7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary
tree. Each tree-node corresponds to an element. All elements in
the left sub-tree of a node v have a smaller key-value than
key[v] and elements in the right sub-tree have a larger-key
value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:

m Ernst Mayr, Harald Racke 127

7.1 Binary Search Trees

We consider the following operations on binary search trees.
Note that this is a super-set of the dictionary-operations.

» T.insert(x)

» T.delete(x)

» T.search(k)

» T.successor(x)
» T.predecessor(x)
» T.minimum()

» T.maximum()

m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 128

Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch (right[x], k)

m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 129

Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 130

Binary Search Trees: Minimum

Algorithm 6 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 131

Binary Search Trees: Successor

succ is min in
right sub-tree

Algorithm 7 TreeSucc(x)
1: if right[x] # null return TreeMin(right[x])
2: y < parent[x]

3: while y + null and x = right[y] do

4

5

X < y;y < parent[x]
. return y;

m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 132

Binary Search Trees: Successor

succ is lowest
ancestor going
left to reach me

Algorithm 7 TreeSucc(x)

1: if right[x] # null return TreeMin(right[x])
2: y — parent[x]

3: while y + null and x = right[y] do

4 X < y;y < parent[x]

5: return vy;

m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 132

Binary Search Trees: Insert
Insert element not in the tree.
Treelnsert(root, 20)

Algorithm 8 Treelnsert(x, z)
1: if x = null then
2 root[T] «— z; parent[z] — null;
3 return;
4: if key[x] > key[z] then
5 if left[x] = null then
6: left[x] < z; parent[z] — x;
7
8
9
0
1

Search for z. At some
point the search stops
at a null-pointer. This
is the place to insert z.

else Treelnsert(left[x], z);
. else
if right[x] = null then
right[x] < z; parent[z] — x;
else Treelnsert(right[x], z);

Binary Search Trees: Delete

Case 1:
Element does not have any children
» Simply go to the parent and set the corresponding pointer
to null.

Binary Search Trees: Delete

Case 2:
Element has exactly one child

> Splice the element out of the tree by connecting its parent
to its successor.

Binary Search Trees: Delete

Case 3:

Element has two children
» Find the successor of the element
» Splice successor out of the tree

» Replace content of element by content of successor

Binary Search Trees: Delete

Algorithm 9 TreeDelete(z)
1: if left[z] = null or right[z] = null
2 then y — z else vy — TreeSucc(z); select y to splice out
3: if left[y] # null
4 then x — left[y] else x — right[y]; x is child of (or null)
5. if x # null then parent[x] — parent[y]; parent[x] is correct
6: if parent[y] = null then
7 root[T] — x
8: else
9: if v = left[parent[y]] then +fix pointer to x
10: left[parent[y]] — x
11: else
12: right[parent[y]] — x
13: if v # z then copy y-datato z

7.1 Binary Search Trees

m Ernst Mayr, Harald Racke

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time
O(h), where h denotes the height of the tree.

However the height of the tree may become as large as ©(n).

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments
to guarantee a height of O(logn).

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees,
AA trees, Treaps

similar: SPLAY trees.

m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke

136

Binary Search Trees (BSTs)

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

Binary search trees can be found in every standard text book. For example Chapter 7.1 in [MS08] and
Chapter 12 in [CLRS90].

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke

137

	Binary Search Trees

