the rule highest-label takes time

O(n3).
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Proof of the Lemma.

ñ We only show that the number of pushes to the source is at

most O(n2). A similar argument holds for the target.

ñ After a node v (which must have `(v) = n+ 1) made a

non-saturating push to the source there needs to be another

node whose label is increased from ≤ n+ 1 to n+ 2 before

v can become active again.

ñ This happens for every push that v makes to the source.

Since, every node can pass the threshold n+ 2 at most

once, v can make at most n pushes to the source.

ñ As this holds for every node the total number of pushes to

the source is at most O(n2).

13.3 Highest Label

Ernst Mayr, Harald Räcke 484


	Highest Label

